
1

Paper 100-30

Extreme Web Access: What to Do When FILENAME URL Is Not
Enough

Garth Helf, Hitachi Global Storage Technologies, San Jose, CA

ABSTRACT
This paper shows you how to write an automated Web browser in SAS®. One reason you might want to do this is to
extract data from useful websites, so you can load it into a data warehouse. SAS provides the URL access method
to read HTML from web pages, but we will see why it won�t work for many websites. Instead, we will use the
SOCKET access method to perform the basic functions of a web browser. We will understand how a web browser
works by learning about Hypertext Transfer Protocol (HTTP) � the standard technique for sending HTML over the
internet. We will see how to use an HTTP viewer program like httpExplorer to observe the HTTP request sent to a
web server and the HTTP response sent back to the browser, so that we can replicate the same communication in a
SAS program. Finally, we will see how to handle some special cases, like Chunked transfer encoding.

INTRODUCTION
The worldwide web is an amazing place. You can find the answer to almost any question in less than ten mouse
clicks. Many organizations provide critical operational data through websites on an intranet. Mining this data could
provide many interesting conclusions for a SAS analyst. The data on these web pages would be a welcome addition
to data warehouses. We need to find a way to automatically extract important data from web pages so that we can
load it into a data warehouse.

SAS provides a method for extracting data from web pages � the URL access method of the FILENAME statement.
This method makes it easy to read data from web pages without having to understand how web browsers
communicate with web servers. Unfortunately, the URL access method only works with simple web pages. For
example, web sites that have login screens use techniques that are not supported by the URL access method.

This paper describes the process the author uses to extract data from a Hitachi Global Storage Technologies
intranet website that contains important yield information about the disk drive assembly and test process. The
providers of this data decided to share it only through a web interface. The author had been using the URL access
method, but this SAS program stopped working after the web developers released a new web server application.
The goal of the SAS program is to automatically extract all of the yield and detractor information from the website on
a daily basis and store it in a data warehouse. This data warehouse was described in previous SUGI papers
(References 1 and 2).

The new web application has the following flow. From the welcome page, clicking on the �Enter� link takes you to a
login screen. You enter your user ID and password and click �Log On�, then you can see the main navigation menu.
From here, you select a product group from the left pane and navigate through menus, specifying Disk drive factory,
date, and disk drive model. Finally, you can view a yield report like the one shown in Figure 1.

The solution described here uses the SOCKET access method of the FILENAME statement to communicate with a
web server. Another solution using the CURL open-source software is also described. Before these are shown, you
need to have a basic understanding of how web browsers work.

HOW THE WEB WORKS – URLS, HTML, AND HTTP
A good way to understand how web browsers work is to think about 3 basic questions:

1. How do you identify a particular object on the web to retrieve, or what is the unique identifier of a web page?
2. How do you request the content from a server, and how will the server send it to you?
3. In what format will the content be sent so that it will be interpreted the same by all browsers?

The answer to the first question is Universal Resource Locator (URL). The answer to the second question is
Hypertext Transfer Protocol (HTTP). The answer to the third question is Hypertext Markup Language (HTML).

UNIVERSAL RESOURCE LOCATOR - URL
A URL is the name that is displayed in or you type into the address bar in your browser. For example, the URL for
the SAS Corporate page at http://www.sas.com/corporate/index.html has the following components:

• http � Protocol, other examples are ftp and mailto
• www.sas.com � network location in hostname or IP address form
• /corporate/index.html � the path to the resource on the server, in this case a file named index.html

This page is an example of a static web page. This means that there is actually a file on the server in this directory
called index.html, and the server sends the same file to everyone who requests this URL.

SUGI 30 Data Warehousing, Management and Quality

2

Figure 1 - Sample Yield Report

Many web pages are dynamically generated. Instead of being an actual file in a directory on the server, the server
runs a program that generates the HTML content at that moment and sends it back to your web browser. For
example, go to Yahoo, click Finance, enter �IBM� in the Symbol box and click �Go�, you will go to a page that has this
URL displayed in the address bar: http://finance.yahoo.com/q?s=IBM. This URL has the following components:

• http � Protocol, other examples are ftp and mailto
• finance.yahoo.com � network location in hostname form
• /q � path to the resource, in this case a program named �q�
• s=IBM � query string, a set of variable name/value pairs separated by the �?� symbol that is passed to the

program. In this case, only one variable named �s� with value �IBM� is passed to program �q�.

HYPERTEXT MARKUP LANGUAGE - HTML
Hypertext Markup Language (HTML) defines how the content in the web page should be formatted by your web
browser. Because HTML is a markup language, it has many tags that control formatting, like <html>, <table>, <p>,
and so on. Most browsers let you view the actual HTML for a web page. In Internet Explorer, you can view HTML
by selecting View -> Source from the command bar. HTML is well documented. You can start at the official site,
http://www.w3.org/MarkUp, or get one of the many books about HTML.

For the present task of automating web requests, you don�t care how the content will be displayed in a browser; you
only care about extracting certain pieces of data from the HTML page returned from the server. You do this with a
SAS Data step that uses functions like INDEX and SCAN to locate HTML tags like <div>, <table>, <tr>, and <td>,
then parses out the data elements with functions like SCAN and SUBSTR. This usually requires intermediate to
advanced Data step programming skills. Explaining how to write such a Data step is beyond the scope of this paper.
SAS Institute offers several Data Step programming classes. The Online Documentation also has good information
on this subject.

HYPERTEXT TRANSPORT PROTOCOL - HTTP
Hypertext Transport Protocol defines how a browser sends a request for a web page to a web server, and also how
the server sends the HTML back to the browser. HTTP is also well defined and documented. You can find the
specification for HTTP version 1.1 (the latest version) on the Internet at ftp://ftp.rfc-editor.org/in-notes/rfc2616.pdf
(Reference 3). You should also get a good book about HTTP, such as HTTP Developer�s Handbook (Reference 4).
Luckily, you don�t need to understand everything about HTTP to automate web page extraction with the techniques
described in this paper. The quick overview in this section should be enough to get started.

An HTTP transaction consists of one request sent to a server, followed by one response from the server. Both the
response and request must be in a precise format. An HTTP request consists of a request line, followed by HTTP
header lines, followed optionally by content. An HTTP response consists of a status line, followed by HTTP header
lines, followed optionally by content lines.

Here is an example of an HTTP request to get the default document at support.sas.com:
GET / HTTP/1.1

SUGI 30 Data Warehousing, Management and Quality

3

Host: support.sas.com
Connection: Close

Note that this HTTP request consists of a request line, two HTTP header lines, and no content lines. This request
line, like all HTTP request lines, contains 3 items separated by blanks. The first item is the request method, in this
case GET. The second item is the location of the resource on the server. The special character / tells the server to
return the root document. In this case the web server will return the default, or home page for the site. The third
item is the version of HTTP being used, in this case HTTP/1.1.

Here is the response from the web server to this request:
HTTP/1.1 200 OK
Date: Fri, 28 Jan 2005 23:27:31 GMT
Server: Apache/1.3.29 (Unix) mod_jk/1.2.0
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html

1000
<html>
<head>
<title>SAS Customer Support Center</title>
{many more lines of HTML}

Note that this HTTP response consists of a status line, five HTTP header lines, and many content lines. This status
line, like all HTTP status lines, contains 3 items separated by blanks. The first item is the version of HTTP being
used, in this case HTTP/1.1. The second item is the response status code, a 3-digit number that tells you the
outcome of the server�s attempt to fulfill your request. The third item is a short description of the status code. The
following sections describe some important HTTP topics in more detail.

REQUEST METHODS
HTTP 1.1 defines eight request methods, but you only need to know about two of them � GET and POST. The most
popular request method used by web clients is GET. This is the type of request your browser uses when you click
on a link or type a URL into the browser�s address bar.

GET is also the default method used by HTML forms. Whenever you enter text into an entry field, select a radio
button or checkbox, or click a button like �Submit� on a web page, you are interacting with an HTML form. HTML
forms are started by the <form> tag. This tag has an attribute called method that can take values of get and post.
When Get is used, each form field name and value is built into a query string as described earlier in the discussion
of Universal Resource Locators, and the browser issues a GET request to retrieve the content specified by the
action attribute of the <form> tag. All form variable names and values are included in the resource field on the
HTTP request line. GET does not send any data in the content section after the HTTP headers.

For example, on the Google home page, when you type SAS DATA WAREHOUSE in the text box and click Google
Search, the browser sends a GET request. Note that the query string is sent as part of the resource name:

GET /search?hl=en&q=sas+data+warehouse HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Referer: http://www.google.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: www.google.com
Connection: Keep-Alive

The POST method is also used to request content from a web server. Most browsers use the POST method only
when the <form> tag specifies method=post. In this case, the query string is sent in the content section after the
HTTP headers. If the Google search had specified the POST method instead of GET, the request would look like:

POST /search HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Referer: http://www.google.com/
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: www.google.com
Connection: Keep-Alive
Content-Length: 26
Content-Type: application/x-www-form-urlencoded

hl=en&q=sas+data+warehouse

Note that the content section that contains the query string is separated from the HTTP headers by a null line. Also
note that two additional HTTP headers, Content-Length and Content-Type, are required. This lets the web
server know how much content data to expect, and how to interpret it.

RESPONSE STATUS CODES

SUGI 30 Data Warehousing, Management and Quality

4

The HTTP standard defines several 3-digit response status codes, grouped into five categories: Information (100-
199), Success (200-299), Redirection (300-399), Client error (400-499), and Server error (500-599). The status code
you want to see is 200 (OK). This means the request was acceptable and the server processed it successfully. If
there is a syntax error in your HTTP request, expect to see status code 400 (Bad Request). You�ve probably seen
status code 404 (Not Found) displayed in your browser when a requested document does not exist, and status code
401 (Unauthorized) when you cancel out of a password dialog box.

One status code you should know about is 302 (Object Moved). This is one of the Redirection status codes, and it is
used when the Web server wants to inform the client that the requested resource is located somewhere else. You
would think that redirection would mostly be used to point stale links to the correct resource, but it is actually most
often used when redirection is desired as a normal part of the Web application, such as testing to see if a browser
will accept cookies. When a Web server sends a 302 status code, it must also send the new URL for the resource in
a Location header. The browser then issues a second request to retrieve the resource using this new URL. This
happens automatically, so that you do not notice anything different by looking at the browser window.

HTTP HEADERS
The HTTP 1.1 standard defines dozens of headers. Fortunately, you only need to know about a few of them to script
web requests. The headers fall into 4 categories: headers only used in requests; headers only used in responses;
and general and entity headers, which can be used in either requests or responses.

Request headers are used only in an HTTP request. The only required header in an HTTP 1.1 request is the Host
header, which identifies the hostname you are trying to reach. The Accept, Accept-Charset, Accept-
Encoding and Accept-Language headers tell the server what content types, character encodings, content
encodings, and content languages the browser is willing to accept. The User-Agent header identifies the type of
Web browser making the request. Some server applications send back different HTML for different user agents.

Response headers are used only in an HTTP response. The Server header identifies the Web server software, like
Apache or Microsoft IIS. The Location header was mentioned earlier in the discussion about redirection.

General headers can be used in requests or responses. Many of these are related to caching of resources. The
Connection header indicates whether the connection between the client and server should be or has been closed
or kept open. The Date header indicates the system time on the client or server.

Entity headers give information about the content of an HTTP message. Since a GET request does not send
content, no entity headers are used. The Content-Type, Content-Length, Content-Encoding and
Content-Language headers indicate the type, length in bytes, type of encoding, and language of the content.

COOKIES
Cookies are essential to the Web for state management. HTTP is often called a stateless protocol. This means that
each transaction is atomic, and there is nothing required by HTTP that associates one request with another. This
makes HTTP simple to use, but limits its usefulness. For example, a website like Amazon that has a shopping cart
feature needs a way to keep track of each user and the history of their session at the site.

State management in HTTP is enabled by the use of Cookies. A cookie is a token with a name and value that is
sent in HTTP requests and responses. A web server sends a cookie to the client with the Set-Cookie header, and
a client sends a cookie to a web server with the Cookie header. In the Expedia example earlier, you saw that the
web server sent a cookie with this header:

Set-Cookie: MC1=GUID=2204A39CCBE1442CB4CD20B9875AE6C4; expires=Fri, 01-Jan-2010
08:00:00 GMT; domain=.expedia.com; path=/

In this example, the cookie name is MC1 and its value is GUID=2204A39CCBE1442CB4CD20B9875AE6C4. The
other tokens named expires, domain, and path are attributes of the cookie. A web client must send all cookies
accepted from a web server back to the web server in subsequent requests with the Cookie header. Multiple
cookie name/value pairs are separated by semicolons. Since three cookies were set in the Expedia example, the
next request to the site would include this header:

Cookie: COOKIECHECK=1; ipsnf=us|1; MC1=GUID=2204A39CCBE1442CB4CD20B9875AE6C4

CHUNKED TRANSFER ENCODING
It is quite common for content to be returned from a web server in a format called Chunked Transfer Encoding.
Instead of sending the Content-Length header and specifying the entire length of content, the server will send the
Transfer-Encoding: chunked header. In this case, the content is sent in chunks, and the length of each chunk
in hexadecimal bytes is sent before the chunk. Here is an example of this from support.sas.com:

HTTP/1.1 200 OK
Date: Wed, 02 Feb 2005 23:59:50 GMT
Server: Apache/1.3.29 (Unix) mod_jk/1.2.0
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html

1000 {chunk size 1000x = 4096 bytes}

SUGI 30 Data Warehousing, Management and Quality

5

<html> {start of first chunk}
<head>
{more lines of HTML in this chunk}
 <td>
 <FORM method="get" action="http://search.sas.com/suppquery.html"
style="padding:0;margin {end of first chunk}
1000 {chunk size 1000x = 4096 bytes}
:0"> {start of second chunk}
 Search Customer Support

This pattern of alternating chunk lengths and chunk data continues until the content is all sent, then the web server
sends a final chunk length of zero and an empty chunk. This signals the Web client that the content is finished.
Chunked transfer encoding is useful for sending dynamically generated content where the web server does not know
the length of the entire content at the time when the headers are created. It also allows the browser to render and
display the page as each chunk is received, which makes the initial display much quicker for large pages. However,
if you are scripting web requests and reading raw HTTP responses, you need to parse the content carefully. You
see from this example that the chunk boundaries usually fall in the middle of an HTML line. Your HTML parsing
algorithm probably assumes that the original HTML lines are intact, so you need to process the chunks and put split
HTML lines back together before you parse the HTML.

READING WEB PAGES WITH FILENAME URL
SAS provides a special form of the FILENAME statement for accessing web sites, known as the URL access
method. This access method generates the HTTP requests and responses, so you only need to worry about parsing
the desired information from the returned HTML. For example, to retrieve the HTML for the support.sas.com web
page into a SAS data set, you could run the following program. In a real program, you would use functions like
INDEX and SCAN to locate the parts of the HTML of interest, then parse out the information you need. The debug
option tells SAS to display the HTTP headers in the SAS log. Note that many web pages have lines longer than the
default 256 characters, so you can use the lrecl option to get the entire line without truncation.

filename junk url 'http://support.sas.com' debug lrecl=8192;
data http;
 infile junk length=len;
 input record $varying8192. len;
 run;

FILENAME URL works well for many websites. However, it has some key limitations. First, only the GET request
method is supported. If you need to script access to a resource that uses the POST method, FILENAME URL will
not work. Since most applications protect sensitive data by prompting for user ID and password, and use the POST
method to send the user ID and password to the server, FILENAME URL cannot be used for these.

A second limitation of FILENAME URL is that it purposely does not let you read or write HTTP headers, to make it
simple to use. Since many web applications require cookies for state management, FILENAME URL will not work.

HTTP VIEWER PROGRAMS
Now that you know a little bit about HTTP, and are eager to automate data retrieval from your favorite web sites, how
do you find out what HTTP is sent and received for the specific sequence of web pages you want to access, so you
can replicate it in a SAS program? There are several shareware and commercially available programs that let you
observe the HTTP statements that the browser sends to a web server, and see the HTTP statements that are
returned from the web server. Three such viewers are httpExplorer (http://www.overture-computing.com), IEWatch
(http://www.iewatch.com), and HttpWatch (http://www.httpwatch.com).

Here is a description of httpExplorer. When you open the program, the top section contains an Internet Explorer
browser, and the bottom section contains a list of HTTP requests for all resources loaded with a web page. If you
double-click one of the resources in the lower section, the detailed HTTP request and response messages are
loaded into the upper section. If you click on the Request Data or Response Data tabs, you can see the raw binary
stream for the request and response.

One handy tip for using httpExplorer is that you should delete cookies and locally cached web pages from your hard
drive before you start the program. Otherwise, saved cookies will be sent in HTTP requests before the web server
sets them in an HTTP response, which is very confusing. And under certain circumstances, the web server will send
a 304 status code and no HTML content if the page was visited recently and cached locally. You can erase cookies
by starting Internet Explorer and selecting Tools, Internet Options, then Delete Cookies. You can delete locally
cached web pages by selecting Tools, Internet Options, then Delete Files from Internet Explorer.

httpExplorer has a few limitations. First, it does not handle content encoding, so if the web server returns
compressed content, you won�t be able to see the HTML. httpExplorer also does not handle HTTPS, or HTTP with
Secure Socket Layer (SSL) security. The author has not tried other viewer programs, and does not know if they
have these same limitations.

READING WEB PAGES WITH FILENAME SOCKET

SUGI 30 Data Warehousing, Management and Quality

6

Sockets are a feature of TCP/IP that let computers communicate with each other. A web client can communicate
with a web server by opening a socket connection with the server. Web servers listen for HTTP messages over
TCP/IP port 80, which is the standard port for HTTP. SAS provides an Access Method of the FILENAME statement
called SOCKET to let SAS programs send and receive data over TCP/IP sockets from a Data step

Here is a simple example showing a Filename statement with the Socket Access Method, and a Data step that
sends an HTTP request to a web server and receives an HTTP response from the server. In this example, the HTTP
response is displayed in the SAS log.

filename http socket "support.sas.com:80" termstr=LF lrecl=8192;
data _null_;
 infile http length=len;
 file http;
 if _n_=1 then put
 'GET / HTTP/1.1' /
 'Host: support.sas.com' /
 'Connection: close' / ;
 input;
 file log;
 put _infile_;
 run;

There are several features to note about this FILENAME statement. First, you must specify the port number after the
host name. Also, you tell SAS how to parse the response from the server into records in the Data step with the
termstr option. Typically you will use either LF, which splits records whenever it sees hexadecimal character �0A�x,
or CRLF, which splits records at �0D0A�x. It seems to the author that most web servers send HTTP headers
delimited by �0D0A�x, while records in the content are delimited by �0A�x, but this may vary depending on the
operating system of the server and possibly the client. Finally, the termstr option can be used to specify the
record length, since many HTML lines are longer than the default 256 characters.

This Data step is different than what you usually see. Most Data steps in SAS programs read data from a file or
write data to a file, but not both to the same file in the same Data step. This data step writes to and reads to one
socket connection. This is why the fileref HTTP is used on both an INFILE and FILE statement. On the first iteration
of the Data step, the entire HTTP request is written to the socket, and then an HTTP response record is read from
the socket at each iteration of the Data step.

You should always include a Connection: close header in a FILENAME SOCKET request to tell the server to
close the connection after the response is sent. The default behavior of HTTP 1.1 is persistent connections, and
SAS will wait for up to several minutes until it times out if you don�t include this header. You should not include a
Accept-Encoding header unless you are prepared to handle compressed content. If you omit this header, web
servers will return the content in clear text.

MACRO %HTTP – A HANDY TOOL FOR READING WEB PAGES
Here is a macro that simplifies reading web pages with FILENAME SOCKET. The macro submits an HTTP request
to a web server and writes the request and response to a file on your computer. The macro determines if the
response is sent with chunked transfer encoding, and reassembles the HTML content into its original format if it was.

%macro http(http=%nrstr(), save_file=, hostname=, delimiter=%str(|),
 fileref=browser, termstr=CRLF);

%let str1=; %let str2=;
%do %while (%index(&http,&delimiter)>0);
 %let pos=%index(&http,&delimiter);
 %let str1=&str1%qsubstr(&http, 1, &pos-1)/;
 %let str2=&str2%qsubstr(&http, 1, &pos-1)'0d0a'x;
 %let http=%qsubstr(&http, &pos+1, %length(&http)-&pos);
 %end;

filename &fileref socket "&hostname:80" termstr=&termstr lrecl=8192;
data _null_;
 retain chunked;
 length rec2 $10000 chunked $1;
 infile &fileref length=len;

 if _n_=1 then do;
 file &fileref;
 put %unquote(&str1);
 file &save_file;
 put '>>> HTTP Request:' '0d0a'x;
 put %unquote(&str2);
 put '0d0a'x '<<< HTTP Response:' '0d0a'x;
 end;

SUGI 30 Data Warehousing, Management and Quality

7

 file &save_file recfm=n;
 input record $varying8192. len;
 put record $varying8192. len '0d0a'x;
 if record='Transfer-Encoding: chunked' then chunked='Y';

 if len=0 and chunked='Y' then do while (1); %*** look for & process chunks;
 input chunksize $varying8. len / record $varying8192. len;
 if len ne 0 then do;
 l2=len+countc(record, '0a'x);
 rec2=tranwrd(record, '0a'x, '0d0a'x);
 put rec2 $varying10000. l2;
 end;
 else stop; *** found null record at end of file, end loop;
 end;
 run;
%mend http;

Here is a sample call of this macro:
%http(
 hostname=support.sas.com,
 save_file='c:\support_sas.txt',
 http=%nrstr(
 'GET / HTTP/1.1' |
 'Host: support.sas.com' |
 'Connection: Close' |)
);

Here is the file c:\support_sas.txt created by the macro:
>>> HTTP Request:
GET / HTTP/1.1
Host: support.sas.com
Connection: Close

<<< HTTP Response:
HTTP/1.1 200 OK
Date: Thu, 03 Feb 2005 17:22:25 GMT
Server: Apache/1.3.29 (Unix) mod_jk/1.2.0
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html

<html>
<head>
<title>SAS Customer Support Center</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
{many more lines of HTML}

Here are some usage notes for this macro. The three required parameters are Hostname, Save_file, and HTTP.
Argument Hostname specifies the hostname or IP address of the server to connect to; don�t put this name in quotes.
Argument Save_file is the name of a local file to save the HTTP to, in single or double quotes. Argument HTTP
contains the HTTP request. This argument must be enclosed in the %nrstr macro function. All lines, including the
last, must be enclosed in single or double quotes and end with a separator character that must not appear anywhere
else in the HTTP request. The default separator character is �|�, which is on the key above the Enter key. If you
need to use this character in the request, specify a different separator character with the Delimiter argument. The
macro uses CRLF as the termination string option on the FILENAME statement. This should work well for most web
pages. If you find a page that does not work with the default settings, for example, it returns HTTP response
headers but no HTML content when some was expected, try adding termstr=LF to the macro call.

Because the HTTP request is sent with a PUT statement in a Data step, you have great flexibility in assembling the
strings that make up any of the request lines. This greatly simplifies submitting requests containing macro variables,
which is required to script web page retrieval. This is demonstrated in an example in the next section.

The macro does not attempt to handle content encoding (like Gzip) or HTTPS, (HTTP with Secure Socket Layer). If
you need to use either of these, see the discussion about Curl in a later section.

NAVIGATING THE YIELD WEBSITE WITH THE %HTTP MACRO
Now that you understand how HTTP works, have an HTTP viewer program that shows you HTTP requests and
responses for each step of the Web application, and have a SAS tool to send and receive HTTP messages, you are
ready to write a SAS program to automate extracting data from Web sites. Here is some information about how the
author did this for the Hitachi Web application described in the introduction.

When you click on the Enter link on the welcome page, httpExplorer shows that the request is for a resource called

SUGI 30 Data Warehousing, Management and Quality

8

/prodmon/index.html, and the response sets a cookie named JSESSIONID and redirects you to resource
/prodmon/login.jsp, which displays the login page. We need to save the cookie in a macro variable so we can send
it in the next request. Here is the %HTTP call to the first resource:

%http(
 hostname=prodweb.fujisawa.hgst.com,
 save_file='c:\mysas\reports\prodweb1.txt',
 http=%nrstr(
 'GET /prodmon/index.html HTTP/1.1' |
 'Host: prodweb.fujisawa.hgst.com' |
 'Connection: Close' |)
);

Here is the file it created:
>>> HTTP Request:
GET /prodmon/index.html HTTP/1.1
Host: prodweb.fujisawa.hgst.com
Connection: Close

<<< HTTP Response:
HTTP/1.1 302
Date: Thu, 03 Feb 2005 21:48:38 GMT
Server: Apache/2.0.52 (Unix) mod_jk2/2.0.3-dev
Pragma: No-cache
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Set-Cookie: JSESSIONID=F866B80E5D5B087A2A1BE7A814C9FD7B; Path=/prodmon
Location:
http://prodweb.fujisawa.hgst.com/prodmon/login.jsp;jsessionid=F866B80E5D5B087A2A1BE7
A814C9FD7B
Content-Type: text/plain; charset=ISO-8859-1
Content-Length: 0
Connection: close

Here is a Data step to read this file and store the cookie in macro variable &session_ID:
data _null_;
 infile 'c:\mysas\reports\prodweb1.txt' lrecl=8192 length=len;
 input record $varying8192. len;
 if scan(record,1,' ')='Set-Cookie:' then
 call symput('session_ID', scan(record,2,' '));
 run;

httpExplorer showed that the redirected call to resource /prodmon/login.jsp did not return any cookies, so we don�t
need to submit a request to this resource from our SAS program. The next step is to submit our user ID and
password. httpExplorer shows that this request uses the POST method for resource /prodmon/j_security_check.
Here is the macro call to do this from SAS. Note that the cookie in the macro variable is sent in a Cookie header,
and also note the extra separator after the Content-Length header that creates the required null line.

%http(
 hostname=prodweb.fujisawa.hgst.com,
 save_file='c:\mysas\reports\prodweb2.txt',
 http=%nrstr(
 "POST /prodmon/j_security_check HTTP/1.1" |
 'Host: prodweb.fujisawa.hgst.com' |
 'Connection: Close' |
 "Cookie: &session_ID" |
 "Content-Type: application/x-www-form-urlencoded" |
 "Content-Length: 47" |
 |
 'j_username=helf&j_password=notmypw&Logon=Log+On' |)
);

Here is the file created for this HTTP transaction:
>>> HTTP Request:
POST /prodmon/j_security_check HTTP/1.1
Host: prodweb.fujisawa.hgst.com
Connection: Close
Cookie: JSESSIONID=F866B80E5D5B087A2A1BE7A814C9FD7B;
Content-Type: application/x-www-form-urlencoded
Content-Length: 47

j_username=helf&j_password=notmypw&Logon=Log+On

<<< HTTP Response:
HTTP/1.1 302

SUGI 30 Data Warehousing, Management and Quality

9

Date: Thu, 03 Feb 2005 21:59:30 GMT
Server: Apache/2.0.52 (Unix) mod_jk2/2.0.3-dev
Location: http://prodweb.fujisawa.hgst.com/prodmon/index.html
Content-Type: text/plain; charset=ISO-8859-1
Content-Length: 0
Connection: close

You can see that the server redirects the web client to resource /prodmon/index.html, which returns the main
navigation menu. httpExplorer shows that this resource sets a second cookie, so the program uses %http to request
this resource, then runs a Data step like the previous one to save the second cookie in another macro variable.

At this point, we have successfully completed the user authentication process, and are ready to request and receive
report pages. httpExplorer shows that all of the HTTP requests from the selection menu use the same server
program called /prodmon/yield/servlet/yieldReport, but with different values for parameters in the query string. The
SAS program calls the %HTTP macro several times to find out all combinations of product, family, manufacturing
site, and production week, and stores these values in macro variables. The program issues this call to retrieve the
HTML for the yield report displayed in Figure 1:

%http(
 hostname=prodweb.fujisawa.hgst.com,
 save_file='c:\mysas\reports\prodweb4.txt',
 http=%nrstr(
 'GET /prodmon/yield/servlet/yieldReport?type=process&area=HDD&variation=new&'
 "family=&family" '&' "product=&product" '&' "site=&site"
 '&action=showReport&' "week=&week" '&viewLevel=Summary HTTP/1.1' |
 'Host: prodweb.fujisawa.hgst.com' |
 "Cookie: &session_ID &session_ID_sso" |
 'Connection: Close' |)
);

Here is the file created by this macro call. Note that the resource name was broken into several strings. The four
macro variables were specified inside double quotes, since macro variables are not resolved inside single quotes.
The rest of the strings without macro variables were specified inside single quotes. This prevents the ampersand
symbol used to separate name/value pairs from being interpreted as part of a macro variable name.

>>> HTTP Request:
GET
/prodmon/yield/servlet/yieldReport?type=process&area=HDD&variation=new&family=Mobile
&product=Moraga-A&site=PRB&action=showReport&week=2005WK03&viewLevel=Summary
HTTP/1.1
Host: prodweb.fujisawa.hgst.com
Cookie: JSESSIONID=F866B80E5D5B087A2A1BE7A814C9FD7B;
JSESSIONIDSSO=854135B008AD8CB92D81182F8D791BC6;
Connection: Close

<<< HTTP Response:
HTTP/1.1 200
Date: Thu, 03 Feb 2005 23:02:26 GMT
Server: Apache/2.0.52 (Unix) mod_jk2/2.0.3-dev
Pragma: No-cache
Cache-Control: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html;charset=ISO-8859-1
Connection: close
Transfer-Encoding: chunked

<html>

<head>
 <title>Product Yield</title>
 <link rel='stylesheet' type='text/css' href='/css/prodweb.css'></link>
<link rel='stylesheet' type='text/css' href='/prodmon/yield/thintable.css'></link>

{many more lines of HTML}
The SAS program extracts the desired data elements from the HTML of the yield and detractor reports, then saves
them in SAS data sets in the SAS data warehouse.

READING WEB PAGES WITH CURL THROUGH FILENAME PIPE
After developing this solution to automate retrieval and extraction of data from web pages, the author found out
about the CURL program from David Ward�s SUGI 28 paper (Reference 6). CURL is an open source (meaning free)
command line program that lets you retrieve data from Web servers. It has many powerful features, including
support for HTTPS, although the author has not tested this yet.

SUGI 30 Data Warehousing, Management and Quality

10

CURL is available at http://curl.haxx.se, or from several mirrors located in the US. To use CURL from SAS,
download one of the binary packages, with or without SSL support. If you download one with SSL support, also
download the OpenSSL library/DLL package from the same page.

CURL has dozens of command line options that give you complete control over how the HTTP request is
constructed. The HTTP response is displayed in the command line window, or you can specify an option to write the
response to a file. Like all command line programs, you can call CURL from a SAS program as an unnamed pipe
with the FILENAME PIPE statement, and process the CURL output in a Data step. Here is an example of using
CURL from SAS to retrieve the support.sas.com main page and display the HTTP result in the SAS log:

filename curl pipe "c:\progra~1\curl\curl -i http://support.sas.com" lrecl=8192;
data _null_;
 infile curl length=len;
 input;
 put _infile_;
 run;

INTERNET MACROS BY IOPUS
It may be possible to automate complex web page retrieval without learning HTTP at all. Take a look at a software
product called Internet Macros by iOpus (http://www.iopus.com/iim/). This software automates web page retrieval by
first going through a keystroke recording process for the web pages you access, then playing the macro from a
command line or batch job to retrieve the pages and save them locally. According to the Features list on the
website, the top-of-the-line $499 Scripting Edition has advanced features like variables, command line support,
scripting interface, web page data extraction, and the ability to return web page data to a script for further
processing. It may be possible to use the software to automate the retrieval of web pages, then use SAS to read in
files saved by Internet Macros and process the data in SAS. The author has not tried this software yet.

CONCLUSION
Being able to automate data extraction from web pages beyond the reach of FILENAME URL opens up a large new
data source for Data Warehouse designers. This paper showed how HTTP works, described an HTTP viewer
program that displays HTTP requests and responses for each step of the Web application, and explained how to
process HTTP transactions in SAS with FILENAME SOCKET and the CURL open source program.

REFERENCES
1. Rutledge, Robert A., Tai, Linda H., and Helf, Garth W., �Just Enough Database for Manufacturing Yield

Analysis�, Proceedings of the 24th SAS Users Group International Conference, 1999,
http://www2.sas.com/proceedings/sugi24/Dataware/p116-24.pdf

2. Rutledge, Dr. Robert A., �Data Warehousing for Manufacturing Yield Improvement�, Proceedings of the 25th
SAS Users Group International Conference, 2000,
http://www2.sas.com/proceedings/sugi25/25/dw/25p134.pdf

3. Fielding, R., et al, �Hypertext Transport Protocol � HTTP/1.1�, The Internet Engineering Task Force,
Request For Comments 2616, 1997, ftp://ftp.rfc-editor.org/in-notes/rfc2616.pdf

4. Shiflett, Chris, �HTTP Developer�s Handbook�, Sams, 2003
5. Ward, David L., �You Can Do THAT with SAS Software? Using the socket access method to unite SAS

with the Internet�, Proceedings of the 2000 Northeast SAS Users Conference, 2000,
http://www.nesug.org/html/Proceedings/nesug00/iw/iw5006.pdf

6. Ward, David , �SAS and the Internet for Programmers�, Proceedings of the 28th SAS Users Group
International Conference, 2003, http://www2.sas.com/proceedings/sugi28/128-28.pdf

ACKNOWLEDGMENTS
I would never have been able to figure this out on my own. I was able to use the SOCKET access method to
simulate a web browser only after reading two excellent papers by David Ward. See References 5 and 6.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Garth Helf
Hitachi Global Storage Technologies
5600 Cottle Road
San Jose, CA 95193
Phone: 408-717-7514
Email: Garth.Helf@HitachiGST.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SUGI 30 Data Warehousing, Management and Quality

	SUGI 30 Proceedings Table of Contents

