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ABSTRACT 
This paper focuses on the challenges met by implementing a 
HOLAP solution on large amounts of data on an AIX platform 
using SAS MDDB Report Viewer.  The base tables have 
approximately 310 million records. The OLAP solution contains 
approximately 200 GB of data.  Query response time is 
approximately 20-40 seconds per average query.  

INTRODUCTION 
Last year, Valero Energy Corporation was looking to improve 
both the build and query performance of their sales velocity 
reporting system.  This system allows users the option to review 
sales information by levels as granular as UPC and Store for as 
long as 3 years back from the current date.  Valero turned to The 
SAS System to provide an application that gave users the query 
performance they were looking for, as well as the ability to 
generate the data each week in an efficient manner.  This paper 
will describe the process that was followed to provide that system 
as well as discussing the issues involved in maintaining the 
system for the past 18 months. 

THE BUSINESS NEED 
One of Valero’s business lines is a chain of over 1700 
convenience stores throughout the Midwest and Southwest US.  
The sales and marketing associates want information on how 
items in their respective product categories or geographic areas 
are selling so business decisions can be made concerning these 
items.  The requirement was to have a rolling 3 years of weekly 
data available to the system with data down to the detail level of 
item numbers (UPC) and store. 

WHY RE-DEVELOP? 
Valero had 3 main issues with their previous reporting system: 

• Time to generate data each week; 
• Time to install/set up a new user; 
• Time to retrieve data 

These issues and how SAS addressed them follows: 

TIME TO GENERATE DATA: 
Valero’s data warehouse is updated weekly.  The primary table in 
the warehouse contains a record for each individual item scanned 
in a store, representing hundreds of millions of rows in an Oracle 
database.  Extracting the data for the most recently completed 
fiscal week, along with creating the summarized data for 
reporting, was a process that required 3 ½ - 4 hours.  Multiply 
that by the need to extract and summarize data for the previous 4 
weeks due to the possibility of adjustments, and the weekly ETL 
process became a 17-20 hour process.  As the business grew, 
this would become a larger problem, as there would be more data 
each week as time went on. 
 
Using the power and capabilities of SAS and Oracle, the process 
was rewritten to extract the data and create the summarized data 
stores in only 15-20 minutes.  This was accomplished by using a 
data-driven approach and the SAS macro language to determine 
the correct dates for the extraction then execute a stored Oracle 
procedure from SAS to perform the extraction: 
 

proc sql;                                                                                                        
   connect to oracle(user=logonid                                                                                 
              password=passwrd                                                                                    

             path='server.database');                   
   execute (execute                                       
       sas_weekly_extract_sp(&one_date))                
       by oracle;                                       
  disconnect from oracle;                               
quit; 

 
This query is executed twice, once for the current week’s data 
and a second time to extract the same week’s data for the 
previous year, as part of the reporting system includes comparing 
information from one year to the next.  Once these two queries 
are finished and the results are combined, a SAS MDDB is 
created for reporting. 

TIME TO INSTALL/SET UP A NEW USER: 
The old system was a fat-client application.  To set up a new user 
of the system required approximately ½ day to install the 
software, make connections to the data, and perform testing to 
make sure the system was working properly. 
 
The SAS solution was much easier to install for a new user, 
requiring only a browser, a network connection, and a URL.  The 
reporting mechanism was the SAS/IntrNet Multidimensional 
Report Viewer (MRV), the web-based OLAP viewer included as 
part of the SAS/IntrNet software.   

TIME TO RETRIEVE DATA: 
Valero’s previous reporting application was a client/server 
system; the data resided on a UNIX server and the viewer was on 
the Windows platform.  This, combined with the software and the 
architecture of the data, resulted in queries taking from 1 to 2 
minutes at the higher levels, as much as 5 minutes or more when 
drilling to the lower levels of the hierarchies. 
 
By structuring the SAS MDDBs with subtables to support the 
users’ requests and optimizing the metadata to target only the 
data sources needed to satisfy the request, query time was 
reduced to less than 20 seconds for most queries and 1-2 
minutes when data was accessed at the lowest levels. 

THE DEVELOPMENT PROCESS 
DEFINING THE WORK 
The first step in the development process was not coding but 
talking and, even more importantly, listening.  It had already been 
determined that a single MDDB could not be built because of the 
cardinality and inter-relationships of three of the variables 
involved.  There were approximately 1700 store numbers, over 
30,000 UPC numbers, and 156 dates (each Wednesday, the end 
of the reporting week, for 3 years).  Conversations were held with 
the administrator for the previous system, the users, and a DBA.  
Based on those, along with the density/sparsity of the data, it was 
determined that if the NWAY table for an MDDB could be 
constructed, it would contain approximately 450 million cells.  
Taking the length of these variables into account, this would have 
required between ¼ and 1 full terabyte of memory! 
 
It was therefore obvious that the data had to be built in pieces, 
but the question remained:  How to break it up?  Again, after 
talking to various people within the organization about how the 
data is updated in the warehouse, how it is summarized, and how 
it is accessed, the first logical option was to create separate 
MDDBs for each week and link them through the SAS HOLAP 
functionality.  The data warehouse is updated weekly, users look 
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at the information by week, and they choose a range of weeks to 
look at, typically the most recent 6-12 weeks. 
 
Tests were performed first to determine if a single week’s cube 
could be built.  Once that was successful, the next step was to 
build a few more weeks of cubes, begin defining the HOLAP Data 
Group, and benchmark the data access performance.  Then, as 
that test was successful and the performance satisfactory, the 
subsequent steps were to keep increasing the amount of data 
being defined to the HOLAP Data Group and being accessed by 
the viewer.  Ultimately, once 39 weeks of data had been built and 
successfully accessed through the viewer, everyone involved 
agreed that this was the correct solution. 
 
Once it was agreed that this was a viable solution, now it to be 
made production-ready.  This meant creating an ETL process 
that could be executed each week to generate the latest MDDBs 
in a scheduled production environment.  A few things were known 
about the data and the process that had to be incorporated: 

• Because adjustments could be made to the warehouse 
data as far as 4 weeks prior to the current week, data 
had to be extracted and rebuilt for a five-week period. 

• There could be changes as frequently as weekly to the 
geographic and product organizations that had to be 
reflected in the data. 

• There were dimension tables in the Oracle database 
that contained the organizational information and that 
were updated each week as part of the overall 
warehouse ETL process. 

• The data extracted from Oracle into SAS only 
contained codes for variables such as Region, Product 
Category, etc., meaning these codes had to be 
formatted to display meaningful information to the 
users. 

 

EXTRACTING THE DATA 
The ETL program for this system was written to include steps that 
read the dimension tables for the geographic and product data 
into SAS data sets, renaming and creating variables to allow 
these data sets to be used as the input for generating formats: 
 

proc format library=formats 
            cntlin=work.compfmt; 
run; 

 
These formats were then applied to the appropriate variables 
when the data was extracted from the Oracle warehouse. 
 
Once all of the formats and other needed parameter files were 
created, the data had to be aged.   For reasons described later in 
this paper, there is a separate base table for each of the 156 
MDDBs in this system.  They are numbered 1-156, rather then 
date-stamping them.  The AGE statement in the DATASETS 
procedure offered the simplest method to rename all of the data 
sets: 
 

proc datasets lib=retaildm; 
   age velocity_base_table_1 
       velocity_base_table_2 
       velocity_base_table_3 
       velocity_base_table_4…; 
run; 

 
The next step was to extract the data from Oracle.  This was 
performed by executing the SQL procedure shown earlier in this 
paper within a %DO loop set to run 5 times, once for the most 
recent week and then for the previous 4 weeks to capture any 
adjustments made to the data. 
 
The SQL queries and a couple of other necessary steps resulted 

in new base tables for the 5 latest MDDBs.  However, more than 
just 5 MDDBs had to be generated.  As mentioned earlier, there 
are separate base tables for each of the 156 cubes in this 
system.  This is because Valero needs to be able to compare 
‘apples to apples’; that is, if a store is in a certain geographic 
area, they need to look at that store as if it had been in that area 
for all of the past 3 years, even though it may have just been 
reorganized into that area very recently.  That way, sales can 
properly be compared over time for all levels of the geographic 
hierarchy.  So, as the data in an MDDB cannot be modified, they 
have to be rebuilt every week.  To make this process easier, each 
week’s data is stored separately, but without the formats applied 
to the codes representing the store and UPC numbers that define 
the higher levels of those hierarchies.  The formats generated 
each week from the dimension tables are applied to these data 
sets in views, then the views are the sources for the MDDB 
procedure calls: 
 

data work.velocity_base_table / 
        view=work.velocity_base_table; 
   set sasdl.velocity_base_table_&i; 
   format comp s_comp.; 
run; 
 
proc mddb data=work.velocity_base_table 
          out=retaildm.velocity_mddb_&I 
          label="Velocity Item Cube &I"; 
   *(more code); 
run; 

 

MULTIDIMENSIONAL DATA AND METADATA 
One last consideration was how long it would take to build all 156 
MDDBs every week.  Even though each one only requires about 
4 minutes to build, over 150 of them would still take over 10 
hours, and the production window wasn’t that long.  So, the last 
step was to take advantage of the multiple processors on the 
server.  The UNIX machine had 4 CPUs, therefore the code was 
written to build the MDDBs in 4 separate processes.  The code 
above was not executed as it appears here; rather, it was 
included in PUT statements within a DO loop and output to .sas 
programs.  SAS commands were then generated and executed 
within other loops, sending each of the 4 individual programs to 
different processors, allowing 4 MDDBs to be built at a time.  By 
having separate data sets for each week’s base tables, there was 
no contention reading the data.  And, with 4 separate jobs 
creating 39 MDDBs each, the cube-building part of the ETL 
process completes in less than 3 hours. 
 
The last step of the process takes care of updating the metadata 
for the HOLAP Data Group.  The initial release of the application 
did not include this step, but it was found that by adding some 
information to the metadata, the access times were improved.  
However, this optimization would require updating the metadata 
each week as new data was added to the system.   
 
Even though each MDDB contains data for only 1 week, the 
application requires that the user choose a range of weeks to 
look at, and this range is generally only 6-12 weeks, the HOLAP 
Data Provider still was trying to extract data from each of the 156 
cubes.  By adding information to the HOLAP metadata about 
which week’s data was in which MDDB, the data provider now 
only reads the cubes that contain data for the weeks that are 
requested.   However, this information changes every week.  For 
example, at the time of this writing, MDDB_1 contains data for 
week ending November 13 (Valero’s week ends on Wednesday 
night).  By the end of the following week, MDDB_1 will contain 
data for the week ending November 20.  If the metadata is not 
updated with that new information and a user asks for data for 
November 13, the metadata will attempt to read from MDDB_1, 
and the data is really in MDDB_2, and nothing will be retrieved. 
 
Using SAS Component Language (SCL), a program was written 
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that opens the Repository classes, reads a macro variable 
containing the first week-ending date for the system (from 3 years 
ago), and rewrites the subsetting information in the metadata to 
match the actual date values in the MDDBs.  This SCL entry is 
called at the end of the ETL program in a DM statement. 

REPORTING 
Three different reports were initially envisioned to utilize the data.  
The MDDB Report Viewer (MRV) was chosen to be the reporting 
tool for 2 of the reports.  A customized front end was necessary 
to focus user choices.  Below is an example of one of those front 
ends. 

 
All of the parameters on the screen above are required.  The 
Begin Date and End Date values are passed first to the metadata 
to select which weeks of data to access, identifying which of the 
156 MDDBs to extract data from.  For example, suppose a user 
chooses a Begin Date of 10/2/2002 and an End Date of 11/13/02.  
Not only will he see data for just that 7-week period, but only 
those 7 MDDBs will be accessed by the system due to the 
HOLAP metadata.  Without having the date information in the 
metadata, the system would attempt to extract data from all 156 
MDDBs and only succeed when reading those 7 cubes, but 
spend the time trying to extract data from the other 149 files. 
 
Once through this initial screen the MRV is displayed with the 
appropriate options.   
 

 

 
 
The screen above is the customized MRV front end.  The 
customizations are driven by observations read from SAS data 
sets by SCL code that is part of an override of the 
SASHELP.WEBEIS.WEBEIS.CLASS.  The code snippet below is 
the SCL that reads a parameter data set, also pictured below, 
that contains the name-value pairs that become part of the 

dynamically-constructed URL for the report.  Information in the 
data set include the dimensions to appear as rows and columns 
on the table, which variables should be displayed as filter 
variables, and which analysis variables and statistics should be 
on the report.  This information is listed in the data set by report, 
so each of the reports in the system can have different settings.  
This allows for a new “Front End” to be added with no coding at 
all. 
 

 
 

BUILD_URL_STRING:                                        
/*******************************************/            
/* This sections builds that URL for the 
selected report.                           */            
/*******************************************/            
                                                        
category = symget('category');                           
                                                        
begdate = input(symget('begdate'),8.);                   
enddate = input(symget('enddate'),8.);                   
                                                        
url_string=trim(left(url_string))||'_program=
SASHELP.WEBEIS.SHOWRPT.SCL&_service='!!symget
('_SERVICE');                                            
                                                         
url_string=trim(left(url_string))||'&_debug='
||trim(left(_debug));                                    
                                                         
/*******************************************/             
/* Since the user only selected a beginning 
and an end date we have to read the base 
calendar to add all the dates for each week 
between the range selected.                */            
/*******************************************/            
                                                         
dsid=open('parmsdl.base_cal(where=('!!begdate
!!' le week_end le '!!enddate!!'))','I');                
                                                         
do while (fetch(dsid_Data) ^= -1);                       

weekend_dt=put(getvarn(dsid,varnum(dsid,'
WEEK_END')), mmddyy10.);                             

                                                         
url_string=trim(left(url_string))|| 
'&SL=WEEK_END%3A'||urlencode(weekend_dt);            

end;                                                     
                                                         
rc = close(dsid_data);                                   
                                                         
link BUILD_LAYOUT_SELECTION;                             
                                                         
/*******************************************/             
/* This opens and reads the default URL named 
values pairs that have been defined       */             
/*******************************************/            
                                                        
dsid=open('parmsdl.rpturl(where=(upcase(repor
t)='!!upcase(quote(_report))!!'and display ne 
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"N"))','I');                                                                                                      
                                                                                                                 
do while (fetch(dsid) ^= -1);                                                                                    

url_string=trim(left(url_string))||                                                                         
getvarc(dsid,varnum(dsid,'URLPARM'))!!'='
!!urlencode(getvarc(dsid,varnum(dsid,'URL
VALUE')));                                                                                                   

end;                                                                                                             
                                                                                                                 
rc = close(dsid);                                                                                                
                                                                                                                 
return;                                                                                                          
                                                                                                                 
                                                                                                                 
BUILD_LAYOUT_SELECTION:                                                                                          
/*******************************************/                                                                    
/* This opens and reads the default name 
value pairs for the selected report and gets 
the corresponding macro variables and sets 
them for the URL to generate the report based 
on the user selections from the layout 
page.\*/ 
/*******************************************/                                                                     
                                                                                                                  
if length(category) ge 1 then                                                                                     

url_string=trim(left(url_string))|| 
'&SL=CATEGORY%3A'|| 
urlencode(trim(left(category)));                                                                             

                                                                                                                  
return; 

 
The third report utilizes a similar front end, but does not utilize the 
MRV.  It pulls data from the Base Tables and uses PROC PRINT 
and PROC GCHART to produce the results.  Over time these 
Base Tables have become the source for several SAS/INTRNET 
applications. 

CONCLUSION 
The first, and maybe the most important, conclusion is that no 
application development effort will be successful without the first 
step, requirements gathering.  Talking to representatives of all 
areas of the organization and gathering requirements for the 
system and information about the data and the hardware are key 
activities to the success of any project. 
 
Also, designing the system properly is vital, as well as knowing 
how the software works.  Large data such as Valero’s can pose a 
challenge, but by designing the database and the programs to 
take advantage of the software and the environment, it can be 
dealt with.  Both of these steps are critical and should be 
completed before the coding starts.  Without them, what do you 
code? 
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