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ABSTRACT 
All large commercial operations generally face the same 
problems:  massive amounts of data; hardware/software 
constraints; and tight deadlines to generate analyses and reports.  
Handling these situations has always been a SAS software 
strongpoint.  However, even within SAS, determining the best 
(i.e., fastest) method is not always easy, since SAS typically 
provides multiple ways to accomplish the same task.  This is 
further complicated by the common situation within companies of 
having multiple hardware platforms, multiple datasources, and a 
vast array of reporting requirements and needs.  Today’s rapid 
rate of mergers and acquisitions, the creation of joint ventures, 
and the evolution of all types of working alliances/collaborations 
further increase the likelihood of such complex computing 
environments.  In this paper, we examine real-time performance 
across a variety of hosts, clients, and datasources using different 
approaches to extract and process data. 

INTRODUCTION 
There is a wide array of platforms, datasources, extraction, and 
processing possibilities across the computing spectrum, and 
often even within organizations.  It would be difficult to assemble 
a comprehensive set of test cases, so we restricted our test 
cases to the platforms, client/server structures, processing 
methods, and forms of distributed processing of immediate 
interest.  Our test cases comprised a matrix of: 
 

Platforms: 
OS/390 
Sun/Solaris Unix 
Windows 2000 (PC) 
 

Client/server: 
 Clients:  OS/390, PC 
 Hosts:  OS/390, Unix, PC 
 
Processing: 

Synchronous  
Asynchronous  (MP)* 
 

Distributed  Processing 
Remote compute services (RCS)  
Remote library services (RLS)   

  
Data Size 
 Medium 
 Large 

 
*Asynchronous processing is also known as parallel processing; 
SAS uses the term multiprocessing (MP) to describe 
asynchronous/parallel processing.  
 
Unix was not used as a client since the available system did not 
have a defined TCP/IP service to send requests (e.g. SIGNON, 
RSUBMIT, etc) to the 'listening' TCP/IP service (spawner) on 
OS/390.  The lack of a connection between Unix and OS/390's 
spawner prevented parallel signons to OS/390.   
 
Our interest was to evaluate real-time performance of various 
permutations of this matrix and develop guidelines for end users.  
Various authors have addressed aspects of this issue, notably 
Bentley (2000, 2002), Theuwissen and Croonen (2002), and 

Brinsfield (1999).  As Brinsfield stated, “Most software 
applications can be tuned by optimizing data access, data 
processing, and data display.  With client-server systems, you 
must also try to optimize machine-to-machine transfer rates, 
location of processing, and location of data.”  Additionally, he 
states “You must strive to reduce the transfer of data across the 
network or modem and attempt to give the work to the machine 
with the muscle.  The basic concept is quite simple, but applying 
the idea often requires some extra time and analysis.”   
 
We also wanted to evaluate the balance between 1) Speed of a 
particular machine (the ‘muscle’),  2) The ‘penalty’ associated 
with data transfer across a network, and 3) The ability/simplicity 
to take advantage of multi-processing.  For example, perhaps the 
speed of a machine was not so important if we could more easily 
utilize parallel processing across several slower machines. Or 
perhaps there is no advantage to parallel processing when there 
are small data sources. Perhaps, even no amount of CPU speed 
or parallel processing could overcome the inherent slowness 
associated with RLS. We sought to answer this empirically.  The 
following test cases represent our efforts to answer these 
questions. 

 

TESTING ENVIRONMENT  
The following chart shows performance parameters of the 
hardware used for these test cases.  This table does not show all 
possible platforms for which SAS is available; however, these 
were the platforms available when testing commenced, and 
represent a relatively common set (individually and collectively)  
in use across many organizations.  These numbers merely give a 
basis of the differences between our platforms. It is not intended 
to be a comparison between, say, Unix and OS/390 simply 
because our Unix processors and our OS/390 processors on the 
test systems are not necessarily from the same era.  
 

Platform 
Speed of 

CPUs 

Elapsed time to 
execute a large 

DATA step (450K 
obs) (CPU 

intensive work) 

Elapsed time to 
read 145Mb file 

(I/O intensive 
work) 

OS/390 150 MIPS 
(570 Mhz) 

19 minutes 16.4 seconds 

Solaris 
Unix 

900 Mhz 7 minutes 15.2 seconds 

Windows 
2000 

733 Mhz 40 minutes 11 seconds 

 
SAS Version 8 was the SAS version used on each of the 
computing platforms during the execution of the test cases.    

 

DATA SIZES 
In our testing, we elected to assess only medium (M) and large 
(L) data sizes.   These two sizes were defined: 
 

Category Observations Size 
Medium 50,000 observations 15 Mb 

Large 1,600,000 observations 502 Mb 
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Small data sizes were left out  1) to reduce the number of test 
cases, and 2) because when dealing with a small amount of data, 
any asynchronous method will be slower than the synchronous 
method due to the overhead cost of creating the parallel 
sessions. Each creation of a parallel task takes a few (4-10) 
seconds for the sign-on. 

TEST CASES  
For each data size (medium and large) there were six datasets 
created (MEDIUM0-MEDIUM5 and LARGE0-LARGE5).   These 
datasets were replicated into SAS libraries on the PC, Unix, and 
OS/390 platforms.  The goal of each test case was to execute the 
sugi28 macro (see next section) six times, once for each dataset 
of the same size (e.g. MEDIUM0-MEDIUM5) and to record the 
time from start to finish.  Some test cases ran all six tasks 
synchronously and others took advantage of asynchronous (e.g., 
SAS MP Connect) methods to use additional CPUs on the same 
system (commonly referred to as “scaling-up”).  Some test cases 
took advantage of asynchronous execution to use additional 
CPUs on remote hosts (referred to as “scaling-out”).  Details 
regarding each test case are provided in Appendix A. 
 

THE SUGI28 MACRO 
A “sugi28” macro (see Appendix B) was created that performs a 
mixture of DATA steps and PROCs.  These DATA steps and 
PROCs simulate common SAS tasks performed against medium 
to large datasets in a commercial setting.  Tasks were weighted 
heavily (in terms of CPU time used) toward DATA steps, with 
significant weighting also given to PROC SORTs and PROC 
FREQs, and some weighting given to PROC PRINTs and PROC 
CONTENTS.   
 

TEST CASES 1 THROUGH 6:  NATIVE SYNCHRONOUS 
METHODS 
In these cases all six tasks were performed synchronously on a 
single platform where the data resided on the same platform.  
SAS/Connect, RCS, and RLS were not used.  These results 
provide a benchmark against which the other methods can be 
compared. 
 
Test Case Description Data Size Elapsed Time 

1 Native OS/390 M 0 min 30 sec 

2 Native OS/390 L 20 min 0 sec 
3 Native Unix M 0 min 24 sec 
4 Native Unix L 6 min 48 sec 

5 Native PC M 0 min 42 sec 
6 Native PC L 40 min 25 sec 

 

TEST CASES 7 THROUGH 12:  OS/390 AS CLIENT 
In these cases the OS/390 system functioned as the client and 
either accessed (Cases 7 & 8) a Unix system to perform 
asynchronous processing, or accessed native OS/390 CPUs 
(Cases 9 & 10) to perform asynchronous processing via SAS MP 
Connect, or accessed data using RLS from a Unix system 
(Cases 11 & 12) to perform synchronous processing on OS/390.  

 
Test Case Description Data Size Elapsed Time 

7 Async Unix RCS M 0 min 17 sec 

8 Async Unix RCS L 4 min 7 sec 
9 Async OS/390 MP M 0 min 43 sec 

10 Async OS/390 MP L 8 min 10 sec 

11 Sync Unix RLS M 3 min 6 sec 
12 Sync Unix RLS L 87 min 14 sec 

  

 

TEST CASES 13 THROUGH 20:  PC AS CLIENT 
In these cases a mixture of synchronous and asynchronous 
methods combined with either RLS or RCS was used.  In Cases 
13 & 14, PC SAS executes the six tasks synchronously on the 
PC using RLS to read the data from OS/390.  In Cases 15 & 16, 
the same process is used, but with the data being read from Unix.  
RCS is used in Cases 17 & 18 to asynchronously RSUBMIT to 
OS/390, which then uses RLS to read data from Unix.  Cases 19 
& 20 represented an effort to determine the effect on elapsed 
time from a process that used asynchronous RCS from the PC to 
OS/390 that was combined with the use of FTP and SAS 
hiperspaces on OS/390.  
 

Test 
Case Description 

Data 
Size 

Elapsed 
Time 

13 Sync OS/390 RLS M 5 min 1 sec 

14 Sync OS/390 RLS L 
200 min 0 
sec 

15 Sync Unix RLS M 1 min 21 sec 

16 Sync Unix RLS L 
59 min 32 
sec 

17 Async OS/390 RCS + Unix RLS M 2 min 3 sec 

18 Async OS/390 RCS + Unix RLS L 
58 min 54 
sec 

19 Async Special Case 1* M 4 min 1 sec 

20 Async Special Case 2* L 
120 min 33 
sec 

 
*Async Special Case 1 and Special Case 2:  PC as the client 
executes six tasks asynchronously each of which uses Remote 
Compute Services (RCS) to Remote Submit the sugi28 macro to 
OS/390.  The OS/390 tasks acquire medium or large size 
datasets from Unix using FILENAME FTP to PROC COPY each 
dataset from a Unix SAS transport file to an OS/390 hiperspace 
file, where the sugi28 macro processes it.   
 

TEST CASES SUMMARY 
it is readily apparent that use of Remote Library Services (RLS) 
degrades performance across all these cases.  Degradation is 
substantial when data sets are large.  This is not unexpected, 
since RLS pulls data from the remote system record by record.   
 
The speed boost provided by asynchronous processing is readily 
apparent when comparing Test Cases 1 & 2 with Test Cases 9 & 
10.  Although the performance degraded slightly for the medium 
data sets, in the large data set cases the elapsed time dropped 
by more than half.   
 
Perhaps the most surprising result was the performance achieved 
in Test Cases 7 & 8.  The elapsed time for the asynchronous 
execution of tasks on Unix via RCS from an OS/390 client 
actually beat the performance of asynchronous execution of tasks 
via other CPUs on the same OS/390 system.  In other words, 
“scaling out” of the tasks to another system with faster CPUs was 
better, in both the medium and large data set scenarios, than 
“scaling up” the tasks on the same system.  

CONCLUSION  
The twenty test cases described in this paper permit several 
conclusions: 
 

• Avoid RLS at almost all costs, especially in cases of large 
data sets 

• There is a benefit to performing tasks using asynchronous 
methods 
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• There can be a benefit to asynchronous “scaling-out” of 
tasks to faster CPUs on remote systems 

• The benefit in performance using asynchronous methods 
(whether scaling-up or scaling-out) can be particularly 
significant in cases involving large datasets 
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APPENDIX A 
 
Description of Test Cases 
 
Test Case 1: 
Native MVS:  All six iterations of the sugi28 macro executed synchronously against medium size datasets.   
 
Test Case 2:   
Native MVS:  All six iterations of the sugi28 macro executed synchronously against large size datasets.   
 
 Test Case 3: 
Native Unix:  All six iterations of the sugi28 macro executed synchronously against medium size datasets.   
 
Test Case 4: 
Native Unix:  All six iterations of the sugi28 macro executed synchronously against large size datasets.   
 
Test Case 5: 
Native PC:  All six iterations of the sugi28 macro executed synchronously against medium size datasets.   
 
Test Case 6: 
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Native PC: All six iterations of the sugi28 macro executed synchronously against large size datasets.   
 
Test Case 7: 
OS/390 as the client, with Unix as the remote system.  All six iterations of the sugi28 macro executed asynchronously on Unix against 
medium size datasets on Unix via SAS/Connect RCS (Remote Computing Services) between OS/390 and Unix. 
 
Test Case 8: 
OS/390 as the client, with Unix as the remote system.  All six iterations of the sugi28 macro executed asynchronously on Unix against large 
size datasets on Unix via SAS/Connect RCS (Remote Computing Services) between OS/390 and Unix. 
 
Test Case 9: 
OS/390 as the client Remote Submits all six iterations of the sugi28 macro asynchronously (against medium size datasets) on different CPUs 
on OS/390.  See the figure (below) for a graphical illustration of the process.   
 
Note:  USS stands for Unix System Services, which is the Unix subsystem of OS/390 that allows Unix processes to run on OS/390. The 
OS/390 Web server is a USS task, SAS/Intrnet has USS pieces, FTP is a USS task, etc. The SAS/CONNECT relevance comes into play 
because with the availability of USS and the spawner, a user can fire up a SAS/CONNECT session from their PC and signon to a USS task 
instead of TSO. There is no TSO script file involved (thus signon is slightly faster) and the real advantages are 1) Multiple sessions can be 
signed on,  2)  TSO is still available for other non-SAS processes. 
 

OS/390

XXXXX.SUGI28.MVS

Medium0
Medium1
….
Medium5

MVS USS
Calling Job (JOBXYZ)

%multi

%multi

%sugi28(medium1)

%sugi28(medium0)

%sugi28(medium5)

%multi

JOBXYZ

JOBXYZ

JOBXYZ

Cwait=no Spawner

 
 
Test Case 10: 
OS/390 as the client Remote Submits all six iterations of the sugi28 macro asynchronously (against large size datasets) on different CPUs on 
OS/390. 
 
Test Case 11: 
OS/390 as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size 
datasets from Unix. 
 
Test Case 12: 
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OS/390 as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size 
datasets from Unix. 
 
Test Case 13: 
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size 
datasets from OS/390. 
 
Test Case 14: 
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size 
datasets from OS/390. 
 
Test Case 15: 
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size 
datasets from Unix. 
 
Test Case 16: 
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size 
datasets from Unix. 
 
Test Case 17: 
PC as the client executes six tasks asynchronously on the PC, each task uses Remote Compute Services (RCS) to Remote Submit the 
sugi28 macro asynchronously to OS/390.   The OS/390 task then uses Remote Library Services (RLS) to read medium size datasets from 
Unix.  See the figure (below) for a graphical illustration of the process.  Note:  for simplicity, only two concurrent tasks are illustrated in the 
graphic;  the test case actually executed six concurrent tasks.  

PC
OS/390

Unix

Medium1

MVSUSS

SIGNON…wait=no

SIGNON…wait=no Task0

Task1

Task0

Task1

%sugi28

%sugi28

RLS
Waitfor _all_ task0 task1;
Rget task0;
Rget task1;

Spawner

Medium0

 
Test Case 18: 
PC as the client executes six tasks asynchronously on the PC, each task uses Remote Compute Services (RCS) to Remote Submit the 
sugi28 macro asynchronously to OS/390 .   The OS/390 task then uses Remote Library Services (RLS) to read medium size datasets from 
Unix.   
 
Test Case 19: 
PC as the client executes six tasks asynchronously each of which uses Remote Compute Services (RCS) to Remote Submit the sugi28 
macro to OS/390.  The OS/390 tasks acquire medium size datasets from Unix using FILENAME FTP to PROC COPY each dataset from a 
Unix SAS transport file to an OS/390 hiperspace file, where the sugi28 macro processes it.  
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Test Case 20: 
PC as the client executes six tasks asynchronously each of which uses Remote Compute Services (RCS) to Remote Submit the sugi28 
macro to OS/390.  The OS/390 tasks acquire large size datasets from Unix using FILENAME FTP to PROC COPY each dataset from a Unix 
SAS transport file to an OS/390 hiperspace file, where the sugi28 macro processes it. 
 

APPENDIX B 
 
SUGI28 Macro 
 
%MACRO SUGI28(SIZE=&SIZE,I=&I); 
   DATA &SIZE.&I;SET in.&SIZE.&I in.&SIZE.&I; 

  LENGTH X $ 10. ; 
  PCCPUBY=INT(PCCPUBY); 
  INAVG=INT(INAVG); 
  IORATE=INT(IORATE); 
  BACHAVG=INT(BACHAVG); 
  READYMAX=MAX(OF READY00-READY15); 
  READYMIN=MIN(OF READY00-READY15); 
  IF 0  LE PCCPUBY LE 10 THEN X='SLOW'; 
  IF 10 LT PCCPUBY LE 50 THEN X='MEDIUM'; 
  IF 50 LT PCCPUBY LE 80 THEN X='BUSY'; 
  IF       PCCPUBY GT 80 THEN X='VERY BUSY'; 
  WHERE (MACHINE='SYSA' OR MACHINE='SYSB') 
    AND DATE GE '01JAN95'D;; 
 
PROC SORT DATA=&SIZE.&I;BY MACHINE HOUR 
  TSOMAX BATMPL BACHAVG; 
DATA TEMP&I;SET &SIZE.&I; 
  BACHAVG=INT(BACHAVG); 
  BACHMAX=CEIL(BACHMAX); 
  BACHMIN=INT(BACHMIN); 
  BACHRAT=INT(BACHRAT); 
  BATMPL=CEIL(BATMPL); 
  BATRESP=INT(BATRESP); 
  BATSUSEC=CEIL(BATSUSEC/1000); 
  BATSVC=SQRT(BATSVC); 
   IF INMAX GE 5 THEN DO; 
     %DO K=10 %TO 15; 
      READY+READY&K; 
     %END; 
   END; 
   IF TSOMAX GE 5 THEN DO; 
     MAXINIT=MAX(BACHMAX,TSOMAX); 
     MININIT=MIN(BACHMIN,TSOMIN); 
   END; 
   IF TSOAVG GE 2 THEN DO; 
     RESP=MEAN(BATRESP,TSORESP); 
   END; 
 
   WHERE MACHINE='SYSA' ; 
DATA _NULL_; 
SET TEMP&I ; 
   DO I=1 TO 200; 
     BURN=RANUNI(3993030); 
   END; 
PROC SORT DATA=TEMP&I ; 
  BY X MACHINE READY DATETIME; 
PROC SORT DATA=TEMP&I OUT=JUNK&I; 
  BY DESCENDING DATETIME BATSVC BATTRANS; 
PROC FREQ DATA=TEMP&I ORDER=FREQ; 
  BY X  MACHINE; 
  TABLES HOUR INMIN INMAX INAVG TSOAVG TSOMIN 
    TSOMAX BAT: / 
  NOPRINT OUT=FREQ&I; 
 
PROC UNIVARIATE NOPRINT DATA=&SIZE.&I; 
BY MACHINE HOUR; 
  VAR INAVG INMAX INMIN PCCPUBY IORATE; 
  OUTPUT OUT=OUT&I MEAN=INAVG INMAX INMIN 
  PCCPUBY IORATE ; 
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PROC PRINT DATA=OUT&I; 
  TITLE1 "OUT&I"; 
PROC PRINT DATA=&SIZE.&I(OBS=1000); 
  TITLE1 "&SIZE.&I"; 
  VAR HOUR MACHINE INAVG PCCPUBY IORATE DATE 
  BACHAVG; 
PROC CONTENTS DATA=WORK.OUT&I.; 
PROC DATASETS LIBRARY=WORK; 
     MODIFY OUT&I; 
         INDEX CREATE HOUR; 
     MODIFY TEMP&I; 
         INDEX CREATE READY HOUR MAXINIT  
         MININIT; 
     DELETE TEMP&I JUNK&I FREQ&I; 
 

%MEND SUGI28; 

APPENDIX C 
An example of SAS code used to invoke asynchronus multiprocessing for one of the test cases.  This instance illustrates the launching of six 
threads on an OS/390 system to process large datasets using the “multi” macro (see appendix D for an example of the multi macro). 
 

OPTIONS LS=80 NOOVP FULLSTATS SGEN MPRINT 
   sasautos=('xxxxxx.sas.macros' sasautos); 
 
*-------------------------------------------; 
*                                           ; 
* SIZE=MEDIUM OR LARGE                      ; 
* I=0 THROUGH 5                             ; 
*                                           ; 
*-------------------------------------------; 
 
*-------------------------------------------; 
*                                           ; 
*  GET START TIME                           ; 
*                                           ; 
*-------------------------------------------; 
 
DATA _NULL_; 
 TIME=TIME(); 
 CALL SYMPUT('START',TIME); 
  RUN; 
 
*-------------------------------------------; 
*                                           ; 
* submit tasks to remote platform           ; 
*                                           ; 
*-------------------------------------------; 
%let mvs0=mvs.spawner; 
%let mvs1=mvs.spawner; 
%let mvs2=mvs.spawner; 
%let mvs3=mvs.spawner; 
%let mvs4=mvs.spawner; 
%let mvs5=mvs.spawner; 
 
%multi(SIZE=MEDIUM,I=0,platform=MVS,remote=mvs0); 
%multi(SIZE=MEDIUM,I=1,platform=MVS,remote=mvs1); 
%multi(SIZE=MEDIUM,I=2,platform=MVS,remote=mvs2); 
%multi(SIZE=MEDIUM,I=3,platform=MVS,remote=mvs3); 
%multi(SIZE=MEDIUM,I=4,platform=MVS,remote=mvs4); 
%multi(SIZE=MEDIUM,I=5,platform=MVS,remote=mvs5); 
  RUN; 
 
waitfor _all_ mvs0 mvs1 mvs2 mvs3 mvs4 mvs5; 
               
rget mvs0; 
rget mvs1; 
rget mvs2; 
rget mvs3; 
rget mvs4; 
rget mvs5; 

SUGI 28 Systems Architecture



 

8 

*-------------------------------------------; 
*                                           ; 
*  GET END   TIME AND CALCULATE ELAPSED TIME; 
*                                           ; 
*-------------------------------------------; 
DATA _NULL_; 
  FORMAT START 8.; 
  TIME=TIME(); 
  START=SYMGET('START'); 
   DURATION=TIME-START; 
   PUT '****** START TIME= ******' START    TIME12.5; 
   PUT '****** END   TIME= ******' TIME     TIME12.5; 
   PUT '****** DURATION  = ******' DURATION TIME12.2; 
   RUN; 

APPENDIX D 
An example of the “multi” macro executed by the code in Appendix C. 
 

%MACRO multi(SIZE=,I=,platform=,remote=,); 
 
 /*    MVS  EXECUTION    */ 
 
  %IF &platform=MVS     %THEN %DO; 
    OPTIONS autosignon=yes cwait=no                                    /* async signons          */ 
     sascmd="x: comamid=xmsn SASAUTOS=('XXXXXX.sas.macros' sasautos    /* sascmd implies MP      */ 
 
          MAUTOSOURCE" ; 
     SIGNON &remote ;                                                  /* signon to mvsn.spawner */ 
     %syslput size=&size ;                                             /* pass local macro vars  */ 
     %syslput i=&i;                                                    /* into MP session        */ 
 
     RSUBMIT  process=&remote;                                         /* rsub to mvsn.spawner   */ 
        LIBNAME in     'XXXXXX.SUGI28.MVS'  DISP=SHR; 
        %sugi28(size=&size,i=&i) ;                                     /* Run for specific size  */ 
        run;                                                           /* and I                  */  
     endrsubmit; 
  %END; 
 
 /*    unix execution    */ 
 
  %else %IF &platform=SunOs %THEN %DO; 
     FILENAME RLINK 'XXXXXX.CONNECT.RLINK(TCPUNIX)' ; 
     OPTIONS REMOTE=&REMOTE COMAMID=TCP; 
     SIGNON &remote ; 
     %syslput size=&size ; 
     %syslput i=&i; 
     RSUBMIT wait=no; 
       FILENAME RLINK '/home/xxxxxx/mvs1' ; 
       OPTIONS mautosource SASAUTOS=('/home/XXXXXX/macros' ) 
               REMOTE=MVS comamid=tcp SET=TCPTN3270 1; 
      /* LIBNAME in     '/home/xxxxxx/data'   */ ; 
      SIGNON MVS; 
      LIBNAME in REMOTE 'XXXXXX.SUGI28.MVS' SERVER=mvs; 
        %sugi28(size=&size,i=&i) ; 
        run; 
      SIGNOFF MVS; 
     endrsubmit; 
  %END; 
 
 /*    pc execution    */ 
 
   %ELSE %IF &platform=WIN_PRO %THEN %DO; 
     LIBNAME in      'c:\documents and settings\jl86201'  ; 
   %END; 
%mend multi; 
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