
Paper 286-28

- 1 -

SAS® Performance Optimizations on Intel Architecture
Patrick J. Fay, Intel Corporation, Cary, North Carolina, USA

Tracy Warren Carver, SAS Institute Inc., Cary, North Carolina, USA

ABSTRACT
This paper is intended for intermediate to advanced SAS users
who want to know more about performance on Intel architecture-
based systems. In early 2001, SAS and Intel jointly established
the SAS and Intel Advanced Research Center (SIARC). Learn
how SIARC research is used to optimize SAS performance on
the latest 32-bit and 64-bit Intel processors. Learn about new Intel
technologies that will affect you, such as the Intel® NetBurst
microarchitecture, the Intel® Itanium® processor family, and
Hyper-Threading Technology (HT Technology)1. Learn how SAS
performance is enhanced by these technologies. Learn about
the characteristics that can affect SAS performance in areas
ranging from SAS/STAT® and Enterprise Miner analytical
procedures and traditional SAS/Base procedures.

SAS performance improvements are significant and many
optimizations have been included in the SAS System for
Windows*, Version 9.0.

INTRODUCTION
Recent developments in Intel architecture have permitted some
astonishing leaps forward in performance. New designs present
some fascinating opportunities for Independent Software Vendors
(ISVs) who want to take advantage of these designs. There are
two different major fronts to understand, each with their own
performance characteristics.

INTEL® NETBURST MICROARCHITECTURE
The Intel NetBurst microarchitecture is an internal redesign of the
IA-32 processor, based on the x86 instruction set. It is fully
compatible with programs written for previous 32-bit Intel
processors. This microarchitecture is used for the Intel® Xeon
processor as well as the Pentium® 4 processor.

INTEL® ITANIUM® PROCESSOR FAMILY
Intel Itanium processors are 64-bit processors that use Explicitly
Parallel Instruction Computing (EPIC), allowing simultaneous
execution of multiple instructions. Predication and speculation
techniques are used heavily to optimize performance.

HISTORY
Each of these technologies have presented interesting
opportunities for SAS Research and Development. Intel and
SAS have worked together closely for several years in order to
move SAS forward on the Itanium Processor Family. This was
especially challenging to Windows-based developers at SAS
because the Itanium has a different instruction set from the
traditional “x86” instruction set used on 32-bit Windows. At the
same time, Intel has continued to enhance its flagship 32-bit
offerings, moving from the Pentium® Pro processor to the
Pentium® II processor and then the Pentium® III processor.
However, recognizing limitations in the “P6” series, Intel opted
for a processor redesign for the Intel Xeon processors and the
Pentium 4 processor. To make matters even more interesting,
SAS Project Mercury was in full swing, allowing MVA SAS to take
full advantage of threads for the first time. Coincidentally, Intel
was adding HT Technology to the Xeon processor, allowing a
single physical processor to run 2 threads truly concurrently.

Recognizing that the new designs required thorough and
organized work to understand their performance characteristics,
SAS and Intel teamed up to form the SAS and Intel Advanced
Research Center. The SIARC group studies the performance
characteristics of the new processors, specifically in the context

of the SAS System on Version 9. Findings from SIARC are fed
into SAS R&D and Intel R&D to improve products from both
companies.

This paper discusses the most important factors of each
processor that affects SAS performance, and highlights SIARC
solutions to these issues. First the Intel NetBurst
microarchitecture is discussed in some detail, and next the Intel®
Itanium processor family.

THE NEW ARCHITECTURES DEFINED
Here we discuss the two new processor designs in just enough
detail so you can understand their basic definitions, and their
most important characteristics with regards to SAS performance.

INTEL® NETBURST MICROARCHITECTURE IN DETAIL
IA32 processors are based on the "x86" instruction set. Most of
the instructions on an Intel 32-bit processor can be traced to the
original Intel 8086/8088 microprocessor designed in the late
1970s. Features of the IA32 processors, most often used under
Windows, include a set of about 5 main registers, a floating point
stack, and numerous assembly instructions. The IA32
processors are historically considered to be CISC processors
(Complex Instruction Set Computing), though the definition is
debatable.

The microarchitecture of a processor is the internal
implementation “in silicon”. Processors manufactured in different
years are completely compatible, but the later processors will
typically have an enhanced microarchitecture as well as a
somewhat increased MHz rating. There may occasionally be
some new assembly instructions added for performance reasons,
but these will not be backwards compatible. SAS only uses new
instructions if they can be used in such a way as to provide the
same output as a previous implementation.

The most important fact about the Intel NetBurst
microarchitecture is that it is a redesign of the internals of the
IA32 processors. Although there are some new assembly
instructions added, the most interesting effect is that the
Instructions Per Clock (IPC) are not the same as with previous
processors for a given set of binaries. In some cases the IPC
decreases. However, the redesign permits dramatic increases in
the MHz ratings which supersede differences in IPC. Each new
release of a Pentium 4 or Xeon processor typically offers a 100 to
200 MHz increase. In contrast, new “P6” (Pentium II and
Pentium III processors) chips typically increased by only 30 to 40
MHz.

The most important characteristics of the Intel NetBurst
microarchitecture are:
• Hyper Pipelined Technology – pipeline over twice as deep

as P6 generation. More instructions flow through the
processor more quickly. The downside is that the
performance penalty for a branch mis-predict is more severe
and the IPC rate may be lower. To compensate, Intel
greatly improved its branch prediction solution.

• 400 MHz (and above) System Bus – this means a 100 MHz
Front Side Bus that is “quad-pumped” to allow a 4x increase
in the amount of data flowing through the system. The
performance can peak at 3.2 GB per second of data flowing
in and out of the micro-processor.

• Advanced Dynamic Execution – the Execution Unit can
choose from a large window of instructions in the queue to

SUGI 28 Systems Architecture

2

execute. This allows for more out-of-order execution and
takes advantage of the large number of internal registers (at
least 128).

One may think of Intel processors with the Intel NetBurst
microarchitecture as chips with a CISC shell, but a RISC inside
(Reduced Instruction Set Computing).

An interesting side-effect of the new architecture is that in many
cases hand-tuned assembly code is not as desirable nor as
necessary as it has been on “P6” systems. In some cases
legacy assembly code can impede performance on Intel NetBurst
microarchitecture.

INTEL® ITANIUM® PROCESSOR FAMILY IN DETAIL
The Itanium processor family is a series of 64-bit processors
supporting a flat address space using 64-bit pointers. For the
largest data processing jobs, there is no viable alternative to this
solution. Although mature 32-bit CISC and RISC systems may
offer fine performance for most things, ultimately there is no
choice but to support 64-bit processing to solve the largest
memory-bound problems.

The Itanium processor family was co-designed with Hewlett
Packard. Overtly, many of the instructions in IPF are similar or
identical to HP's PA-RISC. EPIC (Explicitly Parallel Instruction
Computing) is the core feature of IPF that distinguishes it from
RISC. EPIC uses predication, speculation, and explicit
parallelism to surpass traditional RISC architectures. EPIC
compilers use architectural information (such as latencies to
cache and main memory, and the number and size of internal
execution units) to implement parallelism within an application.

A key principle of EPIC and RISC is that the compiler should do
the hard work of performance optimization. Although hand-tuned
assembly code has been quite common for SAS in IA32, in IPF it
is definitely not desirable. It is best to let the compiler do the hard
work, and understand the compiler options needed to achieve
performance. The most important characteristics of IPF are:

• EPIC (Explicitly Parallel Instruction Computing) – the
compiler does all the hard work. It schedules groups of
instructions that can execute concurrently if the conditions
are right.

• Register Stack Engine (RSE) – over 128 integer and floating
point registers are exposed at the assembly language level.
As functions are called, a rotating register mechanism is
used to make the function call without allocating memory on
the processor stack in most cases.

• 400 MHz (and above) System Bus – The performance can
peak at 6.4 GB per second of data flowing in and out of the
Itanium 2 processor.

• 64-Bit Flat Address Space – Memory addressability goes
from 4 Gigabytes (32-bit) to a theoretical maximum of 16
Terabytes.

PERFORMANCE OPTIMIZATIONS WITH SAS ON
THE NEW ARCHITECTURES
Here we discuss performance characteristics encountered on the
new Intel designs, and how SIARC has addressed them.
Throughout this discussion, keep in mind certain points:
• Remember that the classic standard bottlenecks are CPU,

memory, and I/O, and learn about the various aspects of
each bottleneck.

• Good performance means making maximum use of the
resources of the system. You should strive to understand
those resources and understand the documented system
limits.

• When a resource becomes exhausted or maximized, you
will be at a boundary condition. Additional loads past the
boundary condition are likely to show very different
performance characteristics of your system.

• When analyzing bottlenecks and tuning, we look to see how
well the performance measures up to the documented
system capabilities. For instance, in an I/O performance
test that reads a large SAS data set, we typically look at the
specification sheets for the I/O controllers & disk drives and
ensure that we approach the specs.

PERFORMANCE OPTIMIZATIONS ON INTEL® NETBURST
MICROARCHITECTURE
In order to take advantage of the Intel NetBurst microarchitecture,
SAS Version 9 was re-worked in several key areas to achieve the
best possible performance. These were:

• Version 8 and Version 6 SAS toggled exception mask bits in
the processor Control Word when performing operations
such as rounding a double-precision number to an integer.
In general these toggles were unnecessary and were found
in legacy assembly code. On the Intel NetBurst
microarchitecture, they cause a pipeline flush which stalls
the processor significantly. This is documented in the Intel
document, Desktop Performance and Optimization for
Pentium 4 Processor. This is very important in SAS DATA
steps that call SAS functions or that use DATA step arrays.
This was reworked in SAS Version 9.0.

• Memory utility routines were rewritten. These are common
C/C++ functions such as memcpy, memset, memcmp, and
memmove. As originally implemented by the SAS in-house
compiler used for the 32-bit SAS System for Windows,
these routines frequently used the REP-prefix instructions
such as REP MOVSB, REP MOVSW, and REP CMPSB. The
IPC performance of these instructions is less than “P6”
family processors when the memory block is less than 32
bytes. The latest Intel and Microsoft compilers sometimes
use alternatives to these instructions. By avoiding these
instructions, performance increases significantly. In addition
to dropping the REP-prefix instructions, the SSE2
instructions are used to get the best performance for blocks
over 32 bytes in length. Patrick J. Fay of Intel Corporation, a
member of the SIARC team, wrote these new memory utility
routines. These routines are very important in traditional
Base procedures as well as in many DATA steps. The new
routines allow Version 9.0 SAS to take full advantage of the
increased memory bandwidth of the Intel NetBurst
microarchitecture. Figure 1 shows the performance
increases measured with several alternative approaches to
the SAS memory utility routines for variable length cases2.
See the Appendix for machine configuration information.

Figure 1
Performance Increases For 3 Approaches To Memcpy Versus

Original SAS Memcpy For Variable Length Blocks *

0.0%
100.0%
200.0%
300.0%
400.0%
500.0%
600.0%
700.0%
800.0%

memcpy newcpy fancycpy

%
Im

pr
ov

em
en

t

Pentium 4, 1500 MHz
Pentium III, 500 MHz* Source: SIARC Internal Memorandums

SUGI 28 Systems Architecture

3

• String utility routines were rewritten. These were typically
originally written in legacy assembly code. The routines
were either rewritten in assembly to avoid the REP-prefix
instructions, or implemented in C. Not all of these were
changed in Version 9.0; work continues in Version 9.1 of
SAS. This is very important in traditional Base procedures
as well as in many DATA steps.

• Matrix algebra subroutines were rewritten. The most
important of these had previously been coded in 32-bit
assembly language. The assembly was enhanced with
unrolled loops, and the performance benefits are best seen
when the vectors being processed fit into CPU cache.
These routines are very important in analytical applications
such as SAS/STAT procedures and Enterprise Miner. An
interesting point in the matrix algebra routines is that
although unrolling loops may not help out-of-cache
situations much, the system bus is 4x faster on a Pentium 4
processor with Intel NetBurst microarchitecture than “P6”, so
approximately a 4x speedup on memory-intensive analytical
procs may be seen2. This happens even without any
optimizations. Refer to Table 1 in the Appendix for an
example.

Performance work in the 32-bit arena in SAS R&D continues, and
SIARC helps when it can.

PERFORMANCE OPTIMIZATIONS ON INTEL® ITANIUM®

PROCESSOR FAMILY
In order to take advantage of the EPIC feature of the Intel Itanium
processor family, SIARC focused on certain key areas, and
leveraged findings from 32-bit performance studies. These are
some of the key areas. Note the similarities to 32-bit in some
cases:

• Memory utility routines (memcpy, memset, memcmp,
memmove) – the Itanium Processor Family is terrific at
copying, setting, and comparing larger blocks of memory
(above 32 bytes). However, SAS makes extensive usage of
memory routines on blocks smaller than 32 bytes. SIARC
and Intel are working together to improve these routines on
smaller blocks. Again as in 32-bit, this is very important in
traditional Base SAS procedures and many DATA steps.

• String utility routines – these are coded in C. The
performance leaves something to be desired on smaller
blocks of memory. Additional compiler options need to be
added, along with checks for “pointer disambiguation”, which
allows the best parallel processing. Again as in 32-bit, this
area is very important in traditional Base SAS procedures.

• Matrix algebra subroutines – these are coded in C (whereas
on 32-bit the most used-routines are in assembly). For large
vectors, the Intel Math Kernel Library routines are called.
Similarly to the string utility routines, “pointer
disambiguation” is very important. The performance here
does not happen for free and requires some up-front and
careful work.

• Compiler performance options – The Intel compiler for IPF is
code-named "Electron". It is important to remember how
critical the compiler is for IPF performance. A large part of
SIARC's work on IPF so far has consisted of qualifying the
compiler for SAS with the "/O2" compiler option, which is a
minimal requirement for performance. SAS's requirement
for robustness and solid exception handling precludes
general use of an "/O3" option. Because the IPF assembly
has much in common with traditional RISC, we have been
able to leverage the experience of SAS developers on the
RISC/Unix platforms. SIARC compiler option research
continues, especially on Profile Guided Optimization (PGO),
and InterProcedural Optimizations (IPO).

• Itanium 2 processor tuning – Version 9.0 of the SAS System
for Windows on IPF is “tuned” for the Itanium processor. The

Itanium 2 processor has different characteristics than the
Itanium processor such as cache size, memory bandwidth,
and memory latencies. The Intel compiler used in Release
9.1 of the SAS System for Windows under IPF is Itanium II-
aware, and this will hopefully mean a potential 25-30%
speedup versus Version 9.0 for some applications.

THE PERFORMANCE IMPACT OF SIARC ON 9.0 SAS
The effects of SIARC performance work on The SAS System for
Windows, Version 9.0 can be seen in Figure 22. The data is an
aggregation of times from an internal performance test suite. The
Version 8 tests were Release 8.2 (TS2M0). The Version 9 tests
were from pre-production Version 9.0. The internal performance
suite includes examples of Base Procedures such as SORT,
SUMMARY, and analytical Procedures such as GLM, LOGISTIC,
DMREG, NEURAL, and others. All Version 9 tests were run with
the NOTHREADS system option. See the Appendix for machine
configuration information.

Figure 2
Internal Performance Tests

User CPU Time Aggregate Performance

29298

27881

36194

41505

52975

0 10000 20000 30000 40000 50000 60000

Itanium II 1000
MHz Version 9

Xeon 1500 MHz
Version 9

Xeon 1500 MHz
Version 8

PIII Xeon 900 MHz
Version 9

PIII Xeon 900 MHz
Version 8

Platform

Time In Seconds

SUGI 28 Systems Architecture

4

SAS PERFORMANCE PROFILES
Here, we show some performance profiles that highlight interesting characteristics of the Intel processors and multi-threading in Version 9.0
SAS. Although this paper is not a sizing guide, you can begin to get an idea of how SAS performance may vary on different types of Intel
systems. You will also see how SIARC tracks down performance issues using CPUBUSY, a tool developed by Patrick J. Fay of SIARC to
combine Intel® VTune™ counters with Perfmon data, displayed on a timeline. CPUBUSY offers capabilities that are not present in VTune.
Intel currently has plans to add new features to VTune based on CPUBUSY.

Example 1 – Small GLMs Compared Between 1 and 2 Threads on 2800 MHz Intel® Pentium® 4 Processor
Here, we start by observing that two relatively short PROC GLM invocations, each using about 2.9 Megabytes of memory, averages about 23
seconds of real-time with 2 threads, but 19 seconds of real-time with 1 thread2. This is on a 2800 MHz Pentium 4 processor with HT
Technology1. See the Appendix for machine configuration information. With CPUBUSY, we plot VTune counters that you would typically
examine when thinking about threading. Examining Figures 3, 4, 5, and 6, we make some observations and conjectures about the data:

F ig u r e 5 - \ \N O R T H W O O D 1 X 1 \S y s te m \C o n t e x t
S w it c h e s /s e c - 2 T h r e a d s

0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

0.
21

2.
22

4.
25

6.
27

8.
29

10
.3

12
.3

14
.4

16
.4

18
.4

20
.4

22
.4

T im e (s e c s)

C
on

te
xt

 S
w

itc
he

s/
Se

c

F ig u r e 3 - \ \N O R T H W O O D 1 X 1 \S y s t e m \C o n te x t
S w it c h e s /s e c - 1 T h r e a d s

0

4 0 0 0

8 0 0 0

1 2 0 0 0

1 6 0 0 0

2 0 0 0 0

3 .9 0 1 8 .9 0 1 1 3 .9 0 1 1 8 .9 1 7
T im e (s e c s)

C
on

te
xt

 S
w

itc
he

s/
Se

co
nd

F ig u r e 4 - B u s y O v e r T im e - 1 T h r e a d s

0 .0 0 %

2 0 .0 0 %

4 0 .0 0 %

6 0 .0 0 %

8 0 .0 0 %

1 0 0 .0 0 %

1 2 0 .0 0 %

0

1.
93

3.
86 5.
8

7.
73

9.
66

11
.6

13
.5

15
.5

17
.4

19
.3

21
.3

T im e (s e c o n d s)

pe
rc

en
t

% o f 1 c p u s b u s y

% o f 1 c p u s id le

% o f 1 m is s in g c p u
s e c o n d s
% o f 1 c p u s
s y s te m _ t im e

Observations about the test when 1
thread is used:
• The Context Switches Per

Second is low (Figure 3).
• The CPU stays nicely saturated,

and there is very little Idle time
(Figure 4).

• Overall looks very good as far as
threading and CPU utilization is
concerned.

Observations about the test when 2
threads are used:
• The Context Switches Per

Second soars tremendously
(Figure 5), which is very
inefficient for threading.

• The two logical processors do
not stay simultaneously busy
(Figure 6).

• There is much more idle time,
which implies more time is being
spent in the operating system.

F ig u r e 6 - B u s y O v e r T im e - 2 T h r e a d s

0 .0 0 %

2 0 .0 0 %

4 0 .0 0 %

6 0 .0 0 %

8 0 .0 0 %

1 0 0 .0 0 %

1 2 0 .0 0 %

0

2.
02

4.
03

6.
05

8.
06

10
.1

12
.1

14
.1

16
.1

18
.1

20
.2

22
.2

T im e (s e c o n d s)

pe
rc

en
t

% o f 2 c p u s b u s y

% o f 2 c p u s id le

% o f 2 m is s in g c p u
s e c o n d s
% o f 2 c p u s
s y s te m _ t im e

Conjecture (Educated Guesswork):
• The threaded code does not

have enough work with this data
to ensure each thread consumes
its entire time slice.

• Too many processor yields are
occurring; these are inefficient.

• Probably the -nothreads option is
best for this test because the
matrices are too small.

Also:
• If a long-running multi-threaded

CPU-intensive program is run
concurrently, this test will not
finish until the long-running
program finishes!

• Influence of HT Technology on
this is unknown.

• The performance of this test
case is currently being
researched at SAS.

SUGI 28 Systems Architecture

5

Example 2 - Large GLM Compared Between 1 and 2 Threads on 2800 MHz Intel® Pentium® 4 Processor
Here, we start by observing that a very large PROC GLM, using about 500 Megabytes of memory, averages over 2450 seconds of real-time
with 1 thread, and a little less than 2000 seconds of real-time with 2 threads2. This is on a 2800 MHz Pentium 4 processor with HT
Technology1. See the Appendix for machine configuration information. With CPUBUSY, we find these profiles for bandwidth in Figure 7 and
Figure 8:

Example 3 - Large GLM at 4 Threads on 1000 MHz Itanium I2 Processor
Here, we are pleased to see that the same GLM as in Example 2, runs in slightly less than 1100 seconds on a system with 4 1000 MHz
Itanium II processors, and 4 threads2. See the Appendix for machine configuration information. With CPUBUSY, we find:

F ig u re 8 - M E M 3 2 _ B W _ S E L F _ M B p erS ec (a ve = 22 1 4 .0 2) - 2 T h re a d s

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0

71
.3

14
3

21
4

28
5

35
6

42
8

49
9

57
0

64
1

71
3

78
4

85
5

92
6

99
8

10
69

11
40

12
11

12
83

13
54

14
25

14
96

15
68

16
39

17
10

17
82

18
53

19
24

19
95

T im e (se c o n d s)

M
B

/S
ec

F ig u re 7 - M E M 3 2 _B W _ S E L F _ M B p e rS e c (a ve = 1 9 2 9 .5 8) - 1 T h re a d s

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0

88
.7

17
7

26
6

35
5

44
3

53
2

62
1

70
9

79
8

88
7

97
5

10
64

11
53

12
41

13
30

14
18

15
07

15
96

16
84

17
73

18
62

19
50

20
39

21
28

22
16

23
05

23
94

24
82

T im e (s e c o n d s)

M
B

/S
ec

Observations:
• The VTune counter is MB/Sec of

Memory Bandwidth.
• The test is mostly reading/writing

from memory, at 1.9GB/sec with 1
thread and 2.2GB/sec with 2 threads.
The system is theoretically capable
of 3.2 GB/sec.

• The first memory bandwidth dip
represents a large file written to disk,
which we can deduce by examining
CPUBUSY I/O graphs not displayed
here.

• The periodic bandwidth dips are from
VTune storing data to disk.

• 2.2 GB/sec / 1.9 GB sec = 1.15,
which correlates nicely with 2000 sec
/ 2450 sec = 1.22.

• HT Technology works very well in
this example; only 1 physical CPU!

Figure 9 - M EM 64_BW _SELF_M B perSec(C L) (ave=
3962.68) - 4 Threads

0
1000
2000
3000
4000
5000

0

52
.5

10
5

15
7

21
0

26
2

31
5

36
7

42
0

47
2

52
5

57
7

62
9

68
2

73
4

78
7

83
9

89
2

94
4

99
7

10
49

11
01

T im e(seconds)

M
B

/S
ec

Observations:
• The VTune counter is MB/Sec of

Memory Bandwidth.
• As in Example 2, see the first dip

due to file I/O.
• The periodic bandwidth dips are from

VTune storing data to disk.
• The average bandwidth is 3.9

GB/sec as seen in Figure 9. The
system can theoretically perform at
6.4 GB/sec of memory bandwidth.

• The memory bandwidth of the
Itanium II processor is a significant
performance differentiator versus
Xeon and Pentium 4.

SUGI 28 Systems Architecture

6

CONCLUSIONS
Intel's new processor designs are significantly different from their
legacy systems, and these new designs have presented
interesting opportunities for SAS R&D. By understanding the
capabilities of these new designs, the SIARC Team has made
significant optimizations that will enhance the performance of
your SAS V9 applications in 32-bit or 64-bit Windows. SIARC
means continuous performance enhancements and better future
products for SAS customers on Intel architecture.

REFERENCES
Intel® Pentium® 4 Processor Optimization Reference Manual
Desktop Performance and Optimization for Intel® Pentium® 4 Processor
Intel® Itanium® 2 Processor Reference Manual for Software Development
and Optimization

ACKNOWLEDGEMENTS
Thanks SIARC Team Members: Chuck Craddock, SAS, and Sajjid
Reza, Intel, for an incredible amount of great work in 9.0.

REVIEWERS
Christopher T. Simonson, Intel
Jenny Marquez, Intel
Norman White, Intel
Mark Pallone, Intel

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Patrick J. Fay, Ph. D.
Intel Corporation Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: 919 – 531 – 0228
Fax: 919 – 677 – 4444
Email: patrick.j.fay@intel.com

 Web: www.intel.com

Tracy Warren Carver
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: 919 – 531 – 6674
Fax: 919 – 677 – 4444
Email: tracy.carver@sas.com
Web: www.sas.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration.

Copyright © 2002, Intel Corporation. All rights reserved. Intel,
VTune, NetBurst, Pentium, Xeon, and Itanium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Other brand and product names are trademarks of their respective
companies.

APPENDIX

TABLES
Table 1 - Large memory-bound GLM using about 500 MB of memory on
Xeon versus Intel® Pentium® III Xeon. This test is part of the aggregate
performance data in Figure 2. Both numbers from are from the SAS System
for Windows Release 8.2 (TS2M0). On both systems the test is

bottlenecked by memory bandwidth. The ratio is 4.17, approximately equal
to ratio of system bus frequency. See below for machine configuration
information.

Processor User CPU Time In Seconds

Intel® Pentium® III Xeon processor, 900 MHz,
100 MHz System Bus

15895

Intel® Xeon processor, 1500 MHz,
400 MHz System Bus

3807

MACHINE CONFIGURATION INFORMATION
Figure 1
• Intel® Pentium® III 500 MHz, Unified L2 cache 512K, 32-byte

cache line size, 2-way desktop, Windows 2000 Professional.
• Intel® Pentium® 4 1500 MHz, Unified L2 cache 256K, 64/128-

byte cache line size, Windows 2000 Professional.

Figure 2
• Intel® Pentium III Xeon processor, 900 MHz, Unified L2 cache

2M, 32-byte cache line size, 4-way server, Windows 2000
Advanced Server. The SAS System for Windows, Version 9.0
pre-production. The SAS System for Windows Release 8.2
(TS2M0).

• Intel® Xeon processor, 1500 MHz, Unified L2 cache 256K, L3
cache 1 MB, 64/128-byte cache line size, 4-way server (4
physical == 8 logical processors), HT Technology active,
Windows .Net Server Enterprise Edition (Beta). The SAS
System for Windows, Version 9.0 pre-production. The SAS
System for Windows Release 8.2 (TS2M0).

• Intel® Itanium® 2 processor, 1000 MHz, Unified L2 cache 256K,
L3 cache 3 MB, 128-byte cache line size, 4-way server,
Windows .Net Server Enterprise Edition (Beta). The SAS
System for Windows, Version 9.0.

Example 1, 2
Figures 3, 4, 5, 6, 7, 8
• Intel® Pentium® 4 processor, 2800 MHz, Unified L2 cache 256K,

L3 cache 1 MB, 64/128-byte cache line size, 1-way desktop, (1
physical == 2 logical processors), HT Technology active,
Windows XP Professional.

• The SAS System for Windows, Version 9.0.

Example 3
Figure 9
• Intel® Itanium® 2 processor, 1000 MHz, Unified L2 cache 256K,

L3 cache 3 MB, 128-byte cache line size, 4-way server,
Windows .Net Server Enterprise Edition (Beta).

• The SAS System for Windows, Version 9.0.

ENDNOTES

1 Hyper-Threading Technology requires a computer system with
an Intel® Pentium® 4 processor at 3.06 GHz or higher, a chipset
and BIOS that utilize this technology, and an operating system
that includes optimizations for this technology. Performance will
vary depending on the specific hardware and software you use.
See www.intel.com/info/hyperthreading for information.
2 Performance tests and ratings are measured using specific
computer systems and/or components and reflect the
approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software
design or configuration may affect actual performance. Buyers
should consult other sources of information to evaluate the
performance of systems or components they are considering
purchasing. For more information on performance tests
and on the performance of Intel products, reference
www.intel.com/procs/perf/limits.htm or call (U.S.) 1-800-628-8686
or 1-916-356-3104.
* Other brand and product names are trademarks of their
respective companies.

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

