

Paper 289-28

SAS 9.1 on Solaris 9 Performance and
Optimization Tips

Maureen Chew
Abstract: This paper is targeted to administrators of SAS[tm]/Solaris[tm] systems
who want to learn about complementary performance improvements in both SAS 9.1
and Solaris 9. Additionally, tips, tricks, and spells to optimize and tune for
performance are discussed. The topics are advanced, but you don't need to be a wizard
if you think your SAS/Solaris configuration has been hit with the 'Petrificus Totalus'
curse (that is, 'molass-ification'). Many topics are relevant to other UNIX/Java
platforms.

SAS Version 9.1
With the release of Version 9.1, the SAS software platform unleashes a powerful and flexible new
foundation for the next generation of product deliverables. Discussion of these new capabilities is
outside the scope of this paper but we will address the running, monitoring and tuning of this platform
on Solaris 9.

The advent of SAS Version 9, brought forth a release which implemented a SAS threaded kernel(TK)
(not to be confused with the Solaris threaded kernel) which provided an infrastructure for SAS R&D
developers to code multi-threaded PROCs. In addition to the V9 PROCs which were re-coded to take
advantage of the TK infrastructure, there are several SAS servers such as the SAS Open Metadata
Server or the SAS OLAP server which are threaded and run as background, daemon processes.

SAS Version 9.1 unleashes a powerful new software platform that potentially consists of a very
different computing model. The following types of programs could be running concurrently:

Traditional SAS applications – single process , one or more RSUBMIT/MP
CONNECT processes

Standalone Java programs (Ex: SAS Management Console,Enterprise Miner Client)
SAS programs which invoke Java programs through the in process Java Virtual

Machine- JVM) - Ex: SAS/GRAPH components used to render images)
Java mid-tier programs (Ex: SAS Web Studio Reporting run as JSP/servlets in a Web

container)
SAS Services (Ex: SAS Open Metadata Server, OLAP Server, Infomap

Server,Workspace Server, etc)

While these various SAS servers and services can be configured on different platforms, the Sun servers
are well suited to handle multiple, multi-threaded applications. Consolidation of multiple SAS
servers on a single platform can simply administration iff the HW configuration can support the load.

Thus, a sample full blown Version 9.1 implementation might reasonably have the following running at
any given time:

30 traditional SAS users run "batch" applications. Any given SAS application may or
may not invoke multi-threaded PROCs

50-100 users accessing the SAS Web Studio reporting functionality (mid-tier Java
based layer sitting in a Web container such as Sun ONE Application Server 7
calling out to traditional/legacy SAS backend processes

10-30 users accessing the SAS OLAP server
5-10 users logged in over Reflection X running the Java based clients such as SAS

Management Console or Enterprise Miner Client.
5-7 background SAS processes such as the SAS Open Metadata Server.

Solaris 9
SAS V9.1 is built on, and fully supported on the Solaris 8 Operating Environment (OE). But Solaris 9
is particularly well-suited and preferred if there are no other site specific 3rd party application
dependencies.

SUGI 28 Systems Architecture

The "9 Cool Things about Solaris 9" includes:

1.Sun ONE Application Foundation

 Integrated Sun ONE Directory and Application Server
2.Data Management

 Improved file system performance and management
3.Provisioning and Change Management

 Installation (Live Upgrade, Flash/JumpStart, Secure WAN boot)
4.Server Virtualization

 Solaris Containers, Dynamic Reconfiguration, Resource Management
5.Security

 Firewall Everywhere, PAM enhancements, Ipsec/IKE, Kerberos V Server
6.Enhanced Cluster Support / High Avaialbility

 Sun Cluster Software, StorEdge Traffic Manager, Network Multipathin(iPMP)
7.Configuration Management

 Solaris Patch Manager, BigAdmin Portal, RAS Knowledge Database
8.Performance

 Memory, Threading Improvements, Improved Directory Name Lookup Cache(DNLC)
9.Compatibility

 Solaris Compatibility Assurance Toolkit (SolCAT), Application Compatibility Guarantee

A couple of areas are worth mentioning as particularly relevant to the running of SAS applications.

Solaris 9, Update 2(12/02) supports Memory Placement Optimization which allows the Solaris
Operating Environment to recognize memory locality effects and intelligently place memory pages
and processes close to each other. This would be relevant when running SAS on the larger mid-
range (ie: Sun Fire 6800) and high-end servers (ie: E12000/E15000). Additionally, other memory
management improvements related to advanced page coloring are included.

A new and improved 1x1 (as opposed to MxN) threads library is shipped in Solaris 9.

Solaris 9 bundles in fine grained Resource Management capability which could be very useful for

large, complex SAS installations that support many users and have varying quality of service
requirements.

SAS V9.1 on Solaris 9

Basic performance monitoring commands in the context of SAS applications are discussed in the
paper: Pushing the Envelope: SAS System Considerations for Solaris/UNIX in Threaded, 64 bit
Environments

Solaris 9 uses a 1x1 threading model which translates to roughly a 1-1 correspondence between
Lightweight Processes(LWPs) and threads.

Prstat(1), introduced in Solaris 8, is a powerful command line tool to give e you a snapshot of the top
running processes or detailed information about a single process:

prstat 5
 PID USER SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP
 28239 sasdhd 41M 33M cpu3 0 0 7:54:04 14% sas/5
 3668 jcliu 46M 40M sleep 59 0 1:36:51 0.3% mozilla-bin/3
 2308 root 86M 75M sleep 59 0 0:14:23 0.1% java/15
 850 root 5072K 3416K sleep 59 0 0:12:52 0.1% automountd/3
 47 root 4704K 4440K cpu2 59 0 0:00:00 0.0% prstat/1
 5510 root 166M 152M sleep 59 0 1:05:09 0.0% java/220
 2714 root 87M 74M sleep 59 0 0:14:25 0.0% java/16
 773 root 28K 1256K sleep 59 0 0:00:00 0.0% keyserv/3
 861 root 4296K 2632K sleep 59 0 0:02:02 0.0% syslogd/15
 875 root 2264K 1304K sleep 59 0 0:00:00 0.0% cron/1
Total: 199 processes, 796 lwps, load averages: 1.20, 1.19, 1.20

SUGI 28 Systems Architecture

Let's example the top process:
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID
 28239 sasdhd 41M 33M cpu3 0 0 7:54:04 14% sas/5

and take a further look at the process on an LWP basis:
prstat -L -p 28239
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU
PROCESS/LWPID
 28239 sasdhd 54M 39M run 0 0 7:51:35 14% sas/3
 28239 sasdhd 54M 39M sleep 59 0 0:00:00 0.0% sas/5
 28239 sasdhd 54M 39M sleep 59 0 0:00:00 0.0% sas/4
 28239 sasdhd 54M 39M sleep 59 0 0:00:00 0.0% sas/2
 28239 sasdhd 54M 39M sleep 59 0 0:00:00 0.0% sas/1

Out of the 5 threads, only 1 is active and accumulating time. SAS spawns a number of housekeeping
threads which are inconsequential in terms of total CPU cycles consumed. This system has 7 CPUs so
the % CPU is an average across all CPUs. Since this LWP has the CPU pegged, the average is 100/7
or 14%.

Let's look at a SAS Open Metadata Server process:
 UID PID PPID C STIME TTY TIME CMD
olap 3991 3990 0 Jan 24 ? 0:09 /901_unx/master/SAS/sas.s64no -
config /901_unx/master/SAS/sasv9.cfg.s64no -set

Using prstat(1), again, display on an LWP basis:
prstat -L -p 3991
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/9
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/8
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/7
 3991 olap 98M 69M sleep 47 4 0:00:01 0.0% sas/6
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/5
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/4
 3991 olap 98M 69M sleep 47 4 0:00:01 0.0% sas/3
 3991 olap 98M 69M sleep 47 4 0:00:04 0.0% sas/2
 3991 olap 98M 69M sleep 47 4 0:00:00 0.0% sas/1

From this snapshot we can observe that the server is sleeping and not accumulating time while in an
idle state. We see that while 9 LWPs are spawned, only 3 (LWPs 6,3,2) have racked up any execution
time. Thus, when monitoring run times for capacity planning purposes, it's important to get a handle on
the number of significantly active threads or LWPs and not just total number spawned. You may see
processes with 10's or 100's of LWPs. Don't get alarmed unless a large number of them are active.

Another useful command is pargs(1) which can print out all the arguments specified at command
invocation.
Again, let's look at a SAS Open Metadata Server process:
 UID PID PPID C STIME TTY TIME CMD
olap 3991 3990 0 Jan 24 ? 0:09 /901_unx/master/SAS/sas.s64no -
config /901_unx/master/SAS/sasv9.cfg.s64no -set

Because the output of ps(1) above truncates the full command line, we do not know the calling
sequence. When there are multiple SAS services running, especially when started under the same user
id, we could easily have difficulty in locating a specific instance of a service. If you needed to stop a
process with kill(1), it would be very unfortunate to inadvertently specify an incorrect process id (PID).
Pargs(1) can be used to help determine the correct instance of a service.

PID 3991 above is an instance of the SAS Open Metadata Server that we wish to stop/restart after
changing a configuration file. We use pargs(1) to dump the arguments of the command:
pargs 3991
3991: /901_unx/master/SAS/sas.s64no -config
/901_unx/master/SAS/sasv9.cfg.s64no -set
argv[0]: /901_unx/master/SAS/sas.s64no
argv[1]: -config
argv[2]: /901_unx/master/SAS/sasv9.cfg.s64no
argv[3]: -set

SUGI 28 Systems Architecture

argv[4]: SASROOT
argv[5]: /901_unx/master/SAS
argv[6]: -altlog
argv[7]: metalog.txt
argv[8]: -nodms
argv[9]: -memsize
argv[10]: 510M
argv[11]: -sortsize
argv[12]: 510M
argv[13]: -nonews
argv[14]: -noovp
argv[15]: -noterminal
argv[16]: -objectserver
argv[17]: -objectserverparms
argv[18]: protocol=bridge port=7500 classfactory=2887E7D7-4780-11D4-879F-
00C04F38F0DB instantiate nosecurity

From the output, we can correlate this instance of the server to the one in question..

Pstack(1) is another useful command to determine a traceback of individual active LWPs. From a
truss(1M) of a SAS process, a user was seeing a significant number of calls to poll(2) and was
concerned that it consuming an inappropriate amount of cycles. This is how we proved that it was not
an issue.

find the PID of the SAS job (16573 in this case)
base-2.05$ ps
 PID TTY TIME CMD
 9757 pts/7 0:01 bash
 16572 pts/7 0:00 runit
 16574 pts/7 0:00 ps
 16573 pts/7 0:03 sas

dump the thread stack and find the "poll”er
bash-2.05$ pstack -F 16573
16573: /d0/v91/sasexe/sas -fullstimer -WORK /d2/WORK -memsize 2G -sortsize
1G

bash-2.05$ pstack -F 16573
16573: /d0/v9/sasexe/sas -fullstimer -WORK /d2/WORK -memsize 2G -sortsize
1G
---------------- lwp# 1 / thread# 1 --------------------
 fffffff7e9187d8 lwp_park (0, 0, 0)
ffffffff7e915a34 cond_wait_queue (0, 0, ffffffff7ea1b8fc, 0, 0,
ffffffff7e200000) + d4
ffffffff7e9161e4 cond_wait (ffffffff7d605e00, ffffffff7d605de8,
ffffffff7df0bf00, ffffffff7df0c068, 0, cd8) + 10
ffffffff7e916220 pthread_cond_wait (ffffffff7d605e00, ffffffff7d605de8, 0, 1, 1, 2) +
8
ffffffff7df0c068 bktWait (ffffffff7d605de8, 0, 1, 1, 1, 1) + 108
ffffffff7df0b4e8 sktWait (ffffffff7d605cc0, 0, ffffffff7ffffae8,
ffffffff7ffffac8, 1, ffffffff7d605da0) + 168
000000010001d4e8 main (b, ffffffff7ffffbc8, 238, ffffffff7d700000, 0, 0) + a8
000000010001587c _start (0, 0, 0, 0, 0, 0) + 17c
----------------- lwp# 2 / thread# 2 --------------------
ffffffff7e6a3550 poll (ffffffff7c2f7b70, 0, 32)
ffffffff7e654fe0 _select (32, ffffffff7e7b83e8, ffffffff7e7b83e8, 0,
ffffffff7e7b83e8, ffffffff7cf0db70) + 298
ffffffff7e91140c select (1, 0, 0, 0, ffffffff7c2f7cf8, ffffffff7df0b280) + 6c
ffffffff7df0c8a4 bktHandleChildProcess (ffffffff7d700000, ffffffff7cf0be80,
ffffffff7df0c3bc, c350, ffffffff7e0398b0, ffffffff7cf0d710) + 1c4
ffffffff7df0ad58 sktMain (ffffffff7cf0d710, d400000, 803fc000, 2800000,
d400020, ffffffff7df0c6e0) + b8
ffffffff7df0bf3c bktMain (ffffffff7cf0d710, 0, 0, 0, 0, 4000) + 3c
ffffffff7e9186c8 _lwp_start (0, 0, 0, 0, 0, 0)
----------------- lwp# 3 / thread# 3 --------------------
.....

use prstat(1) to watch LWP activity for this process
bash-2.05$ prstat -L -p 16573
 PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/LWPID
 16573 sasmau 146M 139M cpu1 0 0 0:00:21 7.3% sas/3
 16573 sasmau 146M 139M cpu8 50 0 0:00:18 7.1% sas/10
 16573 sasmau 146M 139M cpu0 31 0 0:00:04 2.5% sas/39

SUGI 28 Systems Architecture

 16573 sasmau 146M 139M sleep 59 0 0:00:00 0.0% sas/5
 16573 sasmau 146M 139M sleep 59 0 0:00:00 0.0% sas/4
 16573 sasmau 146M 139M run 59 0 0:00:00 0.0% sas/2
 16573 sasmau 146M 139M sleep 59 0 0:00:00 0.0% sas/1

From the above, you can see that the "worker" threads (LWPs 3,10) are accumulating time but LWP 2
(the poller) is not, even though this particular snapshot was caught in the run state.

Though not new to Solaris 9, processor sets are a very simple mechanism to provide course grain CPU
resource management. User maureen is contending with SAS wizards on a heavily burdened system.
She needs to muster all her muggle know-how to prevent the wizards from denying her her fair share
of processing. As an aside, she must get her analysis done over the weekend for a report due Monday
and notices that some freeloading wizards have spawned processes for non time critical jobs. Her
muggle bag of tricks happens to have the root password and she proceeds to allocate 3 processors for
her own use.

Query the number of processors
bash-2.05$ /usr/sbin/psrinfo
0 on-line since 01/23/2003 15:00:11
1 on-line since 01/23/2003 15:02:35
2 on-line since 01/23/2003 15:02:35
3 on-line since 01/23/2003 15:02:35
8 on-line since 01/23/2003 15:02:35
9 on-line since 02/01/2003 22:26:55
11 on-line since 02/01/2003 22:26:55

Carve off 3 processors
psrset -c 8 9 11
created processor set 1
processor 8: was not assigned, now 1
processor 9: was not assigned, now 1
processor 11: was not assigned, now 1

We can now confirm that all activity has drained from those 3 CPUs
as their IDLE time increases and decreases for the remaining CPUs
mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 0 0 873 313 201 611 27 155 73 0 1218 15 3 58 23
 1 24 0 253 46 2 545 42 134 25 0 795 16 13 16 55
 2 7 0 204 62 1 643 57 144 33 0 926 30 2 17 51
 3 56 0 435 77 0 588 75 172 28 0 755 43 3 2 52
 8 0 0 1 23 22 0 0 0 0 0 0 0 0 0 100
 9 0 0 0 1 0 0 0 0 0 0 0 0 0 0 100
 11 0 0 49 316 315 1 0 0 0 0 0 0 0 0 100

find the PID of the shell
bash-2.05$ ps
 PID TTY TIME CMD
 232 pts/7 0:00 ps
 8371 pts/7 0:02 bash

Bind the shell to that processor set
psrset -b 1 8371
process id 8371: was not bound, now 1

Start the SAS processes
bash-2.05$ /d0/v91/sas monthly_report.sas &

We can start to see that processor 8 IDLE time has now gone to 0
and processor 11 IDLE is dropping as well. Maureen's process is
now exclusively consuming cycles on this dedicated processor set.
bash-2.05$ mpstat 5
CPU minf mjf xcal intr ithr csw icsw migr smtx srw syscl usr sys wt idl
 0 20 0 332 310 206 358 24 148 70 0 327 21 0 0 79
 1 87 0 1059 39 5 543 32 149 34 0 679 7 1 0 92
 2 85 0 1241 59 2 489 55 134 26 0 614 36 2 0 62
 3 66 0 399 53 0 454 51 131 24 0 513 36 13 0 51
 8 0 0 1 46 22 39 23 0 1 0 63 100 0 0 0
 9 0 0 54 1 0 122 0 0 0 0 83 0 0 0 100
 11 0 0 24425 6 3 34 2 0 2 0 427 3 7 0 90

SUGI 28 Systems Architecture

Solaris 9 bundles in Resource Management features which can be utilized to provide very fine grained
and very flexible resource allocation and policy. The concept of projects and tasks are used to label
workloads and separate them from one another. The project provides a network-wide administrative
identifier for related work. The task collects a group of processes into a manageable entity that
represents a workload component.

Java
SAS V9.1 standardizes on version 1.4.1 of the Java Runtime Environment (JRE).

As described earlier, there are 3 ways that the JRE can be invoked in V9.1.

 standalone
 from SAS
 through a web container such as Sun ONE Application Server 7

Accepting the default JVM options is probably acceptable for most cases but there could well be
instances where tuning the JVM is desirable. While the majority of Java programs are short lived,
it will be well worth some time characterizing the longer running ones to understand how different
options might affect the overall runtime performance.

JRE 1.4.1 supports 2 environments; client and server. For graphics based applications or short running
applications, the client(default) mode is usually best. However, long running or background service
applications might perform better with the -server option. The -server option will tell the JVM to
spend more time compiling and optimizing long running methods.

Typically, the parameters that you'll most likely need to change are the settings of the initial and
maximum heap allocation. The -X setting applies to the Sun HotSpot JVM:
$ /usr/java1.4.1/bin/java -X:
....
 -Xms<size> set initial Java heap size
 -Xmx<size> set maximum Java heap size
.....

The default initial Java heap (-Xms) is 2M (MB) while the default maximum (-Xmx) heap is 64M.

Its not particularly straightforward to determine a one size fits all default especially when you have to
consider the combined system memory utilization.

Below we discuss:

how to pass JRE options onto the in-core JVM or web container
collect statistics on garbage collections
show tradeoffs in performance and increased memory utilization

JRE options for the SAS in-core JVM can be set or changed:

at the SAS platform level in $SASROOT/sasv9.cfg
 jreoptions (-Djava.ext.dirs=!SASROOT/misc/applets -Xusealtsigs)

override on command invocation
$ sas -jreoptions “-Xms 128m -Xmx 128m” report.sas

For standalone Java applications, the same options can be applied at runtime when invoking the JRE.

When running a SAS Java application deployed as a .war file, the Java options are modified in the web
container configuration or startup file For Sun ONE Application Server 7, this would be specifed in
the server.xml file located in
$APP_SERVER_ROOT/var/opt/SUNWappserver7 domains/domain1/server1/config
where domain1 and server1 are named domain and server instances of the application server.

For Apache Tomcat 4.06, the JRE options would be specified in the catalina.sh startup file located in
the $APACHE_ROOT/bin

SUGI 28 Systems Architecture

Increasing the initial heap allocation can reduce the cost of more frequent garbage collection costs with
the tradeoff of increased memory utilization. In our test below, we realized a gain of ~4 secods at the
host of an extra 60 MB of initial memory allocation.

Run a SAS application which calls Java components to render images and
dump the garbage collection stats.. All in all, we'll see ~30 garbage collection events

bash-2.05$ time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \
-jreoptions " -verbose:gc " map.sas
[GC 2048K->762K(3520K), 0.0281766 secs]
[Full GC 17692K->14973K(25912K), 0.4007535 secs]
[GC 26877K->17742K(37184K), 0.0241216 secs]
[Full GC 26784K->20254K(38720K), 0.4270222 secs]
.......................
[GC 37454K->24701K(50208K), 0.0330959 secs]
[GC 40694K->27429K(50208K), 0.0333282 secs]
[GC 43427K->30153K(50208K), 0.0373865 secs]
[Full GC 46137K->27862K(50208K), 0.5242682 secs]

Our SAS log -fullstimer stats show:
real 0m32.001s <=== takes longest, but uses least memory
user 0m42.350s <== takes most CPU cycles
sys 0m2.530s

Increase the initial heap allocation to 64M, we see ~11 GC events, time drops ~7 sec
bash-2.05$ time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \
-jreoptions " -verbose:gc -Xms64m -Xmx256m " map.sas
[Full GC 9072K->2959K(64896K), 0.1718656 secs]
[GC 23567K->7314K(64960K), 0.1069522 secs]
[GC 29122K->12186K(64960K), 0.0930330 secs]
.... (about 11 GC)

SAS log shows:
real 0m25.884s
user 0m26.500s
sys 0m2.220s

If we further increase the initial heap allocation to 256m, we see only 2 GC events, no improvement
in performance and increased memory consumption
bash-2.05$ time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \
-jreoptions " -verbose:gc -Xms256m -Xmx256m " map.sas
[Full GC 9018K->2959K(259584K), 0.1620886 secs]
[GC 85199K->16099K(259584K), 0.2766101 secs]
[GC 98335K->24868K(259584K), 0.1624228 secs]
---- (2 GC's, no improvement in time)

SAS log shows:
real 0m26.999s
user 0m36.190s
sys 0m2.780s

If problematic garbage collection is suspect, other JRE options to consider might be:
"-verbose:gc -Xloggc:<file> -XX:+PrintGCTimeStamps -XX:+PrintGCDetails"

Additionally, JDK1.4.1 contains 2 new garbage collections (parallel collector, concurrent mark-sweep
collector). See the HotSpot reference below for more information on using these collectors.

The Java option, -Xprof, can also give hints as to the breakdown in time spent in various methods
categorized by compiled and interpreter sections. This can also help decide whether -server
option should be used.

Summary
SAS Version 9.1 brings a potentially very different computing model where multple multi-threaded,
mixed environment (C & Java) applications are running simultaneously. We've examined how to

SUGI 28 Systems Architecture

monitor processes and examine resource consumption down to the thread/LWP level. Solaris 9 makes
and excellent platform for handling a complex workload. Fine grained resource management
capabilities are bundled in the base OS as well as an application server. Addtionally, we discussed
modifying the SAS in-core JVM options and benefits and tradeoffs.

All tests were run on a Sun Enterpriese Midframe Server, Sun Fire 3800.

References
Solaris 9 Operating Environment
http://wwws.sun.com/software/solaris/index.html#features

Solaris 9 Operating Environment Data Sheet
http://wwws.sun.com/software/solaris/ds/ds-sol9oe/index.html

Solaris 9 12/02 System Administrator Collection ->
System Adminstration Guide: Resource Management and Network Services
http://docs.sun.com/db/doc/816-7125?q=Resource+Manager

Sun BluePrints[tm] OnLine - Resource Managements in the Solaris[tm] 9
Operating Environment - Stuart J. Lawson
http://www.sun.com/solutions/blueprints/browsesubject.html#resource

Sun BluePrints[tm] OnLine – Performance Oriented System Administration – Bob Larson
http://www.sun.com/solutions/blueprints/1202/817-1054.pdf

Solaris[tm] 9 Resource Manager Technical FAQ
http://wwws.sun.com/software/solaris/faqs/resource_manager.html

Performance Documentation for the Java HotSpot VM
http://java.sun.com/docs/hotspot/index.html

Pushing the Envelope: SAS System Considerations for Solaris/UNIX in Threaded, 64 bit
Environments
http://www.sas.com/partners/directory/sun/64bit.pdf

Peace between SAS Users & Solaris/Unix System Administrators
http://www.sas.com/partners/directory/sun/performance/index.html

Turbo Charging SAS Applications in Solaris Environments
Managing Highly Performance Applications in Large Multi-User Environments
http://www.sas.com/partners/directory/sun/mgmt/index.html

Turbo-charging the Java HotSpot Virtual Machine, V1.4.x to
Improve the Performance and Scalability of Application Servers
http://developer.java.sun.com/developer/technicalArticles/Programming/turbo

About the Author:
Maureen Chew, Sr. Member of Technical Staff, has been with Sun Microsystems for over 14 years.
She is a resident of Chapel Hill, NC and can be reached at maureen.chew@sun.com

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

