
Paper 278-28

 1

Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
Chris Peterson, Valero Energy Corporation, San Antonio, TX

Stuart B. Levine, SAS Institute, Rockville, MD

ABSTRACT
This paper focuses on the challenges met by implementing a
HOLAP solution on large amounts of data on an AIX platform
using SAS MDDB Report Viewer. The base tables have
approximately 310 million records. The OLAP solution contains
approximately 200 GB of data. Query response time is
approximately 20-40 seconds per average query.

INTRODUCTION
Last year, Valero Energy Corporation was looking to improve
both the build and query performance of their sales velocity
reporting system. This system allows users the option to review
sales information by levels as granular as UPC and Store for as
long as 3 years back from the current date. Valero turned to The
SAS System to provide an application that gave users the query
performance they were looking for, as well as the ability to
generate the data each week in an efficient manner. This paper
will describe the process that was followed to provide that system
as well as discussing the issues involved in maintaining the
system for the past 18 months.

THE BUSINESS NEED
One of Valero’s business lines is a chain of over 1700
convenience stores throughout the Midwest and Southwest US.
The sales and marketing associates want information on how
items in their respective product categories or geographic areas
are selling so business decisions can be made concerning these
items. The requirement was to have a rolling 3 years of weekly
data available to the system with data down to the detail level of
item numbers (UPC) and store.

WHY RE-DEVELOP?
Valero had 3 main issues with their previous reporting system:

• Time to generate data each week;
• Time to install/set up a new user;
• Time to retrieve data

These issues and how SAS addressed them follows:

TIME TO GENERATE DATA:
Valero’s data warehouse is updated weekly. The primary table in
the warehouse contains a record for each individual item scanned
in a store, representing hundreds of millions of rows in an Oracle
database. Extracting the data for the most recently completed
fiscal week, along with creating the summarized data for
reporting, was a process that required 3 ½ - 4 hours. Multiply
that by the need to extract and summarize data for the previous 4
weeks due to the possibility of adjustments, and the weekly ETL
process became a 17-20 hour process. As the business grew,
this would become a larger problem, as there would be more data
each week as time went on.

Using the power and capabilities of SAS and Oracle, the process
was rewritten to extract the data and create the summarized data
stores in only 15-20 minutes. This was accomplished by using a
data-driven approach and the SAS macro language to determine
the correct dates for the extraction then execute a stored Oracle
procedure from SAS to perform the extraction:

proc sql;
 connect to oracle(user=logonid
 password=passwrd

 path='server.database');
 execute (execute
 sas_weekly_extract_sp(&one_date))
 by oracle;
 disconnect from oracle;
quit;

This query is executed twice, once for the current week’s data
and a second time to extract the same week’s data for the
previous year, as part of the reporting system includes comparing
information from one year to the next. Once these two queries
are finished and the results are combined, a SAS MDDB is
created for reporting.

TIME TO INSTALL/SET UP A NEW USER:
The old system was a fat-client application. To set up a new user
of the system required approximately ½ day to install the
software, make connections to the data, and perform testing to
make sure the system was working properly.

The SAS solution was much easier to install for a new user,
requiring only a browser, a network connection, and a URL. The
reporting mechanism was the SAS/IntrNet Multidimensional
Report Viewer (MRV), the web-based OLAP viewer included as
part of the SAS/IntrNet software.

TIME TO RETRIEVE DATA:
Valero’s previous reporting application was a client/server
system; the data resided on a UNIX server and the viewer was on
the Windows platform. This, combined with the software and the
architecture of the data, resulted in queries taking from 1 to 2
minutes at the higher levels, as much as 5 minutes or more when
drilling to the lower levels of the hierarchies.

By structuring the SAS MDDBs with subtables to support the
users’ requests and optimizing the metadata to target only the
data sources needed to satisfy the request, query time was
reduced to less than 20 seconds for most queries and 1-2
minutes when data was accessed at the lowest levels.

THE DEVELOPMENT PROCESS
DEFINING THE WORK
The first step in the development process was not coding but
talking and, even more importantly, listening. It had already been
determined that a single MDDB could not be built because of the
cardinality and inter-relationships of three of the variables
involved. There were approximately 1700 store numbers, over
30,000 UPC numbers, and 156 dates (each Wednesday, the end
of the reporting week, for 3 years). Conversations were held with
the administrator for the previous system, the users, and a DBA.
Based on those, along with the density/sparsity of the data, it was
determined that if the NWAY table for an MDDB could be
constructed, it would contain approximately 450 million cells.
Taking the length of these variables into account, this would have
required between ¼ and 1 full terabyte of memory!

It was therefore obvious that the data had to be built in pieces,
but the question remained: How to break it up? Again, after
talking to various people within the organization about how the
data is updated in the warehouse, how it is summarized, and how
it is accessed, the first logical option was to create separate
MDDBs for each week and link them through the SAS HOLAP
functionality. The data warehouse is updated weekly, users look

SUGI 28 Systems Architecture

2

at the information by week, and they choose a range of weeks to
look at, typically the most recent 6-12 weeks.

Tests were performed first to determine if a single week’s cube
could be built. Once that was successful, the next step was to
build a few more weeks of cubes, begin defining the HOLAP Data
Group, and benchmark the data access performance. Then, as
that test was successful and the performance satisfactory, the
subsequent steps were to keep increasing the amount of data
being defined to the HOLAP Data Group and being accessed by
the viewer. Ultimately, once 39 weeks of data had been built and
successfully accessed through the viewer, everyone involved
agreed that this was the correct solution.

Once it was agreed that this was a viable solution, now it to be
made production-ready. This meant creating an ETL process
that could be executed each week to generate the latest MDDBs
in a scheduled production environment. A few things were known
about the data and the process that had to be incorporated:

• Because adjustments could be made to the warehouse
data as far as 4 weeks prior to the current week, data
had to be extracted and rebuilt for a five-week period.

• There could be changes as frequently as weekly to the
geographic and product organizations that had to be
reflected in the data.

• There were dimension tables in the Oracle database
that contained the organizational information and that
were updated each week as part of the overall
warehouse ETL process.

• The data extracted from Oracle into SAS only
contained codes for variables such as Region, Product
Category, etc., meaning these codes had to be
formatted to display meaningful information to the
users.

EXTRACTING THE DATA
The ETL program for this system was written to include steps that
read the dimension tables for the geographic and product data
into SAS data sets, renaming and creating variables to allow
these data sets to be used as the input for generating formats:

proc format library=formats
 cntlin=work.compfmt;
run;

These formats were then applied to the appropriate variables
when the data was extracted from the Oracle warehouse.

Once all of the formats and other needed parameter files were
created, the data had to be aged. For reasons described later in
this paper, there is a separate base table for each of the 156
MDDBs in this system. They are numbered 1-156, rather then
date-stamping them. The AGE statement in the DATASETS
procedure offered the simplest method to rename all of the data
sets:

proc datasets lib=retaildm;
 age velocity_base_table_1
 velocity_base_table_2
 velocity_base_table_3
 velocity_base_table_4…;
run;

The next step was to extract the data from Oracle. This was
performed by executing the SQL procedure shown earlier in this
paper within a %DO loop set to run 5 times, once for the most
recent week and then for the previous 4 weeks to capture any
adjustments made to the data.

The SQL queries and a couple of other necessary steps resulted

in new base tables for the 5 latest MDDBs. However, more than
just 5 MDDBs had to be generated. As mentioned earlier, there
are separate base tables for each of the 156 cubes in this
system. This is because Valero needs to be able to compare
‘apples to apples’; that is, if a store is in a certain geographic
area, they need to look at that store as if it had been in that area
for all of the past 3 years, even though it may have just been
reorganized into that area very recently. That way, sales can
properly be compared over time for all levels of the geographic
hierarchy. So, as the data in an MDDB cannot be modified, they
have to be rebuilt every week. To make this process easier, each
week’s data is stored separately, but without the formats applied
to the codes representing the store and UPC numbers that define
the higher levels of those hierarchies. The formats generated
each week from the dimension tables are applied to these data
sets in views, then the views are the sources for the MDDB
procedure calls:

data work.velocity_base_table /
 view=work.velocity_base_table;
 set sasdl.velocity_base_table_&i;
 format comp s_comp.;
run;

proc mddb data=work.velocity_base_table
 out=retaildm.velocity_mddb_&I
 label="Velocity Item Cube &I";
 *(more code);
run;

MULTIDIMENSIONAL DATA AND METADATA
One last consideration was how long it would take to build all 156
MDDBs every week. Even though each one only requires about
4 minutes to build, over 150 of them would still take over 10
hours, and the production window wasn’t that long. So, the last
step was to take advantage of the multiple processors on the
server. The UNIX machine had 4 CPUs, therefore the code was
written to build the MDDBs in 4 separate processes. The code
above was not executed as it appears here; rather, it was
included in PUT statements within a DO loop and output to .sas
programs. SAS commands were then generated and executed
within other loops, sending each of the 4 individual programs to
different processors, allowing 4 MDDBs to be built at a time. By
having separate data sets for each week’s base tables, there was
no contention reading the data. And, with 4 separate jobs
creating 39 MDDBs each, the cube-building part of the ETL
process completes in less than 3 hours.

The last step of the process takes care of updating the metadata
for the HOLAP Data Group. The initial release of the application
did not include this step, but it was found that by adding some
information to the metadata, the access times were improved.
However, this optimization would require updating the metadata
each week as new data was added to the system.

Even though each MDDB contains data for only 1 week, the
application requires that the user choose a range of weeks to
look at, and this range is generally only 6-12 weeks, the HOLAP
Data Provider still was trying to extract data from each of the 156
cubes. By adding information to the HOLAP metadata about
which week’s data was in which MDDB, the data provider now
only reads the cubes that contain data for the weeks that are
requested. However, this information changes every week. For
example, at the time of this writing, MDDB_1 contains data for
week ending November 13 (Valero’s week ends on Wednesday
night). By the end of the following week, MDDB_1 will contain
data for the week ending November 20. If the metadata is not
updated with that new information and a user asks for data for
November 13, the metadata will attempt to read from MDDB_1,
and the data is really in MDDB_2, and nothing will be retrieved.

Using SAS Component Language (SCL), a program was written

SUGI 28 Systems Architecture

3

that opens the Repository classes, reads a macro variable
containing the first week-ending date for the system (from 3 years
ago), and rewrites the subsetting information in the metadata to
match the actual date values in the MDDBs. This SCL entry is
called at the end of the ETL program in a DM statement.

REPORTING
Three different reports were initially envisioned to utilize the data.
The MDDB Report Viewer (MRV) was chosen to be the reporting
tool for 2 of the reports. A customized front end was necessary
to focus user choices. Below is an example of one of those front
ends.

All of the parameters on the screen above are required. The
Begin Date and End Date values are passed first to the metadata
to select which weeks of data to access, identifying which of the
156 MDDBs to extract data from. For example, suppose a user
chooses a Begin Date of 10/2/2002 and an End Date of 11/13/02.
Not only will he see data for just that 7-week period, but only
those 7 MDDBs will be accessed by the system due to the
HOLAP metadata. Without having the date information in the
metadata, the system would attempt to extract data from all 156
MDDBs and only succeed when reading those 7 cubes, but
spend the time trying to extract data from the other 149 files.

Once through this initial screen the MRV is displayed with the
appropriate options.

The screen above is the customized MRV front end. The
customizations are driven by observations read from SAS data
sets by SCL code that is part of an override of the
SASHELP.WEBEIS.WEBEIS.CLASS. The code snippet below is
the SCL that reads a parameter data set, also pictured below,
that contains the name-value pairs that become part of the

dynamically-constructed URL for the report. Information in the
data set include the dimensions to appear as rows and columns
on the table, which variables should be displayed as filter
variables, and which analysis variables and statistics should be
on the report. This information is listed in the data set by report,
so each of the reports in the system can have different settings.
This allows for a new “Front End” to be added with no coding at
all.

BUILD_URL_STRING:
/***/
/* This sections builds that URL for the
selected report. */
/***/

category = symget('category');

begdate = input(symget('begdate'),8.);
enddate = input(symget('enddate'),8.);

url_string=trim(left(url_string))||'_program=
SASHELP.WEBEIS.SHOWRPT.SCL&_service='!!symget
('_SERVICE');

url_string=trim(left(url_string))||'&_debug='
||trim(left(_debug));

/***/
/* Since the user only selected a beginning
and an end date we have to read the base
calendar to add all the dates for each week
between the range selected. */
/***/

dsid=open('parmsdl.base_cal(where=('!!begdate
!!' le week_end le '!!enddate!!'))','I');

do while (fetch(dsid_Data) ^= -1);

weekend_dt=put(getvarn(dsid,varnum(dsid,'
WEEK_END')), mmddyy10.);

url_string=trim(left(url_string))||
'&SL=WEEK_END%3A'||urlencode(weekend_dt);

end;

rc = close(dsid_data);

link BUILD_LAYOUT_SELECTION;

/***/
/* This opens and reads the default URL named
values pairs that have been defined */
/***/

dsid=open('parmsdl.rpturl(where=(upcase(repor
t)='!!upcase(quote(_report))!!'and display ne

SUGI 28 Systems Architecture

4

"N"))','I');

do while (fetch(dsid) ^= -1);

url_string=trim(left(url_string))||
getvarc(dsid,varnum(dsid,'URLPARM'))!!'='
!!urlencode(getvarc(dsid,varnum(dsid,'URL
VALUE')));

end;

rc = close(dsid);

return;

BUILD_LAYOUT_SELECTION:
/***/
/* This opens and reads the default name
value pairs for the selected report and gets
the corresponding macro variables and sets
them for the URL to generate the report based
on the user selections from the layout
page.*/
/***/

if length(category) ge 1 then

url_string=trim(left(url_string))||
'&SL=CATEGORY%3A'||
urlencode(trim(left(category)));

return;

The third report utilizes a similar front end, but does not utilize the
MRV. It pulls data from the Base Tables and uses PROC PRINT
and PROC GCHART to produce the results. Over time these
Base Tables have become the source for several SAS/INTRNET
applications.

CONCLUSION
The first, and maybe the most important, conclusion is that no
application development effort will be successful without the first
step, requirements gathering. Talking to representatives of all
areas of the organization and gathering requirements for the
system and information about the data and the hardware are key
activities to the success of any project.

Also, designing the system properly is vital, as well as knowing
how the software works. Large data such as Valero’s can pose a
challenge, but by designing the database and the programs to
take advantage of the software and the environment, it can be
dealt with. Both of these steps are critical and should be
completed before the coding starts. Without them, what do you
code?

ACKNOWLEDGMENTS
Most of the code for the front-end customizations was written by
members from Qualex Consulting. Without their contributions,
this application would not have been successfully implemented.

CONTACT INFORMATION

Your comments and questions are valued and encouraged.
Contact the authors at:

Chris Peterson
 Valero Energy Corporation
 6000 North Loop 1604 West
 San Antonio TX, 78249-1112
 Work Phone: 210-592-4787
 Fax: 210-592-3452

 Email: chris.peterson@valero.com

 Stuart B. Levine
 SAS Institute Inc.
 111 Rockville Pike, Suite 1100
 Rockville, MD 20850
 Work Phone: 301-838-7030, ext. 3363
 Fax: 301-838-7049
 Email: Stuart.Levine@sas.com
 Web: www.sas.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

