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ABSTRACT 
This paper will discuss features of the native 
windowing system (called X-Windows) found 
on Linux/UNIX based systems and topics 
related to SAS® implementations on these 
systems.  
 
As Linux/UNIX based servers and desktop 
systems continue to evolve, we find it 
important to review the different ways to 
implement SAS on these platforms and to 
compare them to other alternatives such as 
Microsoft based NT/2000 servers and PC’s 
desktops or other thin clients implementations. 
 
The paper is aimed for SAS system 
administrators who would like to implement an 
open environment within their SAS 
installation.   
 
 
X-WINDOWS BACKGROUND 
X-windows have started its way on 1984 at a 
project held at MIT called ATHENA. The 
project’s aim was to create a working 
environment for displaying windows coming 
from multiple incompatible hardware and 
operating systems.  The result was a truly open 
architecture that was hardware and vendor 
independent. The name ”X” was given to this 
windowing system since it’s the letter 
following “W” which was given to an earlier 
version. 
 
By 1986, MIT has released for commercial use 
version 11 release2. Later on the development 
of this standard was handled over to a 
consortium of companies called X org. 
(www.x.org). 
 
Today all UNIX vendors and Linux 
distributors adopted this standard for the 
windowing system. The current release is 
X11R6.6 which can be downloaded freely 
from the above web site. 
 
X-WINDOWS INTERNALS 
X-windows is a client-server model that 
separates the application logic from its GUI. 
This separation enables the transferring of the 
GUI part via a network from a host to a client. 

Usually the host is a UNIX box and the client 
is a PC machine but not necessarily. If one 
uses a UNIX or Linux desktop box, then the 
server side and the client side are both 
implemented on the same box. Since X-
windows is an open standard, numerous 
implementations exists on virtually any 
machine ranging from hosts like UNIX, Linux, 
AS/400, DEC VAX, IBM MVS/VM and 
clients like PC’s, Macintosh, OS/2 and more. 
 
 
If we implement SAS using this model as an 
example: the server machine is a powerful 
host, which is responsible for the I/O and 
number crunching. The client machine is 
responsible for displaying the SAS windows: 
Log, Out, Pgm, Explorer and AF windows 
with results coming from the server over the 
network. 
 
 
In this context, we can use any machine with 
graphics capabilities residing on the network to 
display the application’s windows as long as 
there is a well defined protocol that can 
handle all requests coming from the server to 
display and manipulate the window’s contents. 
 
 
X-windows is based upon such a protocol that 
separates the application logic running on one 
machine from the presentation running on 
another machine. These two machines are 
communicating between them using the X 
protocol. 
 
 
In the X-windows world the application knows 
nothing about the end device that is being used 
to display its windows. Things like resolution, 
color schemes, mouse device, keyboard device 
etc. are left for the client machine to handle. 
 
 
The client side, on the other hand, knows 
nothing about the application that sends him 
requests for displaying windows and contents 
inside the windows. The client side is capable 
to display multiple windows attached to 
multiple applications running on multiple 
servers in the network. 
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Special topic: Client-Server terminology 
The terms “Server” and “Client” are being 
used in the X-windows context in a reversed 
manner than the way it is being presented in 
this paper.  In X-windows terminology, the 
“Server” side is a piece of software running on 
the “small” end-user machine (The machine 
we usually call the client machine…). 
 
 This “X Server” package serves requests to 
display windows coming from “Clients” which 
are the applications running on the “big” 
machine elsewhere on the network. (This “big” 
machine is the machine we usually call the 
“Server” or “Host” machine). 
 
Using this “Reversed” terminology, the X-
windows package that is installed on a PC is 
called  “X server” packages   … 
 
X-windows implementation is based upon 
several layers as follows. (Not all layers are 
always implemented). 
 
1. The application. 
2. The Application development standards & 

toolkits 
3. The Xlib protocol. 
4. The window manager. 
5. The desktop environment. 
 
 
Xlib protocol 
The first layer of an X-windows 
implementation is a very basic protocol that is 
being used to transmit request to open 
windows and to render the application 
contents. This protocol has also a mechanism 
for sending back to the host keyboard and 
mouse events. 
 
This well-defined protocol called “Xlib 
protocol” is the first layer of any X-windows 
implementation. The Xlib protocol is a truly 
open standard and its definition can be 
downloaded from X.org freely at no charge. 
This open source policy contributed to the 
popularity of the Xlib protocol and created vast 
implementations of devices that can handle the 
client side of the Xlib protocol. 
 
Special topic: X-Terminals 
Since early days of X-windows, vendors 
developed devices called “X-Terminals”. 
These devices had a Monitor, Keyboard, 
Mouse and a very small firmware that had the 
X server code embedded into it and the CPU 
power needed to render the Xlib protocol 
functions. No need for an operating system, 
disks or other devices. 

 
The X terminals were the first true graphical 
thin client machines. X terminals first appeared 
on the market during the late 80’s (When PC’s 
struggled to run DOS operating systems). 
As the PC market evolved, and more powerful 
CPU’s were embedded into the PC, many 
companies had found a way to implement the 
client side of the XLib protocol as an 
Microsoft’s windows application running as a 
software only solution.  
 
This trend had put an end to the traditional X 
terminal market (While we can still see many 
of them working in many sites since they were 
very reliable machines with no mechanical 
parts which practically can function for ever).  
 
Today most of the X-windows terminals are 
implemented using a software solution running 
under MS windows (95 and above) as yet 
another application on our desktop. While X-
windows application appear to us as a regular 
MS windows application, its underlying 
structure differs completely from any other MS 
windows application. 
 
Application Development standards & 
toolkits 
At the early days of the x protocol, no other 
layer was build on top of the Xlib and 
applications were written with direct calls to 
functions of the Xlib protocol. Only later, more 
layers were defined to simplify the 
development process.  These additional layers 
include toolkits and widgets libraries, which 
help to standardize the look and feel of the 
applications. 
 
Since Xlib protocol contains no definition of 
how the user’s desktop or application look and 
feel should be, users had started to ask for a 
more unified desktop environment and more 
uniform look and feel for all thousands of X-
windows applications that were written.  
  
As X-windows became more popular and was 
recognized as standard de-facto of the UNIX 
industry, UNIX vendors began the X-windows 
war in order to gain control over this growing 
market. 
 
Sun Microsystems was trying to establish a 
standard called “Open-Look” for the look and 
feel of applications, while other vendors 
fearing that Sun might “Take Over” the X-
windows market with its own standards, 
formed a group called OSF (stands for: Open 
Software Foundation). The OSF group has 
released a competitive standard for the look 
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and feel of applications called the Motif Look 
and feel. These standards established the 
foundation for a common look and feel of 
applications with the same widget set and the 
same rules for designing a window, borders, 
menus and other objects. (Eventually, Sun has 
adopted Motif). 
 
Special topic: SAS and X-windows 
standards 
SAS uses none of the standards widget sets to 
implement the look and feel of SAS windows. 
I believe it is done in order to keep the SAS 
look and feel of DMS and AF windows as 
compatible as possible to all other SAS 
implementation running on other platforms. 
 
If you’ll use SAS on different UNIX/Linux 
platforms you’ll get the same look and feel of 
SAS windows. The only difference you’ll be 
able to notice is the window manager style (see 
below). 
 
In SAS V6 running on Solaris there was an 
experimental user interface that implemented 
the Open Look standards but there was no 
continuation for this project.   
 
Windows managers 
A window manager is a piece of software that 
handles all events arising from displaying your 
application’s windows along with other 
windows all on the same screen. 
 
For example, when a user moves a window 
from one corner of the screen to another 
position, this is an event that is being handled 
by the window manager. The application 
knows nothing about this event. Events like 
moving/hiding/resizing of windows are all 
being handled by the window manager.  
 
Again, thanks to the openness of X-windows, 
many developers around the globe have 
designed window managers that act and 
manipulate windows in many different ways. 
The end user can choose from many sources 
his preferred way of manipulating windows. 
 
Without a window manager X-windows can be 
displayed on the screen but cannot be moved 
or resized. 
 

 
Figure 1 – SAS running under MS 
windows without a window manager. 
 
 
As one can see from the above figure, all SAS 
windows appear without a border, thus cannot 
be removed or resized. 
 
When working with PC’s X servers, you can 
choose MS windows as your window manager 
program. This technique is mostly 
recommended since it saves resources on your 
PC and LAN and integrates your X application 
into one common behavior of windows.  
 
 

 
Figure 2 – Selecting native window manager 
(Using Hummingbird’s Exceed product). 
 
 
Using MS windows (Native) as a window 
manager means that you can use MS windows 
standards for resizing/moving/hiding windows 
the same way as you do with all other MS 
windows applications  (e.g. MS Office 
applications). 
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Figure 3 – SAS running as an X-windows under 
MS windows 98 as a window manager. (Using 
Hummingbird’s Exceed product) 
 
As one can see from figure 3, SAS windows 
appears as regular MS windows with the same 
borders and icons found on any MS windows 
application 
 
The desktop environment 
UNIX vendors and developers were also 
concerned about how the user’s desktop should 
look like. Since X is an open standard, many 
desktops can be found on the market. Among 
them are the CDE (Common Desktop 
Environment) which is widely used on many 
UNIX desktop machines and KDE or 
GNOME, which are widely used on Linux. 
These desktop environments organize all your 
X windows in a systematic manner and let you 
invoke popular X applications through a series 
of menus. 
 
One of the first desktop managers was Sun’s 
“Open-Windows” which implemented the 
“Open-Look” look and feel: 
 

 
Figure 4 – The Open-Windows desktop with 
SAS (running under Solaris OS) 
 
HP, DEC and IBM has promoted the CDE 
desktop manager which implements the 
MOTIF look and feel: 
 

 
Figure 5 – The CDE desktop with SAS (running 
under Solaris OS) 
 
Moving to Linux, one can see the influence of 
MS windows look and feel on the design of 
more modern desktops for Linux. 
 

 
Figure 6 – The KDE desktop with SAS (running 
under RedHat Linux OS). 
 
While running SAS as X-windows on an MS 
windows PC (As displayed in Figure 7), The 
desktop that is being used is the standard MS 
windows XP desktop. This recommended way 
of using your X server package help to reduce 
network traffic and resources used on your PC 
as well as unifying your working environment. 
 

 
Figure 7 – The Windows XP desktop with SAS 
running as an X-windows application. 
(Using Hummingbird’s Exceed product) 
 
As one can notice from the above screen shots, 
the windows contents (Coming from the SAS 
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application) looks the same, but the windows 
borders look different and has different 
methodology for activating or resizing the 
window.  
 
 X-windows layers can be replaced (Except 
from the Xlib) to best suite the user taste and 
preferences. 
 
X-windows well demonstrates two basic 
principals of the “Open” world of software: 
 
1.  Separate your problem into small and 

well-defined layers with fully published 
standards and API. (As opposed to 
bundling the OS with the GUI and keeping 
API’s unpublished). 

2.  Let the users and vendors community to 
use imagination to implement these 
standards in many different ways, which 
enhance the user with options to choose 
from. (As opposed to a single one vendor 
solution). 

 
 

To summarize the X-windows internals section 
lets look at the following diagram that 
illustrates the different layers of the X-
windows system: 
 

 
Figure 8 – X-windows layers 
 
  
 
 
 
 

 
RUNNING SAS ON UNIX/Linux 
This section will describe the numerous ways to use SAS on UNIX/Linux servers and desktops. 
 
Thin clients implementations 
By using the term “Thin client” we mean that no SAS software license is needed on the client side. 
  
Client Standard Hardware/Software Remarks/Advantages/Disadvantages 
VT terminal ASCII 

Terminal 
An original VTxxx terminal or 
a terminal emulator for PC 

No longer supported on SAS V8 

PC JAVA JDMS (A SAS product with no 
separate license. Can be 
found on the SAS distribution 
CD) 

This is the replacement for the missing VT 
support in V8. It is a JAVA based 
application running on a PC client that 
emulates the basic SAS DMS windows 
(PGM, Log , Out etc.). It has no support 
for SAS/Graph or AF applications. 

X Terminal  X-windows An original X terminal A stand alone client with no integration 
with MS windows applications 

PC X-windows A PC with X-server package 
(e.g. Exceed from 
Hummingbird) 

A very cost-effective way of integrating 
the MS windows with SAS running on a 
server. The recommended desktop 
manager is WIN XP. 

UNIX Workstation X-windows A UNIX based workstation 
(e.g. SUN Soalris, HP HP-UX, 
IBM AIX) 

If your desktop is a UNIX workstation, no 
other software is needed since X-windows 
is your default windowing. Use your 
preferred desktop manager. 

Linux Workstation  X-windows A Linux based workstation If your desktop is a Linux workstation, no 
other software is needed since X-windows 
is your default windowing. Use your 
preferred desktop manager. 
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SAS client-server implementations 
A SAS client-server implementation is an environment where SAS modules are licensed separately 
both on the server side and on the client side. 
 
Client SAS products needed Remarks/Advantages/Disadvantages 
PC 
(Semi Client-
Server Model) 

On the Server : SAS integration 
On the Client  : Enterprise Guide 

A Visual Basic client running on your PC as an MS 
windows application communicating with the SAS 
server using a special SAS product: SAS Integration 
Technology.  
A very “Windows like” application with utilities for the 
novice user. On the other hand, a closed application 
which cannot run AF applications. Must have a 
license on each PC. 
 
All SAS jobs are run on the server side. The PC is 
only used for windowing and GUI. 

PC 
(Full Client-Server 
Model) 

SAS/BASE & SAS/CONNECT 
Both on the server side and on the 
client side. 

A very robust environment where jobs can be run 
both locally on the client and on the server. Using 
SAS/Connect functionality, a user can split the job 
execution to segments running on the server for 
better I/O and number crunching and segments that 
do minor computations and graphics/reporting on 
the client side. 
 
Must have a special AF application to use this 
functionality, or be a very sophisticated user in order 
to take advantage of this complex environment. 
 
Requires a SAS license on every PC.  

UNIX/Linux 
Workstation 
 

Same as for PC client except that 
the user GUI is a X-windows and 
not a MS windows 

Same as for PC client 

Combined  
(Enhanced Client-
server model) 

A server-server model using 
“back server” and a “front server” 
and multiple X-windows clients 
attached to the “front server” 

A model where functionality of splitting jobs 
between two servers for better I/O is used and X-
windows clients are connected to the front server. 
This technique split overloads between many “front 
servers” serving many X-windows clients. 
 
Requires SAS license on each server (SAS/BASE & 
SAS/Connect). No need for SAS license on clients.  

 
OTHER ALTERNATIVES 
Many NT sites are using SAS PC on the desktop while storing SAS data sets on the NT server disks. 
This technique is wrong since the network overload while processing large data sets will be enormous. 
The alternatives are:  
 
1) Use SAS client-server techniques using SAS/Connect and SAS/BASE on the server. The 
disadvantages of this usage are described above and are similar to the case where the server is a UNIX 
one. 
 
2) Use a new concept called “Terminal Server” which is an addition to Windows 2000 servers. The 
terminal server uses a separation model between the presentation layer of the application and 
application logic while surfacing the display over the network using a propriety RDP protocol. One 
might think that this is similar to X-windows concept. The difference between the two systems is that 
X was designed originally to use a client-server model where the X server has its own part to manage 
windows while MS windows applications are not designed to separate these layers and the server has to 
do all the work. 
 
Terminal server is a complex installation that locks you to a single vendor solution and you must have 
a SAS license on every PC that uses this utility. UNIX/Linux OS are designed from bottom-up to be 
truly multi-users OS which gives them better performance on a situation where multiple users are 
connected as terminals to a single server.
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SAS OPTIONS FOR X-WINDOWS 
This section will provide a brief discussion on 
how to configure SAS on an UNIX/Linux 
server to best use X-windows on a PC client. 
 
Invoking SAS from your PC desktop 
Every X server package provides a method to 
create a startup script on your PC: 
 

 
Figure 9 – creating a startup script (Using 
Exceed from Hummingbird). 
 
The @d is a necessary option to any X-
windows command and it is an environment 
variable which supplies the IP address of the 
PC.  This value will be used as an entry for the 
UNIX environment variable $DISPLAY in the 
script file (see later) needed to run any X-
windows applications. 
 
After completing the startup script file on your 
PC, you can create an icon to be placed on 
your desktop as follows: 
 

Figure 10 – Invoking SAS for UNIX with a 
PC icon. 
 
Clicking on the SAS icon begins a series of 
actions that eventually will invoke a SAS X-
windows session on your PC. 
 
The UNIX Startup script 
The UNIX startup script is a CSH UNIX file 
that eventually calls SAS for execution. (In the 
above example the UNIX startup script is 
/opt/sigma2/scripts/sas8.laptop)  
 
Its first job is to clean any previous “Zombie” 
processes running on behalf of this user. (A 

Zombie process is a process that has no 
terminal attached.  This usually happens when 
a user reboots his PC without terminating SAS 
normally). 
These Zombie processes can prevent the user 
from accessing his SASUSER catalogs or other 
data sets since they are locking them for write 
access. 
 
The second task of the startup script file is to 
invoke SAS with the desired configuration file. 
 
#!/bin/csh 
#  
setenv DISPLAY $1 
# Killing Zombie SAS process … 
set COM1=`/bin/ps -ef | grep -w $USER | grep -v 
"grep" | grep "/opt/sigma2/scripts/sasv8.cfg" | awk 
'{print $2}'` 
if ( $#COM1 > 0 ) then 
        echo "kill other sas session ..." 
        kill $COM1 
endif 
# Invoking SAS with a configuration file … 
/local/sas82/sas -config /opt/sigma2/scripts/sasv8.cfg 
 
Figure 11 – SAS typical UNIX startup script  
 
The configuration file 
The configuration file controls the SAS 
environment. This file is being read by SAS 
when you point SAS exec file to it in the 
startup script (See above). 
 
In UNIX you can use special configuration 
parameters to control X-windows behavior. 
These options are prefixed by “–xrm” (X 
Resource Manager). These xrm options let you 
control things like: Fonts, Window behavior, 
Desktop behavior, and many more windowing 
attributes. More  –xrm options can be found in 
the SAS companion for UNIX documentation 
or in the file: 
 
!SASROOT/ X11/resource_files/ Resource_Defaults 
 
The configuration file points to an autoexec.sas 
file that contains specific SAS code to initiate 
your SAS environment. 
 
Here is a sample configuration file: 
 
-xrm          'SAS.startupLogo:None' 
-xrm          'SAS.systemFont:    timr08’   
-xrm          'SAS.DMSFont:        timr08’   
-xrm          'SAS.DMSboldFont: timr08’  
  
-sasautos ( '!SASROOT/sasautos' ) 
-sashelp ('!SASROOT/sascfg' '!SASROOT/sashelp' ) 
-autoexec /local/sas82/scripts/autoexec.sas 
-maps !SASROOT/maps 
-msg !SASROOT/sasmsg 
-colorpgm 
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-sasuser      ~/sasuser.800  
-work           /local/saswork 
 
-dmsexp 
-setjmp 
-mvarsize 32K -msymtabmax 4M 
-sortsize 48M 
-memsize 100M 
-maxmemquery 6M 
-helploc ( '!sasuser/classdoc'     
'!SASROOT/X11/native_help' ) 
-docloc file:/opt/sas8/install/docloc.htm 
-appletloc !SASROOT/misc/applets 
-news !SASROOT/misc/base/news 
-path !SASROOT/sasexe 
 
Figure 12 – typical configuration file 
 
The autoexec file 
This file contains SAS code that you want to 
be run when your session starts. It usually 
contains Libname definitions, Macro variables 
and SAS options needed. 
 
Here is a sample SAS autoexec file: 
/*================================*/ 
/* General Macro Var definitions :                */ 
/*================================*/ 
 
%LET DEVM    = PC2ISO                              ; 
%LET KEYM    = PC2ISO                              ; 
%LET ZAG     = XCOLOR                              ; 
%LET GUI     = G                                           ; 
  
/*================================*/ 
/* PRINTING OPTIONS :                              */ 
/*================================*/ 
 
%LET TUNXPRT = /usr/ucb/lpr -h -P            ; 
%LET GUNXPRT = /usr/ucb/lpr -v -h -P       ; 
%LET DEFPRT  = hp5                                  ; 
 
/*=================================*/ 
/* SIGMA/WEB OPTIONS:                             */ 
/*=================================*/ 
 
%LET WEBIP   = 192.9.200.2                          ; 
 
/*====================================*/ 
/* INSTALLATION DIRECTORIES:                      */ 
/*====================================*/ 
 
%let sigmadir = /opt ;   /* << === Change this !! */ 
 
libname eis             "&sigmadir./sigma2/eis_dev"     ; 
libname library        "&sigmadir./sigma2/library"       ; 
libname sigmall      "&sigmadir./sigma2/sigmall"       ; 
libname tarall          "&sigmadir./sigma2/tarall"          ; 
libname gfont0       "&sigmadir./sigma2/eis_dev"      ; 
libname gdevice0   "&sigmadir./sigma2/gdevice0"    ; 
libname styles        "&sigmadir./sigma2/styles"         ; 
 
/*=====================================*/ 
/*         DO NOT EDIT BELLOW THIS LINE !!        */ 
/*=====================================*/ 
 
options nofmterr 
            fmtsearch=(work sigmausr library) 
            compress=yes 
            ; 
Figure 13 – typical SAS autoexec file 
 

SAS REAL-WORLD EXAMPLES       
This section describes two typical SAS 
installations where X-windows was selected as 
the preferred way of using SAS on UNIX 
servers. 
 
The Israel Electric Company (IEC) 
IEC has been using SAS for many years on 
IBM mainframes (MVS & VM). Due to heavy 
overload on the MVS machine and a phasing 
out project for the VM machines, IEC was 
looking for a platform substitute to its large 
arsenal of SAS programs, AF applications and 
data sets. 
 
 IEC was considering these points: 
 
1.  Need to quickly migrate SAS AF 

applications written for VM to the new 
environment without the need to rewrite 
them as client-server applications. 

2.  A client platform which support AF 
applications and graphics. 

3.  A host platform with SMP capabilities 
which will support hundreds of users with 
over 1TB of SAS datasets. 

4.  A cost-effective solution. Not all users are 
running their SAS programs concurrently, 
so there is no need for SAS license on 
every PC. 

 
The selected solution was migrating to a UNIX 
server with X-windows installed on PC’s. The 
server is a HP superdome machine with 4 
CPU’s, 4 GB of Ram and an HDS diskarray 
with disk capacity of 1 TB. 
 
IEC has 500+ users attached to this server with 
an average of 25-35 users running 
concurrently. Plans for future improvements 
are to install SAS V9 with the new SPD engine 
in order to utilize the multiple CPU 
architecture more efficiently. 
 
Gertner Institute for Epidemiology 
Gertner Institute is a national research institute 
responsible for the health care policy in Israel. 
The institute employs approximately 150 staff 
members including researchers, statisticians 
and computer programmers. The institute’s 
data base is based on SAS data sets which 
holds data coming from hospitals around the 
country and from wide range of surveys. 
  
Currently, all users have X-windows running 
under MS windows 2000/XP. The server is a 
SUN BLADE 1000 1CPU with 40 GB of disk 
space and 1 GB of RAM. SAS is installed on 
this server with many AF/FSP data entry 
applications running against it. 
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TIPS 
This section provides some useful tips that we 
implement in SAS UNIX projects: 
 
1. Analyze the way users interact with SAS 
data sets and what procedures and application 
are being used in your organization. If most 
users do large volume data step processing and 
number crunching, then there is no need for a 
sophisticated client and X-windows is a very 
cost-effective solution. 
 
2. Analyze your network performance. X-
windows need a high bandwidth network. If 
your users are located on the WAN, then a 
minimum of 512 Kbps is required. 
 
Special Topic: X-windows and Web 
browsers 
X-windows X11R6.3 introduced a new 
concept for deploying X-windows application 
using a Web browser. This project got the 
name “Broadway”. The X-windows 
applications are invoked by pointing to an 
HTML link and windows are displayed inside 
the browser as a plug-in application. 
 
X-windows need a high bandwidth 
communication channel (like the 10+ Mbps 
LAN’s). Since internet is highly dependent on 
low bandwidth media, The X consortium has 
developed the LBX protocol – Low Bandwidth 
X. This protocol uses a proxy on the server 
side to compress/decompress X protocol 
transmission.  
 
In order to use LBX and Broadway you need a 
special X-windows package for your PC. 
 
 
3. Use the MS Win XP desktop manager as 
your X-windows preferred way if you use MS 
windows (Or KDE/GNOME if you use a 
Linux box) Users will like the smooth 
integration of X application on their PC’s.  
 
4. Use an FTP server on your PC and write a 
small SAS macro to push ODS results created 
on the server to PC clients or directly to the 
company portal. In that way, users will not 
notice that SAS is running on a remote server, 
since results are displayed on their web 
browsers and Excel spreadsheets exactly as if 
they were created locally on the PC. 
 
5.  When developing AF applications for X-
windows, try to write them as PROGRAM 
entries or FRAME entries with minimum use 
of images since this will overload the network. 
 

CONCLUSION 
X-windows is a stable and robust environment 
with benefits to SAS users. Since SAS is not 
highly graphical package and most of its 
windows display text, X-windows is a perfect 
companion to UNIX/Linux servers on the 
desktop machine.  
 
If your installation requires hundreds of 
desktop machines to be connected to a SAS 
server, then X-windows is the perfect choice 
for a simple and cost-effective solution to 
deploying SAS on the network. Plus, you have 
a variety of options to suite your end users 
needs and taste. 
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