
Paper 285-28
SAS System on Network Appliance
Darrell Suggs, Network Appliance Inc.

Margaret Crevar, SAS Institute
Leigh Ihnen, SAS Institute

ABSTRACT
The goal of this paper is to help customers maximize SAS
application performance while reaping the benefits of network
attached storage. Specifically, this is a guide for performance
tuning in an enterprise class environment containing the SAS
application and using a Network Appliance NAS (network
attached storage) subsystem (aka Filer). The recommendations
include configuration and parameter changes to the SAS
environment, the platform specific Unix operating system, NFS
(Network File System) client, and the NetApp Filer subsystem.
This version of the paper covers only Solaris and HP-UXchanges.
A complete set of tuning recommendations for other operating
systems is contained in the full version of this paper located on
both SAS’s and Network Appliance’s company web pages.

INTRODUCTION
This document is divided into two major sections. The first
section discusses concepts and issues important to performance
in a SAS./NetApp environment. The second section contains
specific recommendations involving SAS deployment issues as
well as operating system specific configuration recommendations.

LOCAL VERSUS SHARED FILESYSTEMS

There are two filesystem paradigms of interest for SAS
deployment.
Modern Unix platforms offer two paradigms for filesystem
deployment: local filesystems and shared filesystems.

Filesystem

Host

Filesystem

Shared Filesystem Local Filesystem

Host 1

I/O Subsystem I/O Subsystem

Host 2

These options are also referred to as “direct-attach or SAN” (local
filesystem) or “network attached storage – NAS” (shared
filesystem). Commercially these paradigms often lead to different
storage subsystem products with different costs, capabilities, and
scalability. Conceptually, they have only a couple of differences.
For example, shared filesystems allow more efficient use of
storage resources by enabling multiple hosts to access data while
keeping the data management responsibilities (and costs) off the
host system.

The shared filesystem solution (NAS) scales to multiple hosts in a
simple fashion that introduces very little overhead.

Shared filesystems (NAS) provide flexibility and increase
storage efficiency for SAS environments.

SAS PERFORMANCE

SAS application performance is a complex topic.
SAS is a powerful and diverse application. Specifying a
“canonical” workload generated by SAS is impossible. However,
at the core, SAS’s main function is to load, manipulate, and store
data. In any given SAS deployment, the underlying compute
platform, operating system and I/O infrastructure work together to
service these data manipulation operations.

SAS performance is typically measured in terms of run time or
“wall-clock time”. Stated simply, the goal is to complete each
SAS job in as little time as possible. There are two main
components to performance in a SAS deployment: computational
capability and I/O subsystem performance. An optimally tuned
deployment requires a balanced consumption of these two
resources.

SAS Workloads Differ from Database Workloads
SAS performs most operations by doing large block (mostly)
sequential I/O. This workload has very different characteristics
than a typical Database On-Line Transaction Processing (OLTP)
workload. As a result, typical performance tuning techniques that
improve performance for OLTP (and other database) workloads
are not necessarily applicable (or even positive) in SAS
environments.

Exploring computational capabilities is beyond the scope of
this document.
The first component in SAS performance is computational speed.
Each platform has a CPU and memory subsystem with some
level of capability. These capabilities vary among platforms and
range from slow, inexpensive, single CPU platforms (e.g. PCs) to
large, expensive, multiple CPU systems (e.g 32 CPU Solaris
platforms). Exploring the performance comparison of various
computational platforms is beyond the scope of this document.

SAS application performance is very dependent upon I/O
subsystem performance.
The second component in SAS performance is I/O subsystem
performance. SAS workloads that manipulate large amounts of
data are typically constrained more by I/O performance than by
computational capabilities. Inspecting SAS I/O performance
closely reveals several important performance characteristics.

SAS I/O MODEL

Modern compute platforms provide two broad classes of I/O
interfaces: filesystems and raw devices. The SAS I/O model
depends upon the filesystem interface technology. This means
that in any deployment, in addition to the raw device or underlying
disk platform, SAS requires a filesystem interface and SAS I/O
performance is dependent upon the performance of that interface.

SUGI 28 Systems Architecture

Megabytes per Second
The most obvious characteristic of I/O performance is bandwidth.
Bandwidth is typically stated in terms of megabytes per second
(MB/s) the I/O subsystem is capable of delivering to the SAS
application.

CPU Cost of I/O
The next characteristic of I/O performance is the CPU cost of
doing I/O. The goal is to achieve high bandwidth levels at very
low CPU utilizations. Although the absolute cost of I/O varies
among host platforms, there are some general characteristics.
Basically, the lowest cost typically comes from native local
filesystem implementations, followed by native NFS
implementations, and finally third party filesystem
implementations.

I/O Caching
The final and most subtle characteristic of I/O performance
involves I/O buffer caching on the host platform. The highest
performing I/O solution is one that minimizes the actual amount of
physical I/O traffic. For instance, a SAS job with a dataset that is
smaller than the amount of host memory needs to only fetch the
data from the storage subsystem once. All subsequent accesses
to that data can be serviced from the host buffer cache, therefore
minimizing I/O traffic and maximizing performance.

The concepts and techniques associated with I/O buffer caching
are well understood. Unfortunately, the specific implementation
and algorithm choices made from platform to platform vary widely.
Additionally, a single platform may perform different caching
techniques depending on which filesystem implementation is
being used (e.g. UFS vs NFS). This variance in I/O caching can
provide interesting opportunities and challenges to maximizing I/O
performance in a SAS environment. Beware of performance
issues that are a result of caching techniques.

SAS DEPLOYMENTS

SAS NFS performance tuning techniques depend upon the
specific deployment.
SAS NFS deployments have several important characteristics:
SAS version, single host versus multiple hosts configuration,
number of SAS sessions per host and host memory size versus
SAS data set size. This section outlines each of these
characteristics

SAS Versions
SAS currently has three major releases of interest: 6.12, 8.2, and
9.0. Additionally, for some Operating System platforms there are
multiple SAS versions based on the underlying compute
architecture. From a performance standpoint there are several
factors to consider in selecting (or changing) SAS versions.

SAS Work
Most SAS programs depend heavily on the ability to create and
access temporary data files quickly and effectively. The location
of this temporary data (referred to typically by the directory name
“SAS Work”) is configurable via the SAS configuration file. The
data files created and accessed in SAS Work are not shared
among multiple SAS sessions or multiple hosts. Specifically, the
data files in SAS Work are specific to a given SAS user session.
Given this property of SAS Work, the specifics of where SAS
Work is located and which locking and caching options are set
strongly impacts overall SAS performance.

For SAS NFS deployments SAS Work can be located on the NFS
server (as opposed to placing SAS Work on local storage). In
general, SAS Work should be accessible via an NFS mount point
that is separate from other SAS data. This allows flexibility in
specifying the locking and caching behavior of the SAS Work

files.

Single versus Multiple SAS Sessions

On a given host running the SAS application, there can be either
a single SAS session (or user) or multiple SAS sessions. The
performance and scalability of multiple sessions is dependent
upon the underlying platform’s capabilities. A full exploration of
how many SAS sessions a given platform can support, while
important, is beyond the scope of this discussion.

There are however several aspects of multiple SAS sessions that
are important for NFS deployments. Specifically, whether or not
the multiple sessions share the same or different SAS Work
space is an important issue. Additionally, the amount of memory
each SAS session uses and as a result, the amount of memory
left for operating system caching is an important issue. The
optimal resolution of these issues is specific to the overall
deployment architecture and is discussed in a later section.

Single versus Multiple Host Deployments
SAS deployments are sometimes associated with very large data
sets. Accessing and processing this data through a single host
can be cost prohibitive and sometimes impossible with today’s
Unix compute platform technology. As a result, when shared
filesystems are used, these deployments often involve multiple
host computers processing the data simultaneously. There are
several techniques for deploying and accessing/processing the
data simultaneously. A full discussion of these techniques is
beyond the scope of this discussion.

There are however several aspects of multiple SAS hosts
deployments that are important for NFS deployments. The main
issue is the applicability of locking and caching techniques that
enhance single host performance. A secondary issue is the
placement and usage of SAS Work directories for each individual
host. The optimal resolution is again specific to the overall
deployment.

SAS performance can be strongly affected by host memory
size, SAS memory configuration settings, and data set size.
Each SAS session specifies (or takes a default) configuration file
that specifies several options for the session. Of particular
interest for I/O performance are:
• memsize: specifies how much host memory a given SAS

session is allowed to use

• sortsize: specifies how much data to sort at one time (each

sort is broken into multiple load, sort, store phases)

• maxmemquery: specifies how much memory a query is

allowed to use.

In addition to the SAS settings, performance also depends on the
amount of host memory, the amount of memory used by the
application, and the amount of memory left for the operating
system to allocate to the buffer cache. Note also that multiple
SAS sessions can be running on a single host, increasing the
total memory used for the SAS application and datasets.

Selecting the optimal setting for memory settings depends on the
relationship of the SAS dataset size to the host memory size.
Consider a simple, single SAS session host configuration. For
purposes of this discussion, host memory is divided into three
categories: SAS application memory, OS buffer cache, and
“other”. The SAS application memory is limited by the
configuration variable memsize. In general, the operating system
requires some memory for normal OS function, and allocates the
rest as buffer cache. The OS buffer cache is used to hold
recently read and pre-fetched data as well as recently written
data.

SUGI 28 Systems Architecture

This simple memory usage description results in two classes of
SAS data sets: data sets that are smaller than host memory and
data sets that are larger than host memory. For datasets that are
smaller then host memory, increasing the SAS memory variables
to values larger than the data set size will result in minimal I/O
and maximum performance. For data sets larger than host
memory, reducing SAS memory consumption and thereby
allowing more memory for the OS buffer cache increases prefetch
effectiveness and write caching, maximizing I/O performance and
effectiveness.

The same set of variables and considerations apply for host
environments with multiple SAS sessions. However, the SAS
application and dataset size is computed as the sum of all active
sessions.

GENERAL NFS PERFORMANCE TUNING

NETWORK FILE SYSTEM - OVERVIEW

NFS can be a “high performance I/O infrastructure”.
NFS was originally created as a method for sharing data on a
local area network. As network technologies advance NFS
becomes more capable. Specifically, many organizations now
use Network Attached Storage (NAS) as the primary technology
for connecting host computers to storage subsystems. Making
the transition from a simple shared environment to a high
performance I/O infrastructure requires NFS configuration
modifications and tuning beyond default public network settings.

NFS Clients are not all created equal, nor are they configured
the same way.
Each Unix operating system (e.g. Sun’s Solaris, HP’s HP-UX,
IBM’s AIX) has an NFS client. The purpose of this client is to
translate file operations, such as read and write, into NFS
requests over a network. These clients share one very important
characteristic: adherence to a standard protocol definition. This
means that each OS client will function correctly in conjunction
with a standard NFS server platform. For example, NetApp filers
provide a standard NFS server that can connect with all flavors of
Unix NFS clients.

Network Appliance Filers are a key component of a high
speed NFS I/O infrastructure.
In an NFS deployment there are two components: NFS Clients
and NFS Servers. For the duration of this paper the only NFS
server discussed is the Network Appliance Filer family of NFS
Servers.

NETWORK TOPOLOGIES AND CONFIGURATION

Deploying NFS as a high speed storage infrastructure
requires either a private network, a dedicated VLAN, or a
point-to-point configuration.
There are multiple methods for deploying NFS attached storage:
public networks, private networks, Virtual LAN (VLAN), and point-
to-point.

A public network is not well suited for high-speed storage
infrastructure demands. Other, non-performance critical, data
traffic consumes bandwidth. Many infrastructures contain older
networking components that are not high performance. A high-
speed NFS deployment requires either a private network, a
dedicated VLAN, or a point-to-point configuration.

NETWORK SPEEDS

Deploying NFS as a high speed storage infrastructure
requires Gigabit Ethernet.
Current IP network technology has several speed alternatives.
Common choices are 10 Mbit (mega-bit), 100 Mbit, 1 Gb (or 1000
Mbit). Many company’s public networks (aka intranets) are
currently deployed on 100 Mbit (or even 10 Mbit) technology.
Deploying Gigabit networks requires upgrading to high speed
NICs (Network Interface Cards) and Gigabit capable switching
infrastructures. Gigabit deployment continues to become cheaper
and easier as the required components become commodities.

NETWORK PROTOCOLS

UDP delivers more performance than TCP in high speed
storage infrastructures.
Most Unix environments provide two protocol options for an NFS
to IP transport: TCP (Transmission Control Protocol) and UDP
(User Datagram Protocol). In clean networks (e.g. point-to-point)
UDP is a higher performance protocol than TCP. In general
network infrastructures however TCP provides more predictable
(less variable) performance due to the flow control mechanisms
employed.. In high speed storage infrastructures the benefits of
the consistent predictability of TCP must be weighed against the
potential performance gains of UDP.

In addition to the TCP/UDP options, network deployments must
also select which version of the NFS protocol to use, Version 2 or
Version 3. NFS version 3 should be used when available.

MAXIMUM TRANSFER UNIT (MTU) – JUMBO FRAMES

NFS storage infrastructures gain increased bandwidth and
increased efficiency with Jumbo frames.
IP networks can configure the Maximum Transfer Unit (MTU).
This value specifies the maximum packet size for each transfer on
the IP wire. The default value for this is 1500 bytes. Some
network components (switches and NICs) support larger MTU
size, specifically, 9000 bytes. An MTU size of 9000 is typically
referred to as having “Jumbo frames”.

Jumbo frames provide two advantages: more efficient use of the
IP wire and fewer host interrupts per data unit transferred.

NFS CONFIGURATION

NFS clients require parameterization changes to achieve
optimal performance in high-speed deployments.
Typical NFS deployments for applications other than high-speed
I/O infrastructures require no changes to the default configuration
for basic. However, the default settings are insufficient for high-
speed deployments. Specifically, each NFS client has a default
set of variable settings to control important concurrency and
throughput settings. The most common variables control:
• Maximum threads: concurrent threads performing NFS

operations on behalf of the user application
• Number of read aheads: concurrent, asynchronous read

aheads performed on behalf of the user applications.
• Hiwater transmit and receive values for the transport

protocol
• Maximum read and write transfer size (rsize, wsize)

The technique for setting these variables and the specific names
vary among platforms.

OPERATING SYSTEM PARAMETERS

Autonegotiation - Ensure transfer speeds and flow control

SUGI 28 Systems Architecture

settings are enabled and configured correctly.
Between every NFS Client and NFS Server there are three
important network components: Host NIC, Switch, Server NIC.
These three components (or in a point to point configuration, the
two NICs) must agree on and equally support two important
parameters: transfer speed and flowcontrol settings.

Kernel Patches - High performance NFS clients are still
evolving. Aggressively follow OS vendor provided NFS
client patches.
Each platform vendor periodically delivers patches for various OS
related issues (bugs). A high-performance I/O infrastructure often
requires the very latest patch levels.

CACHES AND LOCKS

A high performance SAS NFS deployment must carefully
scope sharing, locking, and caching to maximize
performance.
A primary feature of NFS is the ability to share data coherently
across multiple host platforms. The NFS file server provides a
centralized location for managing data sharing, locking, and
coherency. Each individual host can have high-speed,
cacheable, coherent access to the data. This key feature of NFS
also provides a challenging environment for implementing a high-
performance infrastructure.

NFS CLIENT CACHING

Caching with respect to the NFS client has several aspects:
• Data read once can be cached in the host buffer cache.

Subsequent accesses to the same data can be satisfied
from the host cache without fetching the data from the NFS
server on each read. This property also enables prefetching:
the host senses a sequential access pattern and
asynchronously prefetches data on behalf of the application.
When the application actually requests the data, the data is
found in the host buffer cache – a performance benefit

• Data written to the host buffer cache is first written to
the NFS Server (cleaned). Subsequent reads to that data
can be satisfied from the host OS buffer cache. So data that
is written and then read sees a performance benefit from the
buffer cache.

• Data set size plays a role in host buffer caching. Data
set sizes that are smaller than the available OS buffer cache
(which is a subset of total host memory) can benefit from
caching. Data sets that are larger than the OS buffer cache
and have a non-predictable I/O pattern are difficult to cache.
Although the host attempts to cache the data, the probability
of accessing data in the cache decreases as a function of
the ratio of data set size to buffer cache size. The end result
is that most data is fetched from the NFS server on most
accesses.

Locks
Applications accessing data via NFS can maintain data coherency
with file and region locks. The application can choose to lock a
file, guaranteeing that all accesses to the data from multiple hosts
find the correct data. This technique is used by SAS to ensure
multiple SAS sessions can access data files coherently.

Unfortunately, some NFS clients take a brute-force approach to
maintaining coherency of locked data. Specifically, on some
platforms, locking a file or data region results in all data
associated with the file being invalidated from cache when the file
is closed. This creates a performance degradation, especially
when comparing performance with a native filesystem that
maintains the data in cache for subsequent opens and reads.

Local Locking
As an antidote to the “locks == invalidate cache on close” issue,
some platforms provide the concept of “local locking”. NFS
filesystems mounted with a “local locking” option enabled have
two properties:
• Locks are scoped only to the local host. Applications

sharing data on that host and using locks to provide
coherency are safe. However, any other host accessing that
data DOES NOT obey the locking/coherency semantics.
This is acceptable for some deployments, and not others.

• Host buffer caching IS enabled. Since all locking and data
activity (of interest) happens locally on the host, caching and
coherency work the same as with a native filesystem.
Specifically, data is maintained in cache across close/open.

Each SAS NFS deployment can maximize performance by
understanding and applying the most appropriate locking and
caching options.

Weak Cache Consistency

Beware poor implementations of NFS “Weak Cache
Consistency” algorithms.
NFS Version 3 provides for implementation of a “Weak Cache
Consistency” algorithm. This basically allows two or more clients
to write-share a file while maintaining some level of consistency.
Unfortunately, some implementations cause “false invalidations”.
Basically, even in a single host environment, a recently written set
of data may be invalidated, even though no other hosts are
accessing the data.

A scenario where this behavior decreases performance is quite
common with SAS. Consider for example a common “data sort”.
The data sort has two phases:
• read the original data, perform a partial sort and write the

partially sorted data to a “temporary file”
• read the temporary file, perform a merge, and write the result

to the final data destination

An important factor in this operation is the relationship of
temporary data size to OS buffer cache size. If the temporary
data set is too large to fit in the OS buffer cache, then the false
invalidates do not decrease performance. However, if the
temporary data set fits in the OS buffer cache, then the
invalidates are precisely the wrong behavior.

PERFORMANCE TUNING A SAS
CONFIGURATION

This section discusses specific steps necessary to tune different
SAS configurations for optimal I/O performance in an NFS
environment.

Infrastructure configuration
• Deploy a gigabit Ethernet infrastructure.
• Enable Jumbo frames at the Ethernet level.
• Evaluate transport protocol (UDP or TCP).

Operating System Tuning
• Install latest kernel patches
• Disable auto-negotiation for Ethernet connections
• Increase maximum NFS threads, hi and low water marks,

and streams settings

Network Appliance Filer Configuration
• For maximum performance in a single Filer environment:

o create one (1) volume using all disks (except for

SUGI 28 Systems Architecture

spares). This configuration assures maximum
performance from the disks.

o Store SAS Work in same volume as data files, but
mount SAS Work through a separate mount point

Single Host Environments
• If multiple SAS sessions, all sessions share same SAS Work

mount point
• SAS Work mount point is mounted with “local locking” option

if available. In the absence of “local locking” option, enable
SAS with the “filelocks=none” option.

• Mount all other data mount points with “local locking” if
available. However, do NOT disable filelocks as a substitute
for “local locking”.

Multiple Host Environments
• If multiple SAS sessions on a host, all sessions share same

SAS Work mount point
• SAS Work mount point is mounted with “local locking” option

if available. In the absence of “local locking” option, enable
SAS with the “filelocks=none” option. Then use the
LIBNAME command to selectively enable locks for all non-
SAS Work directories.

• Mount all other data mounts without “local locking” option.

SOLARIS CONFIGURATIONS

Operating System Version
Optimal performance is gained by using Solaris 2.9 or Solaris 2.8.

Gigabit Ethernet Configuration
On the Solaris Platform
• Sun provides Gigabit Ethernet cards in both PCI and SBUS

configurations. The PCI cards deliver higher performance
than the SBUS versions.

• Syskonnect is one third party NIC vendor that provides
Gigabit Ethernet cards. The PCI versions have proven to be
high performance NICs.

On the NetApp filer
• NetApp Filers provide Gigabit Ethernet NIC’s as an optional

connection technology.

Enabling Jumbo Frames
On the Solaris Platform
• Sun Gigabit Ethernet cards do NOT support jumbo frames.
• Syskonnect (third party NIC vendor) provides SK-98xx cards

which do support jumbo frames. To enable jumbo frames
execute the following steps:

o Edit /kernel/drv/skge.conf
o uncomment the line JumboFrames_Inst0=”On”;
o Edit /etc/rcS.d/S50skge
o add line: ifconfig skge0 mtu 9000
o Reboot

On the NetApp filer
• Change MTU to 9000

o Change the value with the command: ifconfig
<interface> mtusize 9000

o Make this permanent by adding to /etc/rc on the
filer

NFS Protocol Configuration
On the Solaris Platform
• Edit the /etc/vfstab
• For each NFS mount participating in the high speed I/O

infrastructure make sure the mount options specify UDP

version 3 with transfer sizes of 32K:
o vers=3,proto=udp, rsize=32768, wsize=32768,…

On the NetApp filer
• Ensure NFS v3 is enabled by entering the command

o options nfs.v3.enable on

Kernel Patches
On the Solaris Platform

o Access www.sun.com for latest patches

Auto Negotiation
On the Solaris Platform
Solaris GigE cards need to have auto-negotiation forced off and
transmit flow control forced on. This can be done by
• Edit /etc/system and add the following lines

o set ge:ge_adv_1000autoneg_cap=0 # force
autonegotiation off

o set ge:ge_adv_pauseTX=1 # force transmit flow
control on

With Syskonnect provides third party Gigabit Ethernet cards for
Solaris systems
• Edit /kernel/drv/skge.conf and verify the following lines exist
• AutoNegotiation_A_Inst0=”Off”;
• DuplexCapabilities_A_Inst0=”Full”;

On the NetApp filer
• Set the filer flow control setting is set to “full”

o issue the command: ifconfig <interface>
flowcontrol full

NFS Tuning
In Solaris, the most common method for setting NFS
configuration variables so they remain persistent across system
reboots is to edit the file /etc/system to include the following
entries
• set nfs:nfs3_max_threads=64
• set nfs:nfs3_nra=64

Hiwater settings are typically added to the /etc/rc/init.d script by
adding the following lines:
• ndd –set /dev/udp udp_recv_hiwat 65535
• ndd –set /dev/udp udp_xmit_hiwat 65535
Note that a system reboot is required for these variable changes
to take affect.

Local Locking
On the Solaris Platform
• Edit the /etc/vfstab (follow with an unmount/re-mount)
• For each NFS mount qualified for “local locking” add the

llock option
o …,vers=3,proto=udp, llock, …

HP-UX CONFIGURATIONS

Operating System Version
Optimal performance is gained by using Version 11i and later.

Gigabit Ethernet Configuration
On the HP-UX Platform
• HP-UX supports Gigabit Ethernet NIC’s

On the NetApp filer
• Filers provide Gigabit Ethernet as a connection technology.

Enabling Jumbo Frames

SUGI 28 Systems Architecture

On the HP-UX Platform
o Use the HP-UX admin tool to enable jumbo frames

On the NetApp filer
• Change MTU to 9000

o Issue the command: ifconfig <interface> mtusize 9000
o Make this permanent by adding to /etc/rc on the filer

NFS Protocol Configuration
On the HP-UX Platform
• Edit the /etc/checklist (follow with an unmount/umount)
• For each NFS mount make sure the mount options specify

UDP version 3 with transfer sizes of 32K:
o …,vers=3,proto=udp, rsize=32768,

wsize=32768,…

Kernel Patches
For the HP-UX 11i platform, the latest patches can be found at
http://itrc.hp.com

Auto Neogiation
On the HP-UX Platform
• Verify in /etc/rc.config.d/hpgelanconf that

HP_GELAN_AUTONEG is set to “1” for proper operation.

On the NetApp filer
• Issue the command: ifconfig <interface> flowcontrol full

NFS Tuning
In HP-UX, the most common NFS tuning variable is located in
/etc/rc.config.d/nfsconf (reboot required after change):
• NUM_NFSIOD=32

Local Locking and Weak Cache Consistency
• HP-UX does invalidate cache when a file is closed IF the file

was locked. Local locking may be supported later.

CONCLUSIONS

This paper shows how to deploy a SAS environment using NFS
as a high performance I/O infrastructure with Network Appliance
Filers. Included are recommendations for configuration and
parameter changes to the SAS environment, the platform specific
Unix operating system, NFS (Network File System) client, and the
NetApp Filer subsystem. The result is a powerful, flexible, high
performance SAS solution.

A full version of this paper, including additional tuning
recommendations for other operating systems is located on the
company web pages of both SAS and Network Appliance.

BIOGRAPHIES

Darrell Suggs is a performance engineer from Network Appliance.
Margaret Crevar and Leigh Ihnen are from the SAS Corporate
Technology Center (CTC).

Solaris SAS v8.2 SAS v9.0

SAS Work
Files

If Solaris “Weak Cache Consistency” bug
#(4407669) patch is available, then:
Place SAS Work on filer.
Mount SAS Work with “llock” option.
If Solaris “WCC” patch is NOT available, then:
Use SAS “filelocks=none” option.
Enable filelocks for all data other than SAS Work.

If Solaris “Weak Cache Consistency” bug
#(4407669) patch is available, then:
Place SAS Work on filer.
Mount SAS Work with “llock” option.
If Solaris “WCC” patch is NOT available, then:
Place SAS work files on non-NFS filesystem. Watch
for Solaris patch availability.

SAS Data
Files

Place all Data Files on the filer an Enable Prefetch settings
If data files are NOT write shared among multiple hosts, then
Mount with “llock” option.
If data files ARE write shared among multiple hosts, then
Do NOT mount with “llock” option. Consider creating separate mount points for write shared and non-write
shared data files.

HP-UX SAS v8.2 SAS v9.0

SAS Work
Files

If “llock” option is available, then:
Place SAS Work on filer.
Mount SAS Work with “llock” option.
If “llock” option is NOT available, then:
Use SAS “filelocks=none” option.
Enable filelocks for all data other than SAS Work.

If “llock” option is available, then:
Place SAS Work on filer.
Mount SAS Work with “llock” option.
If “llock” option is NOT available, then:
Place SAS work files on non-NFS filesystem. Watch
for “llock” option availability on HP-UX.

SAS Data
Files

Place all Data Files on the filer (according to above guidelines)
If “llock” option is available, then:
If data files are NOT write shared among multiple hosts, then mount with “llock” option.
If data files ARE write shared among multiple hosts, then do NOT mount with “llock” option. Consider
creating separate mount points for write shared and non-write shared data files.
If “llock” option is NOT available, then:
No action required. Watch for “llock” option availability on HP-UX.

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

