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SAS 9.1 on Solaris  9 Performance  and 
Optimization Tips 

Maureen Chew 
Abstract: This paper is targeted to administrators of SAS[tm]/Solaris[tm] systems 
who want to learn about complementary performance improvements in both SAS 9.1 
and Solaris 9. Additionally, tips, tricks, and spells to optimize and tune for 
performance are discussed. The topics are advanced, but you don't need to be a wizard 
if you think your SAS/Solaris configuration has been hit with the 'Petrificus Totalus' 
curse (that is, 'molass-ification'). Many topics are relevant to other UNIX/Java 
platforms. 
 
SAS Version 9.1 
With the release of Version 9.1,  the SAS software platform unleashes a powerful and flexible new 
foundation for the next generation of product deliverables.  Discussion of these new capabilities is 
outside the scope of this paper but we will address the running, monitoring and tuning of this platform 
on Solaris 9. 
 
The advent of SAS Version 9, brought forth a release which implemented a SAS threaded kernel(TK) 
(not to be confused with the Solaris threaded kernel) which provided an infrastructure for SAS R&D 
developers to code multi-threaded PROCs.  In addition to the V9 PROCs which were re-coded to take 
advantage of the TK infrastructure, there are several SAS servers such as the SAS Open Metadata 
Server or the SAS OLAP server which are threaded and run as background, daemon processes. 
 
SAS Version 9.1 unleashes a powerful new software platform that potentially consists of a very 
different computing model. The following types of programs could be running concurrently: 
 

Traditional SAS applications – single process ,  one or more RSUBMIT/MP 
CONNECT  processes 

Standalone Java programs (Ex: SAS Management Console,Enterprise Miner Client) 
SAS programs which invoke Java programs through the in process Java Virtual 

Machine- JVM) - Ex: SAS/GRAPH components used to render images) 
Java mid-tier programs (Ex: SAS Web Studio Reporting run as JSP/servlets in a Web 

container) 
SAS Services (Ex: SAS Open Metadata Server, OLAP Server, Infomap 

Server,Workspace Server, etc) 
 
While these various SAS servers and services can be configured on different platforms, the Sun servers 
are well suited to handle multiple, multi-threaded applications.  Consolidation of multiple SAS 
servers on a single platform can simply administration iff the HW configuration can support the load. 
 
Thus, a sample full blown Version 9.1 implementation might reasonably  have the following running at 
any given time: 

30 traditional SAS users run "batch" applications.  Any given SAS application may or 
may not invoke multi-threaded PROCs 

50-100 users accessing the SAS Web Studio reporting  functionality (mid-tier Java 
based layer sitting in a Web container such as Sun ONE Application Server 7 
calling out to traditional/legacy SAS backend processes 

10-30 users accessing the SAS OLAP server 
5-10 users logged in over Reflection X running the Java based clients such as SAS 

Management Console or Enterprise Miner Client. 
5-7 background SAS processes such as the SAS Open Metadata Server. 

 
Solaris 9 
SAS V9.1 is built on, and fully supported on the Solaris 8 Operating Environment (OE).  But Solaris 9 
is particularly well-suited and preferred if there are no other site specific 3rd party application 
dependencies. 
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The "9 Cool Things about Solaris 9" includes: 
 
1.Sun ONE  Application Foundation 

           Integrated Sun ONE Directory and Application Server 
2.Data Management 

           Improved file system performance and management 
3.Provisioning and Change Management 

           Installation (Live Upgrade, Flash/JumpStart, Secure WAN boot) 
4.Server Virtualization 

           Solaris Containers, Dynamic Reconfiguration, Resource Management 
5.Security 

           Firewall Everywhere, PAM enhancements, Ipsec/IKE, Kerberos V Server 
6.Enhanced Cluster Support / High Avaialbility 

 Sun Cluster Software, StorEdge Traffic Manager, Network Multipathin(iPMP) 
7.Configuration Management 

           Solaris Patch Manager, BigAdmin Portal, RAS Knowledge Database 
8.Performance 

           Memory, Threading Improvements, Improved Directory Name Lookup Cache(DNLC) 
9.Compatibility 

           Solaris Compatibility Assurance Toolkit (SolCAT), Application Compatibility Guarantee 
 

A couple of areas are worth mentioning as particularly relevant to the running of SAS applications. 
 

Solaris 9, Update 2(12/02) supports Memory Placement Optimization which allows the Solaris 
Operating Environment to recognize memory locality effects and intelligently place memory pages 
and processes close to each other.  This would be relevant when running SAS on the larger mid-
range (ie: Sun Fire 6800) and high-end servers (ie: E12000/E15000). Additionally, other memory 
management improvements related to advanced page coloring are included. 

 
A new and improved 1x1 (as opposed to MxN) threads library is shipped in Solaris 9.   

 
Solaris 9 bundles in fine grained Resource Management capability which could be very useful for 

large, complex SAS installations that support many users and have varying quality of service 
requirements. 

 
 
SAS V9.1 on Solaris 9 
 
Basic performance monitoring commands in the context of SAS applications  are discussed in the 
paper:  Pushing the Envelope:  SAS System Considerations for Solaris/UNIX in Threaded, 64 bit 
Environments 
 
Solaris 9 uses a 1x1 threading model which translates to roughly a 1-1 correspondence between 
Lightweight Processes(LWPs) and threads.   
 
Prstat(1), introduced in Solaris 8, is a powerful command line tool to give e you a snapshot of the top 
running processes or detailed information about a single process: 
 
# prstat 5 
  PID  USER    SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/NLWP        
 28239 sasdhd   41M   33M cpu3     0    0   7:54:04  14% sas/5 
  3668  jcliu   46M   40M sleep   59    0   1:36:51 0.3% mozilla-bin/3 
  2308  root    86M   75M sleep   59    0   0:14:23 0.1% java/15 
   850  root  5072K 3416K sleep   59    0   0:12:52 0.1% automountd/3 
    47  root  4704K 4440K cpu2    59    0   0:00:00 0.0% prstat/1 
  5510  root   166M  152M sleep   59    0   1:05:09 0.0% java/220   
  2714  root    87M   74M sleep   59    0   0:14:25 0.0% java/16 
   773  root    28K 1256K sleep   59    0   0:00:00 0.0% keyserv/3 
   861  root  4296K 2632K sleep   59    0   0:02:02 0.0% syslogd/15 
   875  root  2264K 1304K sleep   59    0   0:00:00 0.0% cron/1 
Total: 199 processes, 796 lwps, load averages: 1.20, 1.19, 1.20 
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Let's example the top process: 
   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/LWPID       
 28239 sasdhd     41M   33M cpu3     0    0   7:54:04  14% sas/5 
 
and take a further look at the process on an LWP basis: 
# prstat -L -p 28239 
   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU 
PROCESS/LWPID       
 28239 sasdhd     54M   39M run      0    0   7:51:35  14% sas/3 
 28239 sasdhd     54M   39M sleep   59    0   0:00:00 0.0% sas/5 
 28239 sasdhd     54M   39M sleep   59    0   0:00:00 0.0% sas/4 
 28239 sasdhd     54M   39M sleep   59    0   0:00:00 0.0% sas/2 
 28239 sasdhd     54M   39M sleep   59    0   0:00:00 0.0% sas/1 
 
Out of the 5 threads, only 1 is active and accumulating time.  SAS spawns a number of housekeeping 
threads which are inconsequential in terms of total CPU cycles consumed. This system has 7 CPUs so 
the % CPU is an average across all CPUs. Since this LWP has the CPU pegged, the average is 100/7  
or 14%. 
 
Let's look at a SAS Open Metadata Server process: 
  UID   PID  PPID  C    STIME TTY      TIME CMD 
olap  3991  3990  0   Jan 24 ?        0:09 /901_unx/master/SAS/sas.s64no -
config /901_unx/master/SAS/sasv9.cfg.s64no -set  
 
Using prstat(1), again, display on an LWP basis: 
#  prstat -L -p 3991 
   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/LWPID       
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/9 
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/8 
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/7 
  3991 olap       98M   69M sleep   47    4   0:00:01 0.0% sas/6 
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/5 
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/4 
  3991 olap       98M   69M sleep   47    4   0:00:01 0.0% sas/3 
  3991 olap       98M   69M sleep   47    4   0:00:04 0.0% sas/2 
  3991 olap       98M   69M sleep   47    4   0:00:00 0.0% sas/1 
 
From this snapshot we can observe that the server is sleeping and not accumulating time while in an 
idle state. We see that while 9 LWPs are spawned, only 3 (LWPs 6,3,2) have racked up any execution 
time. Thus, when monitoring run times for capacity planning purposes, it's important to get a handle on 
the number of significantly active threads or LWPs and not just total number spawned. You may see 
processes with 10's or 100's of LWPs.  Don't get alarmed unless a large number of them are active.  
 
Another useful command is pargs(1) which can print out all the arguments specified at command 
invocation. 
Again, let's look at a SAS Open Metadata Server process: 
  UID   PID  PPID  C    STIME TTY      TIME CMD 
olap  3991  3990  0   Jan 24 ?        0:09 /901_unx/master/SAS/sas.s64no -
config /901_unx/master/SAS/sasv9.cfg.s64no -set  
 
Because the output of ps(1) above truncates the full command line,  we do not know the calling 
sequence. When there are multiple SAS services running, especially when started under the same user 
id,  we could easily have difficulty in locating a specific instance of a service. If you needed to stop a 
process with kill(1), it would be very unfortunate to inadvertently specify an incorrect process id (PID).  
Pargs(1) can be used to help determine the correct instance of a service. 
 
PID 3991 above is an instance of the SAS Open Metadata Server that we wish to stop/restart after 
changing a configuration file. We use pargs(1) to  dump the arguments of the command: 
# pargs 3991 
3991:   /901_unx/master/SAS/sas.s64no -config 
/901_unx/master/SAS/sasv9.cfg.s64no -set  
argv[0]: /901_unx/master/SAS/sas.s64no 
argv[1]: -config 
argv[2]: /901_unx/master/SAS/sasv9.cfg.s64no 
argv[3]: -set 
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argv[4]: SASROOT 
argv[5]: /901_unx/master/SAS 
argv[6]: -altlog 
argv[7]: metalog.txt 
argv[8]: -nodms 
argv[9]: -memsize 
argv[10]: 510M 
argv[11]: -sortsize 
argv[12]: 510M 
argv[13]: -nonews 
argv[14]: -noovp 
argv[15]: -noterminal 
argv[16]: -objectserver 
argv[17]: -objectserverparms 
argv[18]: protocol=bridge port=7500 classfactory=2887E7D7-4780-11D4-879F-
00C04F38F0DB instantiate nosecurity 
 
From the output, we can correlate this instance of the server to the one in question..  
 
Pstack(1) is another useful command to determine a traceback of individual active LWPs. From a 
truss(1M) of a SAS process,  a user was seeing a significant number of calls to poll(2) and was 
concerned that it consuming an inappropriate amount of cycles.  This is how we proved that it was not 
an issue. 
 
# find the PID of the SAS job (16573 in this case) 
base-2.05$ ps 
  PID TTY      TIME CMD 
  9757 pts/7    0:01 bash 
 16572 pts/7    0:00 runit 
 16574 pts/7    0:00 ps 
 16573 pts/7    0:03 sas 
 
# dump the thread stack and find the "poll”er 
bash-2.05$ pstack -F 16573 
16573:  /d0/v91/sasexe/sas -fullstimer -WORK /d2/WORK -memsize 2G -sortsize 
1G  
 
bash-2.05$ pstack -F 16573 
16573:  /d0/v9/sasexe/sas -fullstimer -WORK /d2/WORK -memsize 2G -sortsize 
1G  
----------------  lwp# 1 / thread# 1  -------------------- 
 fffffff7e9187d8 lwp_park (0, 0, 0) 
ffffffff7e915a34 cond_wait_queue (0, 0, ffffffff7ea1b8fc, 0, 0,  
ffffffff7e200000) + d4 
ffffffff7e9161e4 cond_wait (ffffffff7d605e00, ffffffff7d605de8,  
ffffffff7df0bf00, ffffffff7df0c068, 0, cd8) + 10 
ffffffff7e916220 pthread_cond_wait (ffffffff7d605e00, ffffffff7d605de8, 0, 1, 1, 2) + 
8 
ffffffff7df0c068 bktWait (ffffffff7d605de8, 0, 1, 1, 1, 1) + 108 
ffffffff7df0b4e8 sktWait (ffffffff7d605cc0, 0, ffffffff7ffffae8,  
ffffffff7ffffac8, 1, ffffffff7d605da0) + 168 
000000010001d4e8 main (b, ffffffff7ffffbc8, 238, ffffffff7d700000, 0, 0) + a8 
000000010001587c _start (0, 0, 0, 0, 0, 0) + 17c 
-----------------  lwp# 2 / thread# 2  -------------------- 
ffffffff7e6a3550 poll     (ffffffff7c2f7b70, 0, 32) 
ffffffff7e654fe0 _select (32, ffffffff7e7b83e8, ffffffff7e7b83e8, 0,  
ffffffff7e7b83e8, ffffffff7cf0db70) + 298 
ffffffff7e91140c select (1, 0, 0, 0, ffffffff7c2f7cf8, ffffffff7df0b280) + 6c 
ffffffff7df0c8a4 bktHandleChildProcess (ffffffff7d700000, ffffffff7cf0be80,  
ffffffff7df0c3bc, c350, ffffffff7e0398b0, ffffffff7cf0d710) + 1c4 
ffffffff7df0ad58 sktMain (ffffffff7cf0d710, d400000, 803fc000, 2800000,  
d400020, ffffffff7df0c6e0) + b8 
ffffffff7df0bf3c bktMain (ffffffff7cf0d710, 0, 0, 0, 0, 4000) + 3c 
ffffffff7e9186c8 _lwp_start (0, 0, 0, 0, 0, 0) 
-----------------  lwp# 3 / thread# 3  -------------------- 
..... 
 
# use prstat(1) to watch LWP activity for this process 
bash-2.05$ prstat -L -p 16573 
   PID USERNAME  SIZE   RSS STATE  PRI NICE      TIME  CPU PROCESS/LWPID       
 16573 sasmau    146M  139M cpu1     0    0   0:00:21 7.3% sas/3 
 16573 sasmau    146M  139M cpu8    50    0   0:00:18 7.1% sas/10 
 16573 sasmau    146M  139M cpu0    31    0   0:00:04 2.5% sas/39 
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 16573 sasmau    146M  139M sleep   59    0   0:00:00 0.0% sas/5 
 16573 sasmau    146M  139M sleep   59    0   0:00:00 0.0% sas/4 
 16573 sasmau    146M  139M run     59    0   0:00:00 0.0% sas/2 
  16573 sasmau    146M  139M sleep   59    0   0:00:00 0.0% sas/1 
  
From the above,  you can see that the "worker" threads (LWPs 3,10) are accumulating time but LWP 2 
(the poller) is not, even though this particular snapshot was caught in the run state.   
 
Though not new to Solaris 9, processor sets are a very simple mechanism to provide course grain CPU 
resource management. User maureen is contending with SAS wizards on a heavily burdened system. 
She needs to muster all her muggle know-how to prevent the wizards from denying her her fair share  
of processing.  As an aside, she must get her analysis done over the weekend for a report due Monday  
and notices that some freeloading wizards have spawned processes for non time critical jobs.  Her 
muggle bag of tricks happens to have the root password and she proceeds to allocate 3 processors for 
her own use. 
  
# Query the number of processors 
bash-2.05$ /usr/sbin/psrinfo 
0       on-line   since 01/23/2003 15:00:11 
1       on-line   since 01/23/2003 15:02:35 
2       on-line   since 01/23/2003 15:02:35 
3       on-line   since 01/23/2003 15:02:35 
8       on-line   since 01/23/2003 15:02:35 
9       on-line   since 02/01/2003 22:26:55 
11      on-line   since 02/01/2003 22:26:55 
 
# Carve off 3 processors 
# psrset -c 8 9 11 
created processor set 1 
processor 8: was not assigned, now 1 
processor 9: was not assigned, now 1 
processor 11: was not assigned, now 1 
 
# We can now confirm that all activity has drained from those 3 CPUs 
# as their IDLE time increases and decreases for the remaining CPUs 
# mpstat 5 
CPU minf mjf xcal  intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt idl 
  0    0   0  873   313  201  611   27  155   73    0  1218   15   3  58  23 
  1   24   0  253    46    2  545   42  134   25    0   795   16  13  16  55 
  2    7   0  204    62    1  643   57  144   33    0   926   30   2  17  51 
  3   56   0  435    77    0  588   75  172   28    0   755   43   3   2  52 
  8    0   0    1    23   22    0    0    0    0    0     0    0   0   0 100 
  9    0   0    0     1    0    0    0    0    0    0     0    0   0   0 100 
 11    0   0   49   316  315    1    0    0    0    0     0    0   0   0 100 

 
# find the PID of the shell 
bash-2.05$ ps 
   PID TTY      TIME CMD 
   232 pts/7    0:00 ps 
  8371 pts/7    0:02 bash 
 
# Bind the shell to that processor set 
# psrset -b 1 8371 
process id 8371: was not bound, now 1 
 
# Start the SAS processes 
bash-2.05$ /d0/v91/sas monthly_report.sas & 
 
# We can start to see that processor 8 IDLE time has now gone to 0 
# and processor 11 IDLE is dropping as well.  Maureen's process is  
# now exclusively consuming cycles on this dedicated processor set.  
bash-2.05$ mpstat 5 
CPU minf mjf xcal  intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt idl 
  0   20   0  332   310  206  358   24  148   70    0   327   21   0   0  79 
  1   87   0 1059    39    5  543   32  149   34    0   679    7   1   0  92 
  2   85   0 1241    59    2  489   55  134   26    0   614   36   2   0  62 
  3   66   0  399    53    0  454   51  131   24    0   513   36  13   0  51 
  8    0   0    1    46   22   39   23    0    1    0    63  100   0   0   0 
  9    0   0   54     1    0  122    0    0    0    0    83    0   0   0 100 
 11    0   0 24425    6    3   34    2    0    2    0   427    3   7   0  90 
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Solaris 9 bundles in Resource Management features which can be utilized to provide very fine grained 
and very flexible resource allocation and policy.  The concept of projects and tasks are used to label 
workloads and separate them from  one another. The project provides a network-wide administrative 
identifier  for related work. The task collects a group of processes into a  manageable entity that 
represents a workload component. 
 
 
Java 
SAS V9.1 standardizes on version 1.4.1 of the Java Runtime Environment (JRE). 
 
As described earlier,  there are 3 ways that the JRE can be invoked in V9.1. 

 standalone 
 from SAS 
 through a web container such as Sun ONE Application Server 7 

 
Accepting the default JVM options is probably acceptable for most cases but there could well be 
instances where tuning the JVM is desirable.  While the majority of Java programs are short lived,   
it will be well worth some time characterizing the longer running ones to understand how different 
options might affect the overall runtime performance.  
 
JRE 1.4.1 supports 2 environments; client and server. For graphics based applications or short running 
applications,  the client(default) mode is usually best.  However,  long running or background service 
applications might perform better with the -server option.  The -server option will tell the JVM to 
spend more time compiling and optimizing long running methods.  
 
Typically, the parameters that you'll most likely need to change are  the settings of the initial and 
maximum heap allocation. The -X setting applies to the Sun HotSpot JVM: 
$ /usr/java1.4.1/bin/java -X: 
.... 
    -Xms<size>        set initial Java heap size 
    -Xmx<size>        set maximum Java heap size 
..... 
 
The default initial Java heap (-Xms) is 2M (MB) while the default maximum (-Xmx) heap is 64M.   
 
Its not particularly straightforward to determine a one size fits all default especially when you have to 
consider the combined system memory utilization. 
 
Below we discuss: 

how to pass JRE options onto the in-core JVM or web container 
collect statistics on garbage collections 
show tradeoffs in performance and increased memory utilization 

 
JRE options for the SAS in-core JVM can be set or changed: 

at the SAS platform level in $SASROOT/sasv9.cfg  
                              jreoptions (-Djava.ext.dirs=!SASROOT/misc/applets -Xusealtsigs  ) 

override on command invocation 
$ sas -jreoptions “-Xms 128m -Xmx 128m” report.sas 

 
For standalone Java applications,  the same options can be applied at runtime when invoking the JRE. 
 
When running a SAS Java application deployed as a .war file, the Java options are modified in the web 
container configuration or startup file For Sun ONE Application Server 7,  this would be specifed in 
the server.xml file located in  
$APP_SERVER_ROOT/var/opt/SUNWappserver7 domains/domain1/server1/config 
where domain1 and server1 are named domain and server instances of the application server. 
 
For Apache Tomcat 4.06, the JRE options would be specified in the catalina.sh startup file located in 
the $APACHE_ROOT/bin 
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Increasing the initial heap allocation can reduce the cost of more frequent garbage collection costs with 
the tradeoff of increased memory utilization.  In our test below, we realized a gain of ~4 secods at the 
host of an extra 60 MB of initial memory allocation.  
 
# Run a SAS application which calls Java components to render images and 
# dump the garbage collection stats.. All in all, we'll see ~30 garbage collection events 
 
bash-2.05$  time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \ 
-jreoptions " -verbose:gc " map.sas 
[GC 2048K->762K(3520K), 0.0281766 secs] 
[Full GC 17692K->14973K(25912K), 0.4007535 secs] 
[GC 26877K->17742K(37184K), 0.0241216 secs] 
[Full GC 26784K->20254K(38720K), 0.4270222 secs] 
....................... .... 
[GC 37454K->24701K(50208K), 0.0330959 secs] 
[GC 40694K->27429K(50208K), 0.0333282 secs] 
[GC 43427K->30153K(50208K), 0.0373865 secs] 
[Full GC 46137K->27862K(50208K), 0.5242682 secs] 
 
Our SAS log -fullstimer stats show: 
real    0m32.001s   <=== takes longest, but uses least memory 
user    0m42.350s   <==  takes most CPU cycles  
sys     0m2.530s 
 
# Increase the initial heap allocation to 64M, we see ~11 GC events, time drops ~7 sec 
bash-2.05$ time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \ 
-jreoptions " -verbose:gc  -Xms64m -Xmx256m " map.sas 
[Full GC 9072K->2959K(64896K), 0.1718656 secs] 
[GC 23567K->7314K(64960K), 0.1069522 secs] 
[GC 29122K->12186K(64960K), 0.0930330 secs] 
.... (about 11 GC) ...... 
 
SAS log shows: 
real    0m25.884s 
user    0m26.500s 
sys     0m2.220s 
 
# If we further increase the initial heap allocation to 256m, we see only 2 GC events,  no improvement   
# in performance and increased memory consumption 
bash-2.05$ time /d0/v91/sas -fullstimer -autoexec ../autoexec.sas \ 
-jreoptions " -verbose:gc  -Xms256m -Xmx256m " map.sas 
[Full GC 9018K->2959K(259584K), 0.1620886 secs] 
[GC 85199K->16099K(259584K), 0.2766101 secs] 
[GC 98335K->24868K(259584K), 0.1624228 secs] 
---- (2 GC's, no improvement in time) 
 
SAS log shows: 
real    0m26.999s 
user    0m36.190s  
sys     0m2.780s 
 
If problematic garbage collection is suspect, other JRE options to  consider might be: 
"-verbose:gc -Xloggc:<file> -XX:+PrintGCTimeStamps -XX:+PrintGCDetails" 
 
Additionally, JDK1.4.1 contains 2 new garbage collections (parallel collector, concurrent mark-sweep 
collector).  See the HotSpot reference below for more information on using these collectors. 
 
The Java option, -Xprof, can also give hints as to the breakdown in time spent in various methods 
categorized by compiled and interpreter sections.  This can also help decide whether -server 
option should be used. 
 
Summary 
SAS Version 9.1 brings a potentially very different computing model where multple multi-threaded, 
mixed environment (C & Java) applications are running simultaneously.  We've examined how to 
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monitor processes and examine resource consumption down to the thread/LWP level.  Solaris 9 makes 
and excellent platform for handling a complex workload. Fine grained resource management 
capabilities are bundled in the base OS as well as an application server.  Addtionally, we discussed 
modifying the SAS in-core JVM options and benefits and tradeoffs. 
 
All tests were run on a Sun Enterpriese Midframe Server, Sun Fire 3800. 
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Turbo Charging SAS Applications in Solaris Environments 
Managing Highly Performance Applications in Large Multi-User Environments 
http://www.sas.com/partners/directory/sun/mgmt/index.html 
 
Turbo-charging the Java HotSpot Virtual Machine, V1.4.x to 
Improve the Performance and Scalability of Application Servers 
http://developer.java.sun.com/developer/technicalArticles/Programming/turbo 
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