
-1-

 Paper 283-28

SAS®, Linux/UNIX and X-WINDOWS systems
Gady Kotler, Executive Information Systems Ltd., Herzlia, ISRAEL

ABSTRACT
This paper will discuss features of the native
windowing system (called X-Windows) found
on Linux/UNIX based systems and topics
related to SAS® implementations on these
systems.

As Linux/UNIX based servers and desktop
systems continue to evolve, we find it
important to review the different ways to
implement SAS on these platforms and to
compare them to other alternatives such as
Microsoft based NT/2000 servers and PC’s
desktops or other thin clients implementations.

The paper is aimed for SAS system
administrators who would like to implement an
open environment within their SAS
installation.

X-WINDOWS BACKGROUND
X-windows have started its way on 1984 at a
project held at MIT called ATHENA. The
project’s aim was to create a working
environment for displaying windows coming
from multiple incompatible hardware and
operating systems. The result was a truly open
architecture that was hardware and vendor
independent. The name ”X” was given to this
windowing system since it’s the letter
following “W” which was given to an earlier
version.

By 1986, MIT has released for commercial use
version 11 release2. Later on the development
of this standard was handled over to a
consortium of companies called X org.
(www.x.org).

Today all UNIX vendors and Linux
distributors adopted this standard for the
windowing system. The current release is
X11R6.6 which can be downloaded freely
from the above web site.

X-WINDOWS INTERNALS
X-windows is a client-server model that
separates the application logic from its GUI.
This separation enables the transferring of the
GUI part via a network from a host to a client.

Usually the host is a UNIX box and the client
is a PC machine but not necessarily. If one
uses a UNIX or Linux desktop box, then the
server side and the client side are both
implemented on the same box. Since X-
windows is an open standard, numerous
implementations exists on virtually any
machine ranging from hosts like UNIX, Linux,
AS/400, DEC VAX, IBM MVS/VM and
clients like PC’s, Macintosh, OS/2 and more.

If we implement SAS using this model as an
example: the server machine is a powerful
host, which is responsible for the I/O and
number crunching. The client machine is
responsible for displaying the SAS windows:
Log, Out, Pgm, Explorer and AF windows
with results coming from the server over the
network.

In this context, we can use any machine with
graphics capabilities residing on the network to
display the application’s windows as long as
there is a well defined protocol that can
handle all requests coming from the server to
display and manipulate the window’s contents.

X-windows is based upon such a protocol that
separates the application logic running on one
machine from the presentation running on
another machine. These two machines are
communicating between them using the X
protocol.

In the X-windows world the application knows
nothing about the end device that is being used
to display its windows. Things like resolution,
color schemes, mouse device, keyboard device
etc. are left for the client machine to handle.

The client side, on the other hand, knows
nothing about the application that sends him
requests for displaying windows and contents
inside the windows. The client side is capable
to display multiple windows attached to
multiple applications running on multiple
servers in the network.

SUGI 28 Systems Architecture

-2-

Special topic: Client-Server terminology
The terms “Server” and “Client” are being
used in the X-windows context in a reversed
manner than the way it is being presented in
this paper. In X-windows terminology, the
“Server” side is a piece of software running on
the “small” end-user machine (The machine
we usually call the client machine…).

 This “X Server” package serves requests to
display windows coming from “Clients” which
are the applications running on the “big”
machine elsewhere on the network. (This “big”
machine is the machine we usually call the
“Server” or “Host” machine).

Using this “Reversed” terminology, the X-
windows package that is installed on a PC is
called “X server” packages …

X-windows implementation is based upon
several layers as follows. (Not all layers are
always implemented).

1. The application.
2. The Application development standards &

toolkits
3. The Xlib protocol.
4. The window manager.
5. The desktop environment.

Xlib protocol
The first layer of an X-windows
implementation is a very basic protocol that is
being used to transmit request to open
windows and to render the application
contents. This protocol has also a mechanism
for sending back to the host keyboard and
mouse events.

This well-defined protocol called “Xlib
protocol” is the first layer of any X-windows
implementation. The Xlib protocol is a truly
open standard and its definition can be
downloaded from X.org freely at no charge.
This open source policy contributed to the
popularity of the Xlib protocol and created vast
implementations of devices that can handle the
client side of the Xlib protocol.

Special topic: X-Terminals
Since early days of X-windows, vendors
developed devices called “X-Terminals”.
These devices had a Monitor, Keyboard,
Mouse and a very small firmware that had the
X server code embedded into it and the CPU
power needed to render the Xlib protocol
functions. No need for an operating system,
disks or other devices.

The X terminals were the first true graphical
thin client machines. X terminals first appeared
on the market during the late 80’s (When PC’s
struggled to run DOS operating systems).
As the PC market evolved, and more powerful
CPU’s were embedded into the PC, many
companies had found a way to implement the
client side of the XLib protocol as an
Microsoft’s windows application running as a
software only solution.

This trend had put an end to the traditional X
terminal market (While we can still see many
of them working in many sites since they were
very reliable machines with no mechanical
parts which practically can function for ever).

Today most of the X-windows terminals are
implemented using a software solution running
under MS windows (95 and above) as yet
another application on our desktop. While X-
windows application appear to us as a regular
MS windows application, its underlying
structure differs completely from any other MS
windows application.

Application Development standards &
toolkits
At the early days of the x protocol, no other
layer was build on top of the Xlib and
applications were written with direct calls to
functions of the Xlib protocol. Only later, more
layers were defined to simplify the
development process. These additional layers
include toolkits and widgets libraries, which
help to standardize the look and feel of the
applications.

Since Xlib protocol contains no definition of
how the user’s desktop or application look and
feel should be, users had started to ask for a
more unified desktop environment and more
uniform look and feel for all thousands of X-
windows applications that were written.

As X-windows became more popular and was
recognized as standard de-facto of the UNIX
industry, UNIX vendors began the X-windows
war in order to gain control over this growing
market.

Sun Microsystems was trying to establish a
standard called “Open-Look” for the look and
feel of applications, while other vendors
fearing that Sun might “Take Over” the X-
windows market with its own standards,
formed a group called OSF (stands for: Open
Software Foundation). The OSF group has
released a competitive standard for the look

SUGI 28 Systems Architecture

-3-

and feel of applications called the Motif Look
and feel. These standards established the
foundation for a common look and feel of
applications with the same widget set and the
same rules for designing a window, borders,
menus and other objects. (Eventually, Sun has
adopted Motif).

Special topic: SAS and X-windows
standards
SAS uses none of the standards widget sets to
implement the look and feel of SAS windows.
I believe it is done in order to keep the SAS
look and feel of DMS and AF windows as
compatible as possible to all other SAS
implementation running on other platforms.

If you’ll use SAS on different UNIX/Linux
platforms you’ll get the same look and feel of
SAS windows. The only difference you’ll be
able to notice is the window manager style (see
below).

In SAS V6 running on Solaris there was an
experimental user interface that implemented
the Open Look standards but there was no
continuation for this project.

Windows managers
A window manager is a piece of software that
handles all events arising from displaying your
application’s windows along with other
windows all on the same screen.

For example, when a user moves a window
from one corner of the screen to another
position, this is an event that is being handled
by the window manager. The application
knows nothing about this event. Events like
moving/hiding/resizing of windows are all
being handled by the window manager.

Again, thanks to the openness of X-windows,
many developers around the globe have
designed window managers that act and
manipulate windows in many different ways.
The end user can choose from many sources
his preferred way of manipulating windows.

Without a window manager X-windows can be
displayed on the screen but cannot be moved
or resized.

Figure 1 – SAS running under MS
windows without a window manager.

As one can see from the above figure, all SAS
windows appear without a border, thus cannot
be removed or resized.

When working with PC’s X servers, you can
choose MS windows as your window manager
program. This technique is mostly
recommended since it saves resources on your
PC and LAN and integrates your X application
into one common behavior of windows.

Figure 2 – Selecting native window manager
(Using Hummingbird’s Exceed product).

Using MS windows (Native) as a window
manager means that you can use MS windows
standards for resizing/moving/hiding windows
the same way as you do with all other MS
windows applications (e.g. MS Office
applications).

SUGI 28 Systems Architecture

-4-

Figure 3 – SAS running as an X-windows under
MS windows 98 as a window manager. (Using
Hummingbird’s Exceed product)

As one can see from figure 3, SAS windows
appears as regular MS windows with the same
borders and icons found on any MS windows
application

The desktop environment
UNIX vendors and developers were also
concerned about how the user’s desktop should
look like. Since X is an open standard, many
desktops can be found on the market. Among
them are the CDE (Common Desktop
Environment) which is widely used on many
UNIX desktop machines and KDE or
GNOME, which are widely used on Linux.
These desktop environments organize all your
X windows in a systematic manner and let you
invoke popular X applications through a series
of menus.

One of the first desktop managers was Sun’s
“Open-Windows” which implemented the
“Open-Look” look and feel:

Figure 4 – The Open-Windows desktop with
SAS (running under Solaris OS)

HP, DEC and IBM has promoted the CDE
desktop manager which implements the
MOTIF look and feel:

Figure 5 – The CDE desktop with SAS (running
under Solaris OS)

Moving to Linux, one can see the influence of
MS windows look and feel on the design of
more modern desktops for Linux.

Figure 6 – The KDE desktop with SAS (running
under RedHat Linux OS).

While running SAS as X-windows on an MS
windows PC (As displayed in Figure 7), The
desktop that is being used is the standard MS
windows XP desktop. This recommended way
of using your X server package help to reduce
network traffic and resources used on your PC
as well as unifying your working environment.

Figure 7 – The Windows XP desktop with SAS
running as an X-windows application.
(Using Hummingbird’s Exceed product)

As one can notice from the above screen shots,
the windows contents (Coming from the SAS

SUGI 28 Systems Architecture

-5-

application) looks the same, but the windows
borders look different and has different
methodology for activating or resizing the
window.

 X-windows layers can be replaced (Except
from the Xlib) to best suite the user taste and
preferences.

X-windows well demonstrates two basic
principals of the “Open” world of software:

1. Separate your problem into small and

well-defined layers with fully published
standards and API. (As opposed to
bundling the OS with the GUI and keeping
API’s unpublished).

2. Let the users and vendors community to
use imagination to implement these
standards in many different ways, which
enhance the user with options to choose
from. (As opposed to a single one vendor
solution).

To summarize the X-windows internals section
lets look at the following diagram that
illustrates the different layers of the X-
windows system:

Figure 8 – X-windows layers

RUNNING SAS ON UNIX/Linux
This section will describe the numerous ways to use SAS on UNIX/Linux servers and desktops.

Thin clients implementations
By using the term “Thin client” we mean that no SAS software license is needed on the client side.

Client Standard Hardware/Software Remarks/Advantages/Disadvantages
VT terminal ASCII

Terminal
An original VTxxx terminal or
a terminal emulator for PC

No longer supported on SAS V8

PC JAVA JDMS (A SAS product with no
separate license. Can be
found on the SAS distribution
CD)

This is the replacement for the missing VT
support in V8. It is a JAVA based
application running on a PC client that
emulates the basic SAS DMS windows
(PGM, Log , Out etc.). It has no support
for SAS/Graph or AF applications.

X Terminal X-windows An original X terminal A stand alone client with no integration
with MS windows applications

PC X-windows A PC with X-server package
(e.g. Exceed from
Hummingbird)

A very cost-effective way of integrating
the MS windows with SAS running on a
server. The recommended desktop
manager is WIN XP.

UNIX Workstation X-windows A UNIX based workstation
(e.g. SUN Soalris, HP HP-UX,
IBM AIX)

If your desktop is a UNIX workstation, no
other software is needed since X-windows
is your default windowing. Use your
preferred desktop manager.

Linux Workstation X-windows A Linux based workstation If your desktop is a Linux workstation, no
other software is needed since X-windows
is your default windowing. Use your
preferred desktop manager.

SUGI 28 Systems Architecture

-6-

SAS client-server implementations
A SAS client-server implementation is an environment where SAS modules are licensed separately
both on the server side and on the client side.

Client SAS products needed Remarks/Advantages/Disadvantages
PC
(Semi Client-
Server Model)

On the Server : SAS integration
On the Client : Enterprise Guide

A Visual Basic client running on your PC as an MS
windows application communicating with the SAS
server using a special SAS product: SAS Integration
Technology.
A very “Windows like” application with utilities for the
novice user. On the other hand, a closed application
which cannot run AF applications. Must have a
license on each PC.

All SAS jobs are run on the server side. The PC is
only used for windowing and GUI.

PC
(Full Client-Server
Model)

SAS/BASE & SAS/CONNECT
Both on the server side and on the
client side.

A very robust environment where jobs can be run
both locally on the client and on the server. Using
SAS/Connect functionality, a user can split the job
execution to segments running on the server for
better I/O and number crunching and segments that
do minor computations and graphics/reporting on
the client side.

Must have a special AF application to use this
functionality, or be a very sophisticated user in order
to take advantage of this complex environment.

Requires a SAS license on every PC.

UNIX/Linux
Workstation

Same as for PC client except that
the user GUI is a X-windows and
not a MS windows

Same as for PC client

Combined
(Enhanced Client-
server model)

A server-server model using
“back server” and a “front server”
and multiple X-windows clients
attached to the “front server”

A model where functionality of splitting jobs
between two servers for better I/O is used and X-
windows clients are connected to the front server.
This technique split overloads between many “front
servers” serving many X-windows clients.

Requires SAS license on each server (SAS/BASE &
SAS/Connect). No need for SAS license on clients.

OTHER ALTERNATIVES
Many NT sites are using SAS PC on the desktop while storing SAS data sets on the NT server disks.
This technique is wrong since the network overload while processing large data sets will be enormous.
The alternatives are:

1) Use SAS client-server techniques using SAS/Connect and SAS/BASE on the server. The
disadvantages of this usage are described above and are similar to the case where the server is a UNIX
one.

2) Use a new concept called “Terminal Server” which is an addition to Windows 2000 servers. The
terminal server uses a separation model between the presentation layer of the application and
application logic while surfacing the display over the network using a propriety RDP protocol. One
might think that this is similar to X-windows concept. The difference between the two systems is that
X was designed originally to use a client-server model where the X server has its own part to manage
windows while MS windows applications are not designed to separate these layers and the server has to
do all the work.

Terminal server is a complex installation that locks you to a single vendor solution and you must have
a SAS license on every PC that uses this utility. UNIX/Linux OS are designed from bottom-up to be
truly multi-users OS which gives them better performance on a situation where multiple users are
connected as terminals to a single server.

SUGI 28 Systems Architecture

-7-

SAS OPTIONS FOR X-WINDOWS
This section will provide a brief discussion on
how to configure SAS on an UNIX/Linux
server to best use X-windows on a PC client.

Invoking SAS from your PC desktop
Every X server package provides a method to
create a startup script on your PC:

Figure 9 – creating a startup script (Using
Exceed from Hummingbird).

The @d is a necessary option to any X-
windows command and it is an environment
variable which supplies the IP address of the
PC. This value will be used as an entry for the
UNIX environment variable $DISPLAY in the
script file (see later) needed to run any X-
windows applications.

After completing the startup script file on your
PC, you can create an icon to be placed on
your desktop as follows:

Figure 10 – Invoking SAS for UNIX with a
PC icon.

Clicking on the SAS icon begins a series of
actions that eventually will invoke a SAS X-
windows session on your PC.

The UNIX Startup script
The UNIX startup script is a CSH UNIX file
that eventually calls SAS for execution. (In the
above example the UNIX startup script is
/opt/sigma2/scripts/sas8.laptop)

Its first job is to clean any previous “Zombie”
processes running on behalf of this user. (A

Zombie process is a process that has no
terminal attached. This usually happens when
a user reboots his PC without terminating SAS
normally).
These Zombie processes can prevent the user
from accessing his SASUSER catalogs or other
data sets since they are locking them for write
access.

The second task of the startup script file is to
invoke SAS with the desired configuration file.

#!/bin/csh

setenv DISPLAY $1
Killing Zombie SAS process …
set COM1=`/bin/ps -ef | grep -w $USER | grep -v
"grep" | grep "/opt/sigma2/scripts/sasv8.cfg" | awk
'{print $2}'`
if ($#COM1 > 0) then
 echo "kill other sas session ..."
 kill $COM1
endif
Invoking SAS with a configuration file …
/local/sas82/sas -config /opt/sigma2/scripts/sasv8.cfg

Figure 11 – SAS typical UNIX startup script

The configuration file
The configuration file controls the SAS
environment. This file is being read by SAS
when you point SAS exec file to it in the
startup script (See above).

In UNIX you can use special configuration
parameters to control X-windows behavior.
These options are prefixed by “–xrm” (X
Resource Manager). These xrm options let you
control things like: Fonts, Window behavior,
Desktop behavior, and many more windowing
attributes. More –xrm options can be found in
the SAS companion for UNIX documentation
or in the file:

!SASROOT/ X11/resource_files/ Resource_Defaults

The configuration file points to an autoexec.sas
file that contains specific SAS code to initiate
your SAS environment.

Here is a sample configuration file:

-xrm 'SAS.startupLogo:None'
-xrm 'SAS.systemFont: timr08’
-xrm 'SAS.DMSFont: timr08’
-xrm 'SAS.DMSboldFont: timr08’

-sasautos ('!SASROOT/sasautos')
-sashelp ('!SASROOT/sascfg' '!SASROOT/sashelp')
-autoexec /local/sas82/scripts/autoexec.sas
-maps !SASROOT/maps
-msg !SASROOT/sasmsg
-colorpgm

SUGI 28 Systems Architecture

-8-

-sasuser ~/sasuser.800
-work /local/saswork

-dmsexp
-setjmp
-mvarsize 32K -msymtabmax 4M
-sortsize 48M
-memsize 100M
-maxmemquery 6M
-helploc ('!sasuser/classdoc'
'!SASROOT/X11/native_help')
-docloc file:/opt/sas8/install/docloc.htm
-appletloc !SASROOT/misc/applets
-news !SASROOT/misc/base/news
-path !SASROOT/sasexe

Figure 12 – typical configuration file

The autoexec file
This file contains SAS code that you want to
be run when your session starts. It usually
contains Libname definitions, Macro variables
and SAS options needed.

Here is a sample SAS autoexec file:
/*================================*/
/* General Macro Var definitions : */
/*================================*/

%LET DEVM = PC2ISO ;
%LET KEYM = PC2ISO ;
%LET ZAG = XCOLOR ;
%LET GUI = G ;

/*================================*/
/* PRINTING OPTIONS : */
/*================================*/

%LET TUNXPRT = /usr/ucb/lpr -h -P ;
%LET GUNXPRT = /usr/ucb/lpr -v -h -P ;
%LET DEFPRT = hp5 ;

/*=================================*/
/* SIGMA/WEB OPTIONS: */
/*=================================*/

%LET WEBIP = 192.9.200.2 ;

/*====================================*/
/* INSTALLATION DIRECTORIES: */
/*====================================*/

%let sigmadir = /opt ; /* << === Change this !! */

libname eis "&sigmadir./sigma2/eis_dev" ;
libname library "&sigmadir./sigma2/library" ;
libname sigmall "&sigmadir./sigma2/sigmall" ;
libname tarall "&sigmadir./sigma2/tarall" ;
libname gfont0 "&sigmadir./sigma2/eis_dev" ;
libname gdevice0 "&sigmadir./sigma2/gdevice0" ;
libname styles "&sigmadir./sigma2/styles" ;

/*=====================================*/
/* DO NOT EDIT BELLOW THIS LINE !! */
/*=====================================*/

options nofmterr
 fmtsearch=(work sigmausr library)
 compress=yes
 ;
Figure 13 – typical SAS autoexec file

SAS REAL-WORLD EXAMPLES
This section describes two typical SAS
installations where X-windows was selected as
the preferred way of using SAS on UNIX
servers.

The Israel Electric Company (IEC)
IEC has been using SAS for many years on
IBM mainframes (MVS & VM). Due to heavy
overload on the MVS machine and a phasing
out project for the VM machines, IEC was
looking for a platform substitute to its large
arsenal of SAS programs, AF applications and
data sets.

 IEC was considering these points:

1. Need to quickly migrate SAS AF

applications written for VM to the new
environment without the need to rewrite
them as client-server applications.

2. A client platform which support AF
applications and graphics.

3. A host platform with SMP capabilities
which will support hundreds of users with
over 1TB of SAS datasets.

4. A cost-effective solution. Not all users are
running their SAS programs concurrently,
so there is no need for SAS license on
every PC.

The selected solution was migrating to a UNIX
server with X-windows installed on PC’s. The
server is a HP superdome machine with 4
CPU’s, 4 GB of Ram and an HDS diskarray
with disk capacity of 1 TB.

IEC has 500+ users attached to this server with
an average of 25-35 users running
concurrently. Plans for future improvements
are to install SAS V9 with the new SPD engine
in order to utilize the multiple CPU
architecture more efficiently.

Gertner Institute for Epidemiology
Gertner Institute is a national research institute
responsible for the health care policy in Israel.
The institute employs approximately 150 staff
members including researchers, statisticians
and computer programmers. The institute’s
data base is based on SAS data sets which
holds data coming from hospitals around the
country and from wide range of surveys.

Currently, all users have X-windows running
under MS windows 2000/XP. The server is a
SUN BLADE 1000 1CPU with 40 GB of disk
space and 1 GB of RAM. SAS is installed on
this server with many AF/FSP data entry
applications running against it.

SUGI 28 Systems Architecture

-9-

TIPS
This section provides some useful tips that we
implement in SAS UNIX projects:

1. Analyze the way users interact with SAS
data sets and what procedures and application
are being used in your organization. If most
users do large volume data step processing and
number crunching, then there is no need for a
sophisticated client and X-windows is a very
cost-effective solution.

2. Analyze your network performance. X-
windows need a high bandwidth network. If
your users are located on the WAN, then a
minimum of 512 Kbps is required.

Special Topic: X-windows and Web
browsers
X-windows X11R6.3 introduced a new
concept for deploying X-windows application
using a Web browser. This project got the
name “Broadway”. The X-windows
applications are invoked by pointing to an
HTML link and windows are displayed inside
the browser as a plug-in application.

X-windows need a high bandwidth
communication channel (like the 10+ Mbps
LAN’s). Since internet is highly dependent on
low bandwidth media, The X consortium has
developed the LBX protocol – Low Bandwidth
X. This protocol uses a proxy on the server
side to compress/decompress X protocol
transmission.

In order to use LBX and Broadway you need a
special X-windows package for your PC.

3. Use the MS Win XP desktop manager as
your X-windows preferred way if you use MS
windows (Or KDE/GNOME if you use a
Linux box) Users will like the smooth
integration of X application on their PC’s.

4. Use an FTP server on your PC and write a
small SAS macro to push ODS results created
on the server to PC clients or directly to the
company portal. In that way, users will not
notice that SAS is running on a remote server,
since results are displayed on their web
browsers and Excel spreadsheets exactly as if
they were created locally on the PC.

5. When developing AF applications for X-
windows, try to write them as PROGRAM
entries or FRAME entries with minimum use
of images since this will overload the network.

CONCLUSION
X-windows is a stable and robust environment
with benefits to SAS users. Since SAS is not
highly graphical package and most of its
windows display text, X-windows is a perfect
companion to UNIX/Linux servers on the
desktop machine.

If your installation requires hundreds of
desktop machines to be connected to a SAS
server, then X-windows is the perfect choice
for a simple and cost-effective solution to
deploying SAS on the network. Plus, you have
a variety of options to suite your end users
needs and taste.

REFERENCES
Many web sites have lots of X-Windows
related papers. Among them I would like to
note as an excellent portal for many topics
discussed in my paper:

Kenton Lee Technical Window System and
Motif WWW Sites:

http://www.rahul.net/kenton/xsites.html

CONTACT INFORMATION
Your comments and questions are valued.
Contact the author at:
 Gady Kotler
 EIS Ltd.
 22 Ben-Gurion St.
 Herzlia, 46785 ISRAEL
 Tel: 972-9-9575299
 Fax: 972-9-9575305
 Email: gady_k@eis.co.il
 Web: www.eis.co.il

TRADE MARKS
 SAS and all other SAS Institute Inc. product
or service names are registered trade marks.

Other brands or products names are trademarks
of their respective vendors.

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

