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ABSTRACT 
The goal of this paper is to help customers maximize SAS 
application performance while reaping the benefits of network 
attached storage.  Specifically, this is a guide for performance 
tuning in an enterprise class environment containing the SAS 
application and using a Network Appliance NAS (network 
attached storage) subsystem (aka Filer).  The recommendations 
include configuration and parameter changes to the SAS 
environment, the platform specific Unix operating system, NFS 
(Network File System) client, and the NetApp Filer subsystem.  
This version of the paper covers only Solaris and HP-UXchanges.  
A complete set of tuning recommendations for other operating 
systems is contained in the full version of this paper located on 
both SAS’s and Network Appliance’s company web pages. 

INTRODUCTION 
This document is divided into two major sections.  The first 
section discusses concepts and issues important to performance 
in a SAS./NetApp environment.  The second section contains 
specific recommendations involving SAS deployment issues as 
well as operating system specific configuration recommendations. 

LOCAL VERSUS SHARED FILESYSTEMS 
 
There are two filesystem paradigms of interest for SAS 
deployment. 
Modern Unix platforms offer two paradigms for filesystem 
deployment: local filesystems and shared filesystems. 
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These options are also referred to as “direct-attach or SAN” (local 
filesystem) or “network attached storage – NAS” (shared 
filesystem).  Commercially these paradigms often lead to different 
storage subsystem products with different costs, capabilities, and 
scalability.  Conceptually, they have only a couple of differences.  
For example, shared filesystems allow more efficient use of 
storage resources by enabling multiple hosts to access data while 
keeping the data management responsibilities (and costs) off the 
host system. 

 
The shared filesystem solution (NAS) scales to multiple hosts in a 
simple fashion that introduces very little overhead. 

 
Shared filesystems (NAS) provide flexibility and increase 
storage efficiency for SAS environments. 

SAS PERFORMANCE 
 
SAS application performance is a complex topic. 
SAS is a powerful and diverse application.  Specifying a 
“canonical” workload generated by SAS is impossible.  However, 
at the core, SAS’s main function is to load, manipulate, and store 
data.  In any given SAS deployment, the underlying compute 
platform, operating system and I/O infrastructure work together to 
service these data manipulation operations. 
 
SAS performance is typically measured in terms of run time or 
“wall-clock time”.  Stated simply, the goal is to complete each 
SAS job in as little time as possible.  There are two main 
components to performance in a SAS deployment: computational 
capability and I/O subsystem performance.  An optimally tuned 
deployment requires a balanced consumption of these two 
resources. 
 
SAS Workloads Differ from Database Workloads 
SAS performs most operations by doing large block (mostly) 
sequential I/O.  This workload has very different characteristics 
than a typical Database On-Line Transaction Processing (OLTP) 
workload.  As a result, typical performance tuning techniques that 
improve performance for OLTP (and other database) workloads 
are not necessarily applicable (or even positive) in SAS 
environments. 
 
Exploring computational capabilities is beyond the scope of 
this document. 
The first component in SAS performance is computational speed.  
Each platform has a CPU and memory subsystem with some 
level of capability.  These capabilities vary among platforms and 
range from slow, inexpensive, single CPU  platforms (e.g. PCs) to 
large, expensive, multiple CPU systems (e.g 32 CPU Solaris 
platforms).  Exploring the performance comparison of various 
computational platforms is beyond the scope of this document. 
 
SAS application performance is very dependent upon I/O 
subsystem performance. 
The second component in SAS performance is I/O subsystem 
performance.  SAS workloads that manipulate large amounts of 
data are typically constrained more by I/O performance than by 
computational capabilities.  Inspecting SAS I/O performance 
closely reveals several important performance characteristics.  

SAS I/O MODEL 
 
Modern compute platforms provide two broad classes of I/O 
interfaces: filesystems and raw devices.  The SAS I/O model 
depends upon the filesystem interface technology.  This means 
that in any deployment, in addition to the raw device or underlying 
disk platform, SAS requires a filesystem interface and SAS I/O 
performance is dependent upon the performance of that interface. 
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Megabytes per Second 
The most obvious characteristic of I/O performance is bandwidth.  
Bandwidth is typically stated in terms of megabytes per second 
(MB/s) the I/O subsystem is capable of delivering to the SAS 
application.   
 
CPU Cost of I/O 
The next characteristic of I/O performance is the CPU cost of 
doing I/O.  The goal is to achieve high bandwidth levels at very 
low CPU utilizations.  Although the absolute cost of I/O varies 
among host platforms, there are some general characteristics.  
Basically, the lowest cost typically comes from native local 
filesystem implementations, followed by native NFS 
implementations, and finally third party filesystem 
implementations. 
 
I/O Caching 
The final and most subtle characteristic of I/O performance 
involves I/O buffer caching on the host platform.  The highest 
performing I/O solution is one that minimizes the actual amount of 
physical I/O traffic.  For instance, a SAS job with a dataset that is 
smaller than the amount of host memory needs to only fetch the 
data from the storage subsystem once.  All subsequent accesses 
to that data can be serviced from the host buffer cache, therefore 
minimizing I/O traffic and maximizing performance. 
 
The concepts and techniques associated with I/O buffer caching 
are well understood.  Unfortunately, the specific implementation 
and algorithm choices made from platform to platform vary widely.  
Additionally, a single platform may perform different caching 
techniques depending on which filesystem implementation is 
being used (e.g. UFS vs NFS).  This variance in I/O caching can 
provide interesting opportunities and challenges to maximizing I/O 
performance in a SAS environment.  Beware of performance 
issues that are a result of caching techniques. 

SAS DEPLOYMENTS 
 
SAS NFS performance tuning techniques depend upon the 
specific deployment. 
SAS NFS deployments have several important characteristics: 
SAS version, single host versus multiple hosts configuration, 
number of SAS sessions per host and host memory size versus 
SAS data set size.  This section outlines each of these 
characteristics 
 
SAS Versions 
SAS currently has three major releases of interest: 6.12, 8.2, and 
9.0.  Additionally, for some Operating System platforms there are 
multiple SAS versions based on the underlying compute 
architecture.  From a performance standpoint there are several 
factors to consider in selecting (or changing) SAS versions. 
 
SAS Work 
Most SAS programs depend heavily on the ability to create and 
access temporary data files quickly and effectively.  The location 
of this temporary data (referred to typically by the directory name 
“SAS Work”) is configurable via the SAS configuration file.  The 
data files created and accessed in SAS Work are not shared 
among multiple SAS sessions or multiple hosts.  Specifically, the 
data files in SAS Work are specific to a given SAS user session.  
Given this property of SAS Work, the specifics of where SAS 
Work is located and which locking and caching options are set 
strongly impacts overall SAS performance. 
 
For SAS NFS deployments SAS Work can be located on the NFS 
server (as opposed to placing SAS Work on local storage).  In 
general, SAS Work should be accessible via an NFS mount point 
that is separate from other SAS data.  This allows flexibility in 
specifying the locking and caching behavior of the SAS Work 

files. 
 
Single versus Multiple SAS Sessions 
 
On a given host running the SAS application, there can be either 
a single SAS session (or user) or multiple SAS sessions.  The 
performance and scalability of multiple sessions is dependent 
upon the underlying platform’s capabilities.  A full exploration of 
how many SAS sessions a given platform can support, while 
important, is beyond the scope of this discussion. 
 
There are however several aspects of multiple SAS sessions that 
are important for NFS deployments.  Specifically, whether or not 
the multiple sessions share the same or different SAS Work 
space is an important issue.  Additionally, the amount of memory 
each SAS session uses and as a result, the amount of memory 
left for operating system caching is an important issue.  The 
optimal resolution of these issues is specific to the overall 
deployment architecture and is discussed in a later section. 
 
Single versus Multiple Host Deployments 
SAS deployments are sometimes associated with very large data 
sets.  Accessing and processing this data through a single host 
can be cost prohibitive and sometimes impossible with today’s 
Unix compute platform technology.  As a result, when shared 
filesystems are used, these deployments often involve multiple 
host computers processing the data simultaneously.  There are 
several techniques for deploying and accessing/processing the 
data simultaneously.  A full discussion of these techniques is 
beyond the scope of this discussion.  
 
There are however several aspects of multiple SAS hosts 
deployments that are important for NFS deployments.  The main 
issue is the applicability of locking and caching techniques that 
enhance single host performance.  A secondary issue is the 
placement and usage of SAS Work directories for each individual 
host.  The optimal resolution is again specific to the overall 
deployment. 
 
SAS performance can be strongly affected by host memory 
size, SAS memory configuration settings, and data set size. 
Each SAS session specifies (or takes a default) configuration file 
that specifies several options for the session.  Of particular 
interest for I/O performance are: 
• memsize: specifies how much host memory a given SAS 

session is allowed to use 
  
• sortsize: specifies how much data to sort at one time (each 

sort is broken into multiple load, sort, store phases) 
 
• maxmemquery: specifies how much memory a query is 

allowed to use.   
 
In addition to the SAS settings, performance also depends on the 
amount of host memory, the amount of memory used by the 
application, and the amount of memory left for the operating 
system to allocate to the buffer cache.  Note also that multiple 
SAS sessions can be running on a single host, increasing the 
total memory used for the SAS application and datasets. 

 
Selecting the optimal setting for memory settings depends on the 
relationship of the SAS dataset size to the host memory size.  
Consider a simple, single SAS session host configuration.  For 
purposes of this discussion, host memory is divided into three 
categories: SAS application memory, OS buffer cache, and 
“other”.  The SAS application memory is limited by the 
configuration variable memsize.  In general, the operating system 
requires some memory for normal OS function, and allocates the 
rest as buffer cache.  The OS buffer cache is used to hold 
recently read and pre-fetched data as well as recently written 
data.   
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This simple memory usage description results in two classes of 
SAS data sets: data sets that are smaller than host memory and 
data sets that are larger than host memory.  For datasets that are 
smaller then host memory, increasing the SAS memory variables 
to values larger than the data set size will result in minimal I/O 
and maximum performance.  For data sets larger than host 
memory, reducing SAS memory consumption and thereby 
allowing more memory for the OS buffer cache increases prefetch 
effectiveness and write caching, maximizing I/O performance and 
effectiveness. 
 
The same set of variables and considerations apply for host 
environments with multiple SAS sessions.  However, the SAS 
application and dataset size is computed as the sum of all active 
sessions. 

GENERAL NFS PERFORMANCE TUNING 
 
NETWORK FILE SYSTEM - OVERVIEW 
 
NFS can be a “high performance I/O infrastructure”. 
NFS was originally created as a method for sharing data on a 
local area network.  As network technologies advance NFS 
becomes more capable.  Specifically, many organizations now 
use  Network Attached Storage (NAS) as the primary technology 
for connecting host computers to storage subsystems.  Making 
the transition from a simple shared environment to a high 
performance I/O infrastructure requires NFS configuration 
modifications and tuning beyond  default public network settings.   
 
NFS Clients are not all created equal, nor are they configured 
the same way. 
Each Unix operating system  (e.g. Sun’s Solaris, HP’s HP-UX, 
IBM’s AIX) has an NFS client.  The purpose of this client is to 
translate file operations, such as read and write, into NFS 
requests over a network.  These clients share one very important 
characteristic: adherence to a standard protocol definition.  This 
means that each OS client will function correctly in conjunction 
with a standard NFS server platform.  For example, NetApp filers 
provide a standard NFS server that can connect with all flavors of 
Unix NFS clients. 
 
Network Appliance Filers are a key component of a high 
speed NFS I/O infrastructure. 
In an NFS deployment there are two components: NFS Clients 
and NFS Servers.  For the duration of this paper the only NFS 
server discussed is the Network Appliance Filer family of NFS 
Servers.   
 
NETWORK TOPOLOGIES AND CONFIGURATION 
 
Deploying NFS as a high speed storage infrastructure 
requires either a private network, a dedicated VLAN, or a 
point-to-point configuration. 
There are multiple methods for deploying NFS attached storage: 
public networks, private networks, Virtual LAN (VLAN), and point-
to-point. 
 
A public network is not well suited for high-speed storage 
infrastructure demands.  Other, non-performance critical, data 
traffic consumes bandwidth.  Many infrastructures contain older 
networking components that are not high performance.  A high-
speed NFS deployment requires either a private network, a 
dedicated VLAN, or a point-to-point configuration. 
 
NETWORK SPEEDS 
 

Deploying NFS as a high speed storage infrastructure 
requires Gigabit Ethernet.   
Current IP network technology has several speed alternatives.  
Common choices are 10 Mbit (mega-bit), 100 Mbit, 1 Gb (or 1000 
Mbit).  Many company’s public networks (aka intranets) are 
currently deployed on 100 Mbit (or even 10 Mbit) technology.  
Deploying Gigabit networks requires upgrading to high speed 
NICs (Network Interface Cards) and Gigabit capable switching 
infrastructures.  Gigabit deployment continues to become cheaper 
and easier as the required components become commodities. 
 

NETWORK PROTOCOLS 
 
UDP delivers more performance than TCP in high speed 
storage infrastructures. 
Most Unix environments provide two protocol options for an NFS 
to IP transport: TCP (Transmission Control Protocol) and UDP 
(User Datagram Protocol).  In clean networks (e.g. point-to-point) 
UDP is a higher performance protocol than TCP.  In general 
network infrastructures however TCP provides more predictable 
(less variable) performance due to the flow control mechanisms 
employed..  In high speed storage infrastructures the benefits of 
the consistent predictability of TCP must be weighed against the 
potential performance gains of UDP. 
 
In addition to the TCP/UDP options, network deployments must 
also select which version of the NFS protocol to use, Version 2 or 
Version 3.  NFS version 3 should be used when available. 
 
MAXIMUM TRANSFER UNIT (MTU) – JUMBO FRAMES 
 
NFS storage infrastructures gain increased bandwidth and 
increased efficiency with Jumbo frames. 
IP networks can configure the Maximum Transfer Unit (MTU).  
This value specifies the maximum packet size for each transfer on 
the IP wire.  The default value for this is 1500 bytes.  Some 
network components (switches and NICs) support larger MTU 
size, specifically, 9000 bytes.  An MTU size of 9000 is typically 
referred to as having “Jumbo frames”. 
 
Jumbo frames provide two advantages: more efficient use of the 
IP wire and fewer host interrupts per data unit transferred. 
 
NFS CONFIGURATION 
 
NFS clients require parameterization changes to achieve 
optimal performance in high-speed deployments. 
Typical NFS deployments for applications other than high-speed 
I/O infrastructures require no changes to the default configuration 
for basic.  However, the default settings are insufficient for high-
speed deployments.  Specifically, each NFS client has a default 
set of variable settings to control important concurrency and 
throughput settings.  The most common variables control: 
• Maximum threads: concurrent threads performing NFS 

operations on behalf of the user application 
• Number of read aheads: concurrent, asynchronous read 

aheads performed on behalf of the user applications. 
• Hiwater transmit and receive values for the transport 

protocol 
• Maximum read and write transfer size (rsize, wsize) 
 
The technique for setting these variables and the specific names 
vary among platforms. 
 
OPERATING SYSTEM PARAMETERS 
 
Autonegotiation - Ensure transfer speeds and flow control 
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settings are enabled and configured correctly. 
Between every NFS Client and NFS Server there are three 
important network components: Host NIC, Switch, Server NIC.  
These three components (or in a point to point configuration, the 
two NICs) must agree on and equally support two important 
parameters: transfer speed and flowcontrol settings. 
 
Kernel Patches - High performance NFS clients are still 
evolving.  Aggressively follow OS vendor provided NFS 
client patches. 
Each platform vendor periodically delivers patches for various OS 
related issues (bugs).  A high-performance I/O infrastructure often 
requires the very latest patch levels.  
 

CACHES AND LOCKS 
 
A high performance SAS NFS deployment must carefully 
scope sharing, locking, and caching to maximize 
performance. 
A primary feature of NFS is the ability to share data coherently 
across multiple host platforms.  The NFS file server provides a 
centralized location for managing data sharing, locking, and 
coherency.  Each individual host can have high-speed, 
cacheable, coherent access to the data.  This key feature of NFS 
also provides a challenging environment for implementing a high-
performance infrastructure. 
 
NFS CLIENT CACHING 
 
Caching with respect to the NFS client has several aspects: 
• Data read once can be cached in the host buffer cache.  

Subsequent accesses to the same data can be satisfied 
from the host cache without fetching the data from the NFS 
server on each read.  This property also enables prefetching: 
the host senses a sequential access pattern and 
asynchronously prefetches data on behalf of the application.  
When the application actually requests the data, the data is 
found in the host buffer cache – a performance benefit 

• Data written to the host buffer cache is first written to 
the NFS Server (cleaned).  Subsequent reads to that data 
can be satisfied from the host OS buffer cache.  So data that 
is written and then read sees a performance benefit from the 
buffer cache. 

• Data set size plays a role in host buffer caching.  Data 
set sizes that are smaller than the available OS buffer cache 
(which is a subset of total host memory) can benefit from 
caching.  Data sets that are larger than the OS buffer cache 
and have a non-predictable I/O pattern are difficult to cache.  
Although the host attempts to cache the data, the probability 
of accessing data in the cache decreases as a function of 
the ratio of data set size to buffer cache size.  The end result 
is that most data is fetched from the NFS server on most 
accesses. 

 
Locks 
Applications accessing data via NFS can maintain data coherency 
with file and region locks.  The application can choose to lock a 
file, guaranteeing that all accesses to the data from multiple hosts 
find the correct data.  This technique is used by SAS to ensure 
multiple SAS sessions can access data files coherently. 
 
Unfortunately, some NFS clients take a brute-force approach to 
maintaining coherency of locked data.  Specifically, on some 
platforms, locking a file or data region results in all data 
associated with the file being invalidated from cache when the file 
is closed.  This creates a performance degradation, especially 
when comparing performance with a native filesystem that 
maintains the data in cache for subsequent opens and reads. 

 
Local Locking 
As an antidote to the “locks == invalidate cache on close” issue, 
some platforms provide the concept of “local locking”.  NFS 
filesystems mounted with a “local locking” option enabled have 
two properties: 
• Locks are scoped only to the local host.  Applications 

sharing data on that host and using locks to provide 
coherency are safe.  However, any other host accessing that 
data DOES NOT obey the locking/coherency semantics.  
This is acceptable for some deployments, and not others. 

• Host buffer caching IS enabled.  Since all locking and data 
activity (of interest) happens locally on the host, caching and 
coherency work the same as with a native filesystem.  
Specifically, data is maintained in cache across close/open. 

 
Each SAS NFS deployment can maximize performance by 
understanding and applying the most appropriate locking and 
caching options.  
 
Weak Cache Consistency 
 
Beware poor implementations of NFS “Weak Cache 
Consistency” algorithms. 
NFS Version 3 provides for implementation of a “Weak Cache 
Consistency” algorithm.  This basically allows two or more clients 
to write-share a file while maintaining some level of consistency.  
Unfortunately, some implementations cause “false invalidations”.  
Basically, even in a single host environment, a recently written set 
of data may be invalidated, even though no other hosts are 
accessing the data. 
 
A scenario where this behavior decreases performance is quite 
common with SAS.  Consider for example a common “data sort”.  
The data sort has two phases:  
• read the original data, perform a partial sort and write the 

partially sorted data  to a “temporary file” 
• read the temporary file, perform a merge, and write the result 

to the final data destination 
 
An important factor in this operation is the relationship of 
temporary data size to OS buffer cache size.  If the temporary 
data set is too large to fit in the OS buffer cache, then the false 
invalidates do not decrease performance.  However, if the 
temporary data set fits in the OS buffer cache, then the 
invalidates are precisely the wrong behavior. 

PERFORMANCE TUNING A SAS 
CONFIGURATION 
 
This section discusses specific steps necessary to tune different 
SAS configurations for optimal I/O performance in an NFS 
environment.   
 
Infrastructure configuration 
• Deploy a gigabit Ethernet infrastructure. 
• Enable Jumbo frames at the Ethernet level. 
• Evaluate transport protocol (UDP or TCP). 
 
Operating System Tuning 
• Install latest kernel patches 
• Disable auto-negotiation for Ethernet connections 
• Increase maximum NFS threads, hi and low water marks, 

and streams settings 
 
Network Appliance Filer Configuration 
• For maximum performance in a single Filer environment: 

o create one (1) volume using all disks (except for 
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spares).  This configuration assures maximum 
performance from the disks. 

o Store SAS Work in same volume as data files, but 
mount SAS Work through a separate mount point 

 
Single Host Environments 
• If multiple SAS sessions, all sessions share same SAS Work 

mount point 
• SAS Work mount point is mounted with “local locking” option 

if available.  In the absence of “local locking” option, enable 
SAS with the “filelocks=none” option. 

• Mount all other data mount points with “local locking” if 
available.  However, do NOT disable filelocks as a substitute 
for “local locking”. 

 
Multiple Host Environments 
• If multiple SAS sessions on a host, all sessions share same 

SAS Work mount point 
• SAS Work mount point is mounted with “local locking” option 

if available. In the absence of “local locking” option, enable 
SAS with the “filelocks=none” option.  Then use the 
LIBNAME command to selectively enable locks for all non-
SAS Work directories. 

• Mount all other data mounts without “local locking” option. 

SOLARIS CONFIGURATIONS 
 
Operating System Version 
Optimal performance is gained by using Solaris 2.9 or Solaris 2.8. 
 
Gigabit Ethernet Configuration 
On the Solaris Platform 
• Sun provides Gigabit Ethernet cards in both PCI and SBUS 

configurations.  The PCI cards deliver higher performance 
than the SBUS versions. 

• Syskonnect is one third party NIC vendor that provides 
Gigabit Ethernet cards.  The PCI versions have proven to be 
high performance NICs. 

 
On the NetApp filer 
• NetApp Filers provide Gigabit Ethernet NIC’s as an optional 

connection technology. 
 

Enabling Jumbo Frames  
On the Solaris Platform 
• Sun Gigabit Ethernet cards do NOT support jumbo frames. 
• Syskonnect (third party NIC vendor) provides SK-98xx cards 

which do support jumbo frames.  To enable jumbo frames 
execute the following steps: 

o Edit /kernel/drv/skge.conf 
o uncomment the line JumboFrames_Inst0=”On”; 
o Edit /etc/rcS.d/S50skge 
o add line:  ifconfig skge0 mtu 9000  
o Reboot 

 
On the NetApp filer 
• Change MTU to 9000 

o Change the value with the command: ifconfig 
<interface> mtusize 9000 

o Make this permanent by adding to /etc/rc on the 
filer 

 
NFS Protocol Configuration 
On the Solaris Platform  
• Edit the /etc/vfstab 
• For each NFS mount participating in the high speed I/O 

infrastructure make sure the mount options specify UDP 

version 3 with transfer sizes of 32K: 
o vers=3,proto=udp, rsize=32768, wsize=32768,… 

On the NetApp filer 
• Ensure NFS v3 is enabled by entering the command 

o options nfs.v3.enable on 
 
Kernel Patches 
On the Solaris Platform  

o Access www.sun.com for latest patches 
 
Auto Negotiation 
On the Solaris Platform  
Solaris GigE cards need to have auto-negotiation forced off and 
transmit flow control forced on.  This can be done by  
• Edit /etc/system and add the following lines 

o set ge:ge_adv_1000autoneg_cap=0  # force 
autonegotiation off 

o set ge:ge_adv_pauseTX=1  # force transmit flow 
control on 

 
With Syskonnect provides third party Gigabit Ethernet cards for 
Solaris systems 
• Edit /kernel/drv/skge.conf and verify the following lines exist 
• AutoNegotiation_A_Inst0=”Off”; 
• DuplexCapabilities_A_Inst0=”Full”; 

 
On the NetApp filer 
• Set the filer flow control setting is set to “full” 

o issue the command: ifconfig <interface> 
flowcontrol full 

 
NFS Tuning 
In Solaris,  the most common method for setting NFS 
configuration variables so they remain persistent across system 
reboots is to edit the file /etc/system to include the following 
entries 
• set nfs:nfs3_max_threads=64 
• set nfs:nfs3_nra=64 
 
Hiwater settings are typically added to the /etc/rc/init.d script by 
adding the following lines: 
• ndd –set /dev/udp udp_recv_hiwat 65535 
• ndd –set /dev/udp udp_xmit_hiwat 65535 
Note that a system reboot is required for these variable changes 
to take affect. 
 
Local Locking 
On the Solaris Platform  
• Edit the /etc/vfstab (follow with an unmount/re-mount) 
• For each NFS mount qualified for “local locking” add the 

llock option 
o …,vers=3,proto=udp, llock, … 

HP-UX CONFIGURATIONS 
 
Operating System Version 
Optimal performance is gained by using Version 11i and later. 
 
Gigabit Ethernet Configuration 
On the HP-UX Platform 
• HP-UX supports Gigabit Ethernet NIC’s 

 
On the NetApp filer 
• Filers provide Gigabit Ethernet as a connection technology. 

 
Enabling Jumbo Frames 
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On the HP-UX Platform 
o Use the HP-UX admin tool to enable jumbo frames 

 
On the NetApp filer 
• Change MTU to 9000 

o Issue the command: ifconfig <interface> mtusize 9000 
o Make this permanent by adding to /etc/rc on the filer 

 
NFS Protocol Configuration 
On the HP-UX Platform  
• Edit the /etc/checklist (follow with an unmount/umount) 
• For each NFS mount make sure the mount options specify 

UDP version 3 with transfer sizes of 32K: 
o …,vers=3,proto=udp, rsize=32768, 

wsize=32768,… 
 
Kernel Patches 
For the HP-UX 11i platform, the latest patches can be found at 
http://itrc.hp.com 
 
Auto Neogiation 
On the HP-UX Platform  
• Verify in /etc/rc.config.d/hpgelanconf that 

HP_GELAN_AUTONEG is set to “1” for proper operation. 
 

On the NetApp filer 
• Issue the command: ifconfig <interface> flowcontrol full 
 

NFS Tuning 
In HP-UX,  the most common  NFS tuning variable is located in 
/etc/rc.config.d/nfsconf (reboot required after change):  
• NUM_NFSIOD=32 
 
Local Locking and Weak Cache Consistency 
• HP-UX does invalidate cache when a file is closed IF the file 

was locked.  Local locking may be supported later. 

CONCLUSIONS 
 
This paper shows how to deploy a SAS environment using NFS 
as a high performance I/O infrastructure with Network Appliance 
Filers.  Included are recommendations for configuration and 
parameter changes to the SAS environment, the platform specific 
Unix operating system, NFS (Network File System) client, and the 
NetApp Filer subsystem.  The result is a powerful, flexible, high 
performance SAS solution. 
 
A full version of this paper, including additional tuning 
recommendations for other operating systems is located on the 
company web pages of both SAS and Network Appliance. 
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Solaris SAS v8.2 SAS v9.0 

SAS Work 
Files 

If Solaris “Weak Cache Consistency” bug 
#(4407669) patch is available, then: 
Place SAS Work on filer. 
Mount SAS Work with “llock” option. 
If Solaris “WCC” patch is NOT available, then: 
Use SAS “filelocks=none” option. 
Enable filelocks for all data other than SAS Work. 

If Solaris “Weak Cache Consistency” bug 
#(4407669) patch is available, then: 
Place SAS Work on filer. 
Mount SAS Work with “llock” option. 
If Solaris “WCC” patch is NOT available, then: 
Place SAS work files on non-NFS filesystem.  Watch 
for Solaris patch availability. 

SAS Data 
Files 

Place all Data Files on the filer an Enable Prefetch settings  
If data files are NOT write shared among multiple hosts, then 
Mount with “llock” option.   
If data files ARE write shared among multiple hosts, then 
Do NOT mount with “llock” option.  Consider creating separate mount points for write shared and non-write 
shared data files. 

HP-UX SAS v8.2 SAS v9.0 

SAS Work 
Files 

If “llock” option is available, then: 
Place SAS Work on filer. 
Mount SAS Work with “llock” option. 
If “llock” option is NOT available, then: 
Use SAS “filelocks=none” option. 
Enable filelocks for all data other than SAS Work. 

If “llock” option is available, then: 
Place SAS Work on filer. 
Mount SAS Work with “llock” option. 
If “llock” option is NOT available, then: 
Place SAS work files on non-NFS filesystem.  Watch 
for “llock” option availability on HP-UX. 

SAS Data 
Files 

Place all Data Files on the filer (according to above guidelines) 
If “llock” option is available, then:  
If data files are NOT write shared among multiple hosts, then mount with “llock” option.   
If data files ARE write shared among multiple hosts, then do NOT mount with “llock” option.  Consider 
creating separate mount points for write shared and non-write shared data files. 
If “llock” option is NOT available, then:  
No action required.  Watch for “llock” option availability on HP-UX.   
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