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ABSTRACT 
This paper presents a case study of the efforts undertaken at the 
SAS/IBM Corporate Technology Center to optimize the 
performance of the SAS System on AIX Version 5L. A high-level 
model is presented as the overall organizing framework.  
Performance measurement and analysis techniques are 
examined in the context of a data-driven approach.  The utility and 
effectiveness of various performance tools is evaluated. 

INTRODUCTION 
The purpose of this paper is to provide performance tuning 
information to AIX system administrators responsible for 
optimizing the performance of SAS software on IBM pSeries 
Servers.  The information presented is collected from the 
investigation and solution of several performance problems 
reported by SAS/IBM customers and by SAS or IBM employees 
engaged in performance testing of SAS software running on IBM 
pSeries Servers. 

 
USE A CONCEPTUAL MODEL 
It is difficult to grasp the complexity of a large computer system 
without a conceptual model of the system.  Even if this model is 
not written down on paper, captured in a spreadsheet or 
otherwise represented, system administrators do have such a 
model in mind as they work on performance tuning.  When 
performance problems are solved quickly, the system 
administrator usually has developed a refined model of system 
performance and specific methods that allow rapid convergence 
to a solution. 

As shown in Figure 1, the process of resolving performance 
problems involves progressing toward the performance goal on 
the right.  The collection and analysis of performance data drives 
progress forward.  As more data is gathered, the system 
performance model is refined and becomes more useful in 
providing the values for tuning the system and resolving the 
performance problem.  In addition to a tuned system, other 
products of this effort are more refined system performance 
models and methods.  Continual refinement and expansion of the 
scope of the models and methods can occur if information is 

preserved and reviewed at the starting point of subsequent 
performance tuning efforts. 

SYSTEM GESTALT:  CONSIDER THE WHOLE 
Figure 2 is a simple high-level picture that considers the whole 
system.  It is the model used at the very start of performance 
tuning efforts mostly because it represents the whole system.  
Precedence is given to the whole system view to avoid making 
pre-judgments that could prematurely exclude parts of the system 
from the investigation. 
 
 The behavior of a large computer installation depends not only 
on the hardware and software but also on the system 
administrators and the workload presented by the user 
community.  There may be other applications running but our 
focus will be on system installations mainly serving a community 
of SAS users running SAS programs as the workload. 
 
The SAS System layer in Figure 2 can be viewed as having its 
own internal kernel that is used to provide services to the rest of 
the SAS system.  This approach allows SAS to function on 
multiple platforms and still maintain a consistent environment for 
the SAS user.  The SAS kernel handles requests for service from 
the rest of SAS.  Some requests can be handled completely 
within the SAS kernel.  Other requests require the SAS kernel to 
construct and send one or more requests to the host system it is 
running on.  In this case the host system is AIX. 
 
Both the SAS System and AIX run directly on the underlying IBM 
pSeries hardware.  The SAS System runs on the CPUs in USER 
mode and accesses memory in VIRTUAL mode.  AIX can run on 
the CPUs in USER mode or SYSTEM mode, can access memory 
in VIRTUAL mode or REAL mode and can access peripherals in 
I/O space.  On pSeries systems running in LPAR mode, there is 
also a Hypervisor layer between the operating system (OS) and 
the hardware where the Hypervisor firmware runs in 
HYPERVISOR mode. This paper will not delve into the Hypervisor 
Layer, since the OS basically hides it.  

THE PERCEPTION OF PERFORMANCE  
The majority of questions about the performance of a production 
computer system come in the form of questions about response-
time and throughput.  Response time is the elapsed time 

between when a request is submitted and when the response 
from that request is returned.  Throughput is a measure of the 
number of workload operations that can be accomplished per unit 
of time.  The conclusion that the response-time or throughput of a 
computer system is good or bad is often arrived at subjectively 
unless a framework of benchmarks is available for comparison 
and evaluation. 
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Most users on a computer system have opinions about its 
performance.  Unfortunately, those opinions are often based on 
oversimplified ideas about the dynamics of program execution.  
Uninformed intuition can lead to expensive and inaccurate 
guesses about the capacity of the system and the solutions to the 
perceived performance problems. 
 
As an example an IBM account team was working with a 
customers who had outgrown their PC based environment and 
replaced a room full of small servers with a p690.  The customer 
needed to get more performance out of the p690 than they were 
seeing and decided that the system they installed was too small.  
They wanted to install more memory, more CPUs and switch to 
using Gigabit Ethernet.  This recommendation was proposed as a 
solution by some of the new users of the p690 at the customer 
site.  The account team ran a perfpmr (suite of performance 
measurements) and found that the applications that were showing 
poor performance were constantly creating, accessing and 
deleting temporary files on a server over the internal network.  
After removing restrictions, which were needed in the PC 
environment to limit memory consumption, the application's 
performance improved dramatically.  One job that had to run 
overnight on the PC server farm and had been taking two hours to 
complete on the p690 now ran in 9 minutes. 

HOW'S MY DRIVING? 
The approach used during this study is that of distilling 
performance questions down to questions about how efficiently 
each layer in the model, shown in Figure 2, is driving the layer 
below it and being driven by the layer above it.  In an ideal 
computer system each layer would "know" how to translate 
requests from the driving layers above into the speediest and 
most efficient operations possible.  Also, requests sent to lower 
layers would be constructed to drive the lower layer in the most 
efficient way possible. 

TUNING PARAMETERS 
 
Since there are no ideal computer systems, the need for tuning 
arises.  The designers of hardware, firmware, system software, 
databases, scientific and business applications, development 
environments, etc. usually provide parameters that can be used to 
modify the behavior of their component without direct modification 
of the component itself.  Some of these parameters can usually 
be classified as performance tuning parameters. 

WHY IS COMPUTER PERFORMANCE 
COMPLEX? 
 
There was a time when a programmer could read a program, 
calculate the sum of the instruction times, and confidently predict 
how long it would take the computer to run that program.  
Thousands of programmers and engineers have spent the last 30 
years making such straightforward calculations impossible, or at 
least meaningless. 
 
Today's computers are more powerful than their predecessors, 
not just because they have far shorter cycle times, but because of 
innumerable hardware and software architectural inventions.  
Computers have gained capacity by becoming more complex as 
well as becoming quicker. 
 
The complexity of modern computers and their operating systems 
is matched by the complexity of the environments in which they 
operate. In addition to running individual programs, today's 
computer deals with varying numbers of unpredictably timed 
interrupts from I/O and communications devices. To the extent 
that the computer's HW and SW designers’ ideas were based on 
an assumption of a single program running in a standalone 

machine, modern computers may be partly defeated by the 
randomness of the real world. To the extent that those ideas were 
intended to deal with randomness, they may win back some of the 
loss. The wins and losses change from program to program and 
from moment to moment. 
 
The result of all these hardware wins and losses is the overall 
performance of the system.  Specific measurements of response 
time and throughput are only meaningful in the context of the 
sequence of demands of a given workload.  If the demands mesh 
well with the system's hardware and software architectures, then 
the workload can be said to run with good performance on the 
system.  It may not be accurate, however, to make the general 
statement that the system has good performance. 

THE HARDWARE LAYER 
 
The hardware layer of the system model is expanded in Figure 3.  
This figure is a generalized diagram of the hardware storage 
hierarchy of the Power4 based IBM pSeries systems used in this 
study.  The concentric rings surrounding the CPU illustrate the 
performance properties of the various storage elements in the 
system.  Storage element speed increases, latency decreases 
and storage capacity decreases as data is moved closer to the 
CPU. 
 
The opposite is true as data is moved out to the outer rings:  
storage element speed decreases, latency increases and storage 
capacity increases.  To compensate for the slower speed and 
longer latencies of the outer rings, wider busses are used to 
transfer data toward the CPU.  As an example, these wider 
busses allow larger pSeries servers to have a peak main memory 
bandwidth of 204.8 GB/s.  Also, specialized data prefetch 
hardware exists to start the movement of data toward the CPU 
ahead of time when sequential data access patterns are detected. 
 
In Figure 3 the L3 directory ring and all rings enclosed by it are  

implemented on the Power4 chip.  Power4 chips are available in 
speeds from 1.0 GHz to 1.45 GHz and each chip can support one 
or two active CPU cores.  Each CPU core is a speculative 
superscalar out-of-order execution design and can issue up to 8 
instructions each cycle with a sustain completion rate of 5 
instructions per cycle.  This design allows more than 200 
instructions to be "in flight" at any given time.   
 
Registers in the CPU are specialized storage elements.  The CPU 
can directly operate on the contents of its registers.  Data needed 
by the executing instructions must be moved into registers and 
the data that need to be saved are moved out toward memory. 
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Data destined for or coming from other layers of the storage 
hierarchy incur the access latency required to traverse 
intermediate layers.  Access latencies increase rapidly the further 
away data are from the CPU.  The Power4 CPUs have 244 
registers and two 128-entry Effective-to-Real Address Translation 
(ERAT) tables.  Both the registers and translation tables have 
zero latency.  Access latency to non-cached, non-prefetched data 
in main memory is about 350 cycles.  The best-case latency to 
access data that are cached on a fast PCI adapter using 
programmed I/O is at least 1,000 cycles.  The time required to 
access data on a disk drive that requires head movement 
approximates many milliseconds or many millions of CPU cycles. 

STRATEGIES FOR EFFICIENT HARDWARE 
DRIVING 
 
Layers that drive the hardware layer need to follow these 
guidelines to maximize hardware performance: 

• Data that the CPU needs to move into its registers 
should be found in the lowest-latency cache possible as 
often as possible. 

• Prefetch data to minimize latency. 
• Move as much data as possible with as few operations 

as possible. 
• Once data is in a buffer do as much work on it as 

possible before moving it again. 
• Keep the availability of fast memory high by flushing 

data that no longer needs to be in fast memory. 
• Maximize cache hits, minimize thrashing. 
• Exploit hardware parallelism. 

PRINCIPLES OF PERFORMANCE TUNING 
 
These are the foundation principles of the tuning approach used 
in this study: 
 

• Continuously monitor performance 
• Start with a big picture 
• Set goals and determine the scope 
• Create a controlled test environment 
• Implement modifications one at a time 
• Visualize and review data 
• Know when to stop 

 

CONTINUOUSLY MONITOR PERFORMANCE 
Just as people continuously monitor their health by having regular 
checkups, the case can be made for continuous performance 
monitoring of a large computer installation.  Continuous 
monitoring can: 

• Detect emerging problems before they have an adverse 
effect 

• Detect problems that exist but are not being reported by 
the user community 

• Capture data when a problem occurs for the first time 
Continuous monitoring involves: 

• Obtaining performance data from the system at regular 
intervals 

• Archiving the data as an historical record that can be 
searched 

• Displaying summaries of the information for the system 
administrator 

• Detecting events that require more detailed data 
collection 

The AIX tools evaluated as useful for continuous performance 
monitoring are: 

• iostat 
• netstat 

• sar 
• vmstat 
• PDT 

START WITH A BIG PICTURE 
As mentioned above, one should monitor performance over time, 
not just when problems or complaints occur. This will establish a 
baseline for usage patterns, and indicate performance trends in 
the system. 
 
Create an overall conceptual model of the system.  The model 
should include representations of bandwidth, latency, capacity, 
data transfer width, and speed. This will help to pinpoint where 
“hot-spots” may exist, and establish if these  “hot-spots” are 
clustered within a specific area or if they are system-wide. 
 

SET GOALS AND DETERMINE THE SCOPE 
Set a performance goal to reach. This goal should be realistic, in 
other words it should be attainable, measurable, and appreciable. 
The scope of the tuning project should be checked periodically to 
make sure that is has not grown too large or become too narrowly 
focused.  

CREATE A CONTROLLED TEST ENVIRONMENT 
The first step in creating a test environment is to define the 
workload. Next the test applications must be designed to cover 
the area of concern. Sufficient controls must be placed over the 
execution environment to obtain high quality data. 
 
Automating the tests may be useful. This may help simulate multi-
user environments, or enable testing to occur during off-peak 
times when other users will not be affected. 
 
Once the tests have been designed test the test to ensure that 
results are reliable and repeatable. It would also be helpful to 
determine the maximum performance that could conceivably be 
obtained. 

IMPLEMENT MODIFICATIONS ONE AT A TIME 
Whether working within a test environment or on a production 
machine, one should make a single modification at a time. If more 
than one parameter is modified, gains and losses may cancel one 
another out, and performance improvements or degradations 
could be masked. 
  
It is also important to make sure that modifications can be 
“backed off”. One should be able to go back to the original 
settings if performance is not enhanced, or worse, if performance 
actually deteriorates.  

VISUALIZE AND REVIEW DATA 
Creating graphs of the data and taking other means to visualize 
the results will reveal trends, draw attention to problems and bring 
differences to light. The old adage that “a picture paints a 
thousand words” is certainly true here. 

KNOW WHEN TO STOP 
Repeat the modification and monitoring process as necessary. As 
the cycle of adjustment and observation proceeds look for the 
point of diminishing returns; the point at which removing a 
bottleneck in one place does not expose a bottleneck in another 
area, but in fact creates one.  It is important to tune for the 
general case. 
 
PERFORMANCE DATA IN THE SAS LOG AND 
HOW TO READ IT 
The FULLSTIMER option needs to be turned on to capture the 
most detailed performance information in the SAS log. The 
FULLSTIMER sends detailed information on user CPU and 
system CPU times, as well as statistics on memory use to the 
SAS log. Performance is monitored for the entire SAS program, 
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as well as for each PROC or DATA STEP.  The FULLSTIMER is 
off by default, but can be turned on within a SAS program with the 
following statement: 
 

OPTIONS FULLSTIMER; 
 

It can also be turned on from the command line, using the 
following command: 
 

$<SAS_INSTALL_DIR>/sas –fullstimer myprog.sas 

 
Once the FULLSTIMER option is turned on, entries like the 
following will be recorded: 
 

NOTE: The SAS System used: 
real time 1:16.76 
user cpu time 1:12.35 
system cpu time 2.45 seconds 
Memory 1887k 
Page Faults 0 
Page Reclaims 1537 
Page Swaps 0 
Voluntary Context Switches 823 
Involuntary Context Switches 7512 

 
These entries have the following definitions: 

• real time:  Elapsed wall-clock time 
• user cpu time:  The total amount of CPU time spent 

running in user mode 
• system cpu time:  The total amount of CPU time spent 

in system mode running on behalf of the process 
• Memory:  The maximum amount, in kilobytes, of 

memory used  
• Page Faults:  The number of page faults that resulted 

in real I/O requests.  Also known as major page faults 
• Page Reclaims:  The number of page faults serviced 

without any I/O activity.  I/O activity is avoided by 
reclaiming a page frame from the list of pages awaiting 
reallocation.  Also known as minor page faults 

• Page Swaps:  The number of times a process was 
swapped out of main memory. 

• Voluntary Context Switches:  The number of times 
SAS made a system call that could not return 
immediately.  These system calls are I/O requests or 
wait-for-a-resource type of requests. 

• Involuntary Context Switches:  The number of times 
SAS completely used a 10 ms time slice plus the 
number of times SAS was preempted by a higher 
priority thread. 

TUNING FOR LARGE DATA SETS 
The following information is from a performance investigation 
focused on: 

• SAS option settings that determine the characteristics 
of the I/O requests to AIX 

• AIX settings and configurations of the virtual memory 
manager (VMM), disk, paging and I/O subsystems on 
an 8-way IBM pSeries p690 partition with 7.5 GBytes of 
main memory. 

 
There may be times when a large pSeries server or LPAR is 
dedicated to a single user, to run SAS.  This provides the 
opportunity to tune the server or LPAR for specific use.  As an 
example, even with data sets of several GB in size some SAS 
jobs can be made to run completely within main memory.  This 
can be done by changing various parameters such as disabling 
the filesystem write-behind algorithm, mounting filesystems with 
the "nointegrity" mount option, using RAM filesystems, pre-loading 
shared libraries and so on.   

 
Even without this tuning, much of the file I/O will be cached in 
main memory if there is enough available memory to 1) cache all 
of the files created and accessed by SAS and 2) keep all running 
programs and their data sections in memory.  
 
In most cases, however, a community of users will simultaneously 
run jobs that compete for the resources of a large server or one or 
several users will have a smaller server or LPAR dedicated to 
them.  This means that most concerns about SAS performance 
will involve I/O performance. 
 
AIX aggressively caches disk blocks in memory and will use 80% 
or more of real memory as a file cache by default.  If this cache 
becomes full the page replacement algorithm will start to run and 
filesystem performance will reach a plateau. 
 

SUGGESTIONS FOR TUNING FILE I/O FOR LARGE FILES 
• Make sure that BUFSIZE is equal to or evenly divisible 

into the transfer size (single disk) or stripe size (disk 
array) of the disk subsystem.  Currently 
"BUFSIZE=64K" seems to work well. 

• Use the JFS mount option "nointegrity" for filesystems 
that will only hold temporary data or that have data that 
can easily be reloaded or recreated.  This will prevent 
system time and disk-I/O being spent on synchronous 
writes to the "jfslog".  Note that if there is a power failure 
or the system crashes then the integrity of the 
filesystem's meta-data cannot be guaranteed, as it is 
when a "jfslog" is used. 

• Use the JFS mount option "rbr" (release behind read) 
for filesystems with large files (they are large if they 
would occupy a significant portion of the file cache) that 
are read once during a job and do not need to be 
cached in the file cache.  Once the requesting program 
is given the file data the VMM storage for the file is 
released from the file cache.  Without this option the file 
data would continue to occupy memory with no benefit 
of reuse. 

• Use the JFS mount option "rbw" (release behind write) 
for filesystems with large files that are written 
sequentially and require very little, if any, additional 
access during the rest of the job.  Once the VMM 
passes the file data to the disk-I/O-subsystem the VMM 
storage for the file is released from the file cache.  
Without this option the file data would continue to 
occupy memory with no benefit of reuse. 

• Use striped Logical Volumes. 
• Use a high performance disk subsystem. 

o Use an ESS for top performance.  If ESS-
class storage is not available then... 

• If data can be reloaded or 
recreated in case of hard disk 
failure then use Raid-0 SSA arrays 
for high performance.  Raid-0 has 
100% storage efficiency. 

• Use Raid-5 SSA arrays to obtain 
medium performance if availability 
is more important.  Raid-5 has 80% 
storage efficiency (for a 4+P array). 

• Use Raid-10 SSA arrays to obtain 
high performance and availability.  
Raid-10 has 50% storage 
efficiency. 

• Tune Virtual Memory Manager (VMM) and filesystem 
parameters 

o minperm 
o maxperm 
o maxperm 
o maxpgahead 
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o minfree 
o maxfree 
o numclust 
o numfsbufs 
o hd_pbuf_cnt 
o sync_release_ilock 
o maxclient 
o j2_nBufferPer 
o j2_minPageReadAhead 
o j2_maxPageReadAhead 

USEFUL PERFORMANCE TOOLS 
• filemon - Monitors the performance of the file system, 

and reports the I/O activity on behalf of logical files, 
virtual memory segments, logical volumes, and physical 
volumes.  

• topas - The topas command reports selected statistics 
about the activity on the local system. 

• vmtune - Displays or changes operational parameters 
of the Virtual Memory Manager and other AIX 
components.  

• vmstat - The vmstat command reports statistics about 
kernel threads, virtual memory, disks, traps and CPU 
activity. Reports generated by the vmstat command can 
be used to balance system load activity. These system-
wide statistics (among all processors) are calculated as 
averages for values expressed as percentages, and as 
sums otherwise.  

• iostat - Reports Central Processing Unit (CPU) 
statistics and input/output statistics for the entire 
system, adapters, tty devices, disks and CD-ROMs. 

 

CONCLUSION 
Meeting the performance targets of a large computer system is a 
complex task but tuning the system is only part of the battle. 
Maintaining high performance levels requires a constant base 
level of system monitoring.  The variability of workloads on some 
systems requires frequent tuning, while other systems need only 
occasionally tuning.  In either event, a tuning approach driven by 
performance data allows continual refinement of performance 
models and methods.  Conceptual models of system performance 
help the system administrator organize and compartmentalize the 
performance tuning task while still maintaining a system-wide 
view.  This approach avoids the pitfall of tuning based on the 
individual user’s perception of system throughput and 
responsiveness at the expense of system-wide efficiency. 
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