
Paper 291-28

- 1 -

A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for
The SAS System

Frank Bartucca & Torre DeVito, The IBM International Competency Center at SAS Institute, Cary, NC

ABSTRACT
This paper presents a case study of the efforts undertaken at the
SAS/IBM Corporate Technology Center to optimize the
performance of the SAS System on AIX Version 5L. A high-level
model is presented as the overall organizing framework.
Performance measurement and analysis techniques are
examined in the context of a data-driven approach. The utility and
effectiveness of various performance tools is evaluated.

INTRODUCTION
The purpose of this paper is to provide performance tuning
information to AIX system administrators responsible for
optimizing the performance of SAS software on IBM pSeries
Servers. The information presented is collected from the
investigation and solution of several performance problems
reported by SAS/IBM customers and by SAS or IBM employees
engaged in performance testing of SAS software running on IBM
pSeries Servers.

USE A CONCEPTUAL MODEL
It is difficult to grasp the complexity of a large computer system
without a conceptual model of the system. Even if this model is
not written down on paper, captured in a spreadsheet or
otherwise represented, system administrators do have such a
model in mind as they work on performance tuning. When
performance problems are solved quickly, the system
administrator usually has developed a refined model of system
performance and specific methods that allow rapid convergence
to a solution.

As shown in Figure 1, the process of resolving performance
problems involves progressing toward the performance goal on
the right. The collection and analysis of performance data drives
progress forward. As more data is gathered, the system
performance model is refined and becomes more useful in
providing the values for tuning the system and resolving the
performance problem. In addition to a tuned system, other
products of this effort are more refined system performance
models and methods. Continual refinement and expansion of the
scope of the models and methods can occur if information is

preserved and reviewed at the starting point of subsequent
performance tuning efforts.

SYSTEM GESTALT: CONSIDER THE WHOLE
Figure 2 is a simple high-level picture that considers the whole
system. It is the model used at the very start of performance
tuning efforts mostly because it represents the whole system.
Precedence is given to the whole system view to avoid making
pre-judgments that could prematurely exclude parts of the system
from the investigation.

 The behavior of a large computer installation depends not only
on the hardware and software but also on the system
administrators and the workload presented by the user
community. There may be other applications running but our
focus will be on system installations mainly serving a community
of SAS users running SAS programs as the workload.

The SAS System layer in Figure 2 can be viewed as having its
own internal kernel that is used to provide services to the rest of
the SAS system. This approach allows SAS to function on
multiple platforms and still maintain a consistent environment for
the SAS user. The SAS kernel handles requests for service from
the rest of SAS. Some requests can be handled completely
within the SAS kernel. Other requests require the SAS kernel to
construct and send one or more requests to the host system it is
running on. In this case the host system is AIX.

Both the SAS System and AIX run directly on the underlying IBM
pSeries hardware. The SAS System runs on the CPUs in USER
mode and accesses memory in VIRTUAL mode. AIX can run on
the CPUs in USER mode or SYSTEM mode, can access memory
in VIRTUAL mode or REAL mode and can access peripherals in
I/O space. On pSeries systems running in LPAR mode, there is
also a Hypervisor layer between the operating system (OS) and
the hardware where the Hypervisor firmware runs in
HYPERVISOR mode. This paper will not delve into the Hypervisor
Layer, since the OS basically hides it.

THE PERCEPTION OF PERFORMANCE
The majority of questions about the performance of a production
computer system come in the form of questions about response-
time and throughput. Response time is the elapsed time

between when a request is submitted and when the response
from that request is returned. Throughput is a measure of the
number of workload operations that can be accomplished per unit
of time. The conclusion that the response-time or throughput of a
computer system is good or bad is often arrived at subjectively
unless a framework of benchmarks is available for comparison
and evaluation.

SUGI 28 Systems Architecture

2

Most users on a computer system have opinions about its
performance. Unfortunately, those opinions are often based on
oversimplified ideas about the dynamics of program execution.
Uninformed intuition can lead to expensive and inaccurate
guesses about the capacity of the system and the solutions to the
perceived performance problems.

As an example an IBM account team was working with a
customers who had outgrown their PC based environment and
replaced a room full of small servers with a p690. The customer
needed to get more performance out of the p690 than they were
seeing and decided that the system they installed was too small.
They wanted to install more memory, more CPUs and switch to
using Gigabit Ethernet. This recommendation was proposed as a
solution by some of the new users of the p690 at the customer
site. The account team ran a perfpmr (suite of performance
measurements) and found that the applications that were showing
poor performance were constantly creating, accessing and
deleting temporary files on a server over the internal network.
After removing restrictions, which were needed in the PC
environment to limit memory consumption, the application's
performance improved dramatically. One job that had to run
overnight on the PC server farm and had been taking two hours to
complete on the p690 now ran in 9 minutes.

HOW'S MY DRIVING?
The approach used during this study is that of distilling
performance questions down to questions about how efficiently
each layer in the model, shown in Figure 2, is driving the layer
below it and being driven by the layer above it. In an ideal
computer system each layer would "know" how to translate
requests from the driving layers above into the speediest and
most efficient operations possible. Also, requests sent to lower
layers would be constructed to drive the lower layer in the most
efficient way possible.

TUNING PARAMETERS

Since there are no ideal computer systems, the need for tuning
arises. The designers of hardware, firmware, system software,
databases, scientific and business applications, development
environments, etc. usually provide parameters that can be used to
modify the behavior of their component without direct modification
of the component itself. Some of these parameters can usually
be classified as performance tuning parameters.

WHY IS COMPUTER PERFORMANCE
COMPLEX?

There was a time when a programmer could read a program,
calculate the sum of the instruction times, and confidently predict
how long it would take the computer to run that program.
Thousands of programmers and engineers have spent the last 30
years making such straightforward calculations impossible, or at
least meaningless.

Today's computers are more powerful than their predecessors,
not just because they have far shorter cycle times, but because of
innumerable hardware and software architectural inventions.
Computers have gained capacity by becoming more complex as
well as becoming quicker.

The complexity of modern computers and their operating systems
is matched by the complexity of the environments in which they
operate. In addition to running individual programs, today's
computer deals with varying numbers of unpredictably timed
interrupts from I/O and communications devices. To the extent
that the computer's HW and SW designers’ ideas were based on
an assumption of a single program running in a standalone

machine, modern computers may be partly defeated by the
randomness of the real world. To the extent that those ideas were
intended to deal with randomness, they may win back some of the
loss. The wins and losses change from program to program and
from moment to moment.

The result of all these hardware wins and losses is the overall
performance of the system. Specific measurements of response
time and throughput are only meaningful in the context of the
sequence of demands of a given workload. If the demands mesh
well with the system's hardware and software architectures, then
the workload can be said to run with good performance on the
system. It may not be accurate, however, to make the general
statement that the system has good performance.

THE HARDWARE LAYER

The hardware layer of the system model is expanded in Figure 3.
This figure is a generalized diagram of the hardware storage
hierarchy of the Power4 based IBM pSeries systems used in this
study. The concentric rings surrounding the CPU illustrate the
performance properties of the various storage elements in the
system. Storage element speed increases, latency decreases
and storage capacity decreases as data is moved closer to the
CPU.

The opposite is true as data is moved out to the outer rings:
storage element speed decreases, latency increases and storage
capacity increases. To compensate for the slower speed and
longer latencies of the outer rings, wider busses are used to
transfer data toward the CPU. As an example, these wider
busses allow larger pSeries servers to have a peak main memory
bandwidth of 204.8 GB/s. Also, specialized data prefetch
hardware exists to start the movement of data toward the CPU
ahead of time when sequential data access patterns are detected.

In Figure 3 the L3 directory ring and all rings enclosed by it are

implemented on the Power4 chip. Power4 chips are available in
speeds from 1.0 GHz to 1.45 GHz and each chip can support one
or two active CPU cores. Each CPU core is a speculative
superscalar out-of-order execution design and can issue up to 8
instructions each cycle with a sustain completion rate of 5
instructions per cycle. This design allows more than 200
instructions to be "in flight" at any given time.

Registers in the CPU are specialized storage elements. The CPU
can directly operate on the contents of its registers. Data needed
by the executing instructions must be moved into registers and
the data that need to be saved are moved out toward memory.

SUGI 28 Systems Architecture

3

Data destined for or coming from other layers of the storage
hierarchy incur the access latency required to traverse
intermediate layers. Access latencies increase rapidly the further
away data are from the CPU. The Power4 CPUs have 244
registers and two 128-entry Effective-to-Real Address Translation
(ERAT) tables. Both the registers and translation tables have
zero latency. Access latency to non-cached, non-prefetched data
in main memory is about 350 cycles. The best-case latency to
access data that are cached on a fast PCI adapter using
programmed I/O is at least 1,000 cycles. The time required to
access data on a disk drive that requires head movement
approximates many milliseconds or many millions of CPU cycles.

STRATEGIES FOR EFFICIENT HARDWARE
DRIVING

Layers that drive the hardware layer need to follow these
guidelines to maximize hardware performance:

• Data that the CPU needs to move into its registers
should be found in the lowest-latency cache possible as
often as possible.

• Prefetch data to minimize latency.
• Move as much data as possible with as few operations

as possible.
• Once data is in a buffer do as much work on it as

possible before moving it again.
• Keep the availability of fast memory high by flushing

data that no longer needs to be in fast memory.
• Maximize cache hits, minimize thrashing.
• Exploit hardware parallelism.

PRINCIPLES OF PERFORMANCE TUNING

These are the foundation principles of the tuning approach used
in this study:

• Continuously monitor performance
• Start with a big picture
• Set goals and determine the scope
• Create a controlled test environment
• Implement modifications one at a time
• Visualize and review data
• Know when to stop

CONTINUOUSLY MONITOR PERFORMANCE
Just as people continuously monitor their health by having regular
checkups, the case can be made for continuous performance
monitoring of a large computer installation. Continuous
monitoring can:

• Detect emerging problems before they have an adverse
effect

• Detect problems that exist but are not being reported by
the user community

• Capture data when a problem occurs for the first time
Continuous monitoring involves:

• Obtaining performance data from the system at regular
intervals

• Archiving the data as an historical record that can be
searched

• Displaying summaries of the information for the system
administrator

• Detecting events that require more detailed data
collection

The AIX tools evaluated as useful for continuous performance
monitoring are:

• iostat
• netstat

• sar
• vmstat
• PDT

START WITH A BIG PICTURE
As mentioned above, one should monitor performance over time,
not just when problems or complaints occur. This will establish a
baseline for usage patterns, and indicate performance trends in
the system.

Create an overall conceptual model of the system. The model
should include representations of bandwidth, latency, capacity,
data transfer width, and speed. This will help to pinpoint where
“hot-spots” may exist, and establish if these “hot-spots” are
clustered within a specific area or if they are system-wide.

SET GOALS AND DETERMINE THE SCOPE
Set a performance goal to reach. This goal should be realistic, in
other words it should be attainable, measurable, and appreciable.
The scope of the tuning project should be checked periodically to
make sure that is has not grown too large or become too narrowly
focused.

CREATE A CONTROLLED TEST ENVIRONMENT
The first step in creating a test environment is to define the
workload. Next the test applications must be designed to cover
the area of concern. Sufficient controls must be placed over the
execution environment to obtain high quality data.

Automating the tests may be useful. This may help simulate multi-
user environments, or enable testing to occur during off-peak
times when other users will not be affected.

Once the tests have been designed test the test to ensure that
results are reliable and repeatable. It would also be helpful to
determine the maximum performance that could conceivably be
obtained.

IMPLEMENT MODIFICATIONS ONE AT A TIME
Whether working within a test environment or on a production
machine, one should make a single modification at a time. If more
than one parameter is modified, gains and losses may cancel one
another out, and performance improvements or degradations
could be masked.

It is also important to make sure that modifications can be
“backed off”. One should be able to go back to the original
settings if performance is not enhanced, or worse, if performance
actually deteriorates.

VISUALIZE AND REVIEW DATA
Creating graphs of the data and taking other means to visualize
the results will reveal trends, draw attention to problems and bring
differences to light. The old adage that “a picture paints a
thousand words” is certainly true here.

KNOW WHEN TO STOP
Repeat the modification and monitoring process as necessary. As
the cycle of adjustment and observation proceeds look for the
point of diminishing returns; the point at which removing a
bottleneck in one place does not expose a bottleneck in another
area, but in fact creates one. It is important to tune for the
general case.

PERFORMANCE DATA IN THE SAS LOG AND
HOW TO READ IT
The FULLSTIMER option needs to be turned on to capture the
most detailed performance information in the SAS log. The
FULLSTIMER sends detailed information on user CPU and
system CPU times, as well as statistics on memory use to the
SAS log. Performance is monitored for the entire SAS program,

SUGI 28 Systems Architecture

4

as well as for each PROC or DATA STEP. The FULLSTIMER is
off by default, but can be turned on within a SAS program with the
following statement:

OPTIONS FULLSTIMER;

It can also be turned on from the command line, using the
following command:

$<SAS_INSTALL_DIR>/sas –fullstimer myprog.sas

Once the FULLSTIMER option is turned on, entries like the
following will be recorded:

NOTE: The SAS System used:
real time 1:16.76
user cpu time 1:12.35
system cpu time 2.45 seconds
Memory 1887k
Page Faults 0
Page Reclaims 1537
Page Swaps 0
Voluntary Context Switches 823
Involuntary Context Switches 7512

These entries have the following definitions:

• real time: Elapsed wall-clock time
• user cpu time: The total amount of CPU time spent

running in user mode
• system cpu time: The total amount of CPU time spent

in system mode running on behalf of the process
• Memory: The maximum amount, in kilobytes, of

memory used
• Page Faults: The number of page faults that resulted

in real I/O requests. Also known as major page faults
• Page Reclaims: The number of page faults serviced

without any I/O activity. I/O activity is avoided by
reclaiming a page frame from the list of pages awaiting
reallocation. Also known as minor page faults

• Page Swaps: The number of times a process was
swapped out of main memory.

• Voluntary Context Switches: The number of times
SAS made a system call that could not return
immediately. These system calls are I/O requests or
wait-for-a-resource type of requests.

• Involuntary Context Switches: The number of times
SAS completely used a 10 ms time slice plus the
number of times SAS was preempted by a higher
priority thread.

TUNING FOR LARGE DATA SETS
The following information is from a performance investigation
focused on:

• SAS option settings that determine the characteristics
of the I/O requests to AIX

• AIX settings and configurations of the virtual memory
manager (VMM), disk, paging and I/O subsystems on
an 8-way IBM pSeries p690 partition with 7.5 GBytes of
main memory.

There may be times when a large pSeries server or LPAR is
dedicated to a single user, to run SAS. This provides the
opportunity to tune the server or LPAR for specific use. As an
example, even with data sets of several GB in size some SAS
jobs can be made to run completely within main memory. This
can be done by changing various parameters such as disabling
the filesystem write-behind algorithm, mounting filesystems with
the "nointegrity" mount option, using RAM filesystems, pre-loading
shared libraries and so on.

Even without this tuning, much of the file I/O will be cached in
main memory if there is enough available memory to 1) cache all
of the files created and accessed by SAS and 2) keep all running
programs and their data sections in memory.

In most cases, however, a community of users will simultaneously
run jobs that compete for the resources of a large server or one or
several users will have a smaller server or LPAR dedicated to
them. This means that most concerns about SAS performance
will involve I/O performance.

AIX aggressively caches disk blocks in memory and will use 80%
or more of real memory as a file cache by default. If this cache
becomes full the page replacement algorithm will start to run and
filesystem performance will reach a plateau.

SUGGESTIONS FOR TUNING FILE I/O FOR LARGE FILES
• Make sure that BUFSIZE is equal to or evenly divisible

into the transfer size (single disk) or stripe size (disk
array) of the disk subsystem. Currently
"BUFSIZE=64K" seems to work well.

• Use the JFS mount option "nointegrity" for filesystems
that will only hold temporary data or that have data that
can easily be reloaded or recreated. This will prevent
system time and disk-I/O being spent on synchronous
writes to the "jfslog". Note that if there is a power failure
or the system crashes then the integrity of the
filesystem's meta-data cannot be guaranteed, as it is
when a "jfslog" is used.

• Use the JFS mount option "rbr" (release behind read)
for filesystems with large files (they are large if they
would occupy a significant portion of the file cache) that
are read once during a job and do not need to be
cached in the file cache. Once the requesting program
is given the file data the VMM storage for the file is
released from the file cache. Without this option the file
data would continue to occupy memory with no benefit
of reuse.

• Use the JFS mount option "rbw" (release behind write)
for filesystems with large files that are written
sequentially and require very little, if any, additional
access during the rest of the job. Once the VMM
passes the file data to the disk-I/O-subsystem the VMM
storage for the file is released from the file cache.
Without this option the file data would continue to
occupy memory with no benefit of reuse.

• Use striped Logical Volumes.
• Use a high performance disk subsystem.

o Use an ESS for top performance. If ESS-
class storage is not available then...

• If data can be reloaded or
recreated in case of hard disk
failure then use Raid-0 SSA arrays
for high performance. Raid-0 has
100% storage efficiency.

• Use Raid-5 SSA arrays to obtain
medium performance if availability
is more important. Raid-5 has 80%
storage efficiency (for a 4+P array).

• Use Raid-10 SSA arrays to obtain
high performance and availability.
Raid-10 has 50% storage
efficiency.

• Tune Virtual Memory Manager (VMM) and filesystem
parameters

o minperm
o maxperm
o maxperm
o maxpgahead

SUGI 28 Systems Architecture

5

o minfree
o maxfree
o numclust
o numfsbufs
o hd_pbuf_cnt
o sync_release_ilock
o maxclient
o j2_nBufferPer
o j2_minPageReadAhead
o j2_maxPageReadAhead

USEFUL PERFORMANCE TOOLS
• filemon - Monitors the performance of the file system,

and reports the I/O activity on behalf of logical files,
virtual memory segments, logical volumes, and physical
volumes.

• topas - The topas command reports selected statistics
about the activity on the local system.

• vmtune - Displays or changes operational parameters
of the Virtual Memory Manager and other AIX
components.

• vmstat - The vmstat command reports statistics about
kernel threads, virtual memory, disks, traps and CPU
activity. Reports generated by the vmstat command can
be used to balance system load activity. These system-
wide statistics (among all processors) are calculated as
averages for values expressed as percentages, and as
sums otherwise.

• iostat - Reports Central Processing Unit (CPU)
statistics and input/output statistics for the entire
system, adapters, tty devices, disks and CD-ROMs.

CONCLUSION
Meeting the performance targets of a large computer system is a
complex task but tuning the system is only part of the battle.
Maintaining high performance levels requires a constant base
level of system monitoring. The variability of workloads on some
systems requires frequent tuning, while other systems need only
occasionally tuning. In either event, a tuning approach driven by
performance data allows continual refinement of performance
models and methods. Conceptual models of system performance
help the system administrator organize and compartmentalize the
performance tuning task while still maintaining a system-wide
view. This approach avoids the pitfall of tuning based on the
individual user’s perception of system throughput and
responsiveness at the expense of system-wide efficiency.

REFERENCES
AIX 5L Version 5.2
Performance Management Guide
Fifth Edition (October 2002)
© Copyright International Business Machines Corporation 1997,
2002. All rights reserved.

IBM Certification Study Guide
AIX Performance and System Tuning
Second Edition (December 2002)
SG24-6184-01
© Copyright International Business Machines Corporation 2002.
All rights reserved.

AIX 5L Version 5.2
Performance Tools Guide and Reference
First Edition (October 2002)
© Copyright International Business Machines Corporation 2002.
All rights reserved.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Frank Bartucca and Torre DeVito
 IBM ICC At SAS Institute
 Building R
 Cary, NC 27511
 919-531-1420

ibmsas@us.ibm.com
http://www.ibm.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

