
Paper 277-28

- 1 -

Accelerating Performance of SAS® Applications via Rapid Extraction and Multiprocessing
John M. LaBore, Eli Lilly and Company, Indianapolis, IN

Fred R. Forst, Eli Lilly and Company, Indianapolis, IN

ABSTRACT
All large commercial operations generally face the same
problems: massive amounts of data; hardware/software
constraints; and tight deadlines to generate analyses and reports.
Handling these situations has always been a SAS software
strongpoint. However, even within SAS, determining the best
(i.e., fastest) method is not always easy, since SAS typically
provides multiple ways to accomplish the same task. This is
further complicated by the common situation within companies of
having multiple hardware platforms, multiple datasources, and a
vast array of reporting requirements and needs. Today’s rapid
rate of mergers and acquisitions, the creation of joint ventures,
and the evolution of all types of working alliances/collaborations
further increase the likelihood of such complex computing
environments. In this paper, we examine real-time performance
across a variety of hosts, clients, and datasources using different
approaches to extract and process data.

INTRODUCTION
There is a wide array of platforms, datasources, extraction, and
processing possibilities across the computing spectrum, and
often even within organizations. It would be difficult to assemble
a comprehensive set of test cases, so we restricted our test
cases to the platforms, client/server structures, processing
methods, and forms of distributed processing of immediate
interest. Our test cases comprised a matrix of:

Platforms:
OS/390
Sun/Solaris Unix
Windows 2000 (PC)

Client/server:
 Clients: OS/390, PC
 Hosts: OS/390, Unix, PC

Processing:

Synchronous
Asynchronous (MP)*

Distributed Processing
Remote compute services (RCS)
Remote library services (RLS)

Data Size
 Medium
 Large

*Asynchronous processing is also known as parallel processing;
SAS uses the term multiprocessing (MP) to describe
asynchronous/parallel processing.

Unix was not used as a client since the available system did not
have a defined TCP/IP service to send requests (e.g. SIGNON,
RSUBMIT, etc) to the 'listening' TCP/IP service (spawner) on
OS/390. The lack of a connection between Unix and OS/390's
spawner prevented parallel signons to OS/390.

Our interest was to evaluate real-time performance of various
permutations of this matrix and develop guidelines for end users.
Various authors have addressed aspects of this issue, notably
Bentley (2000, 2002), Theuwissen and Croonen (2002), and

Brinsfield (1999). As Brinsfield stated, “Most software
applications can be tuned by optimizing data access, data
processing, and data display. With client-server systems, you
must also try to optimize machine-to-machine transfer rates,
location of processing, and location of data.” Additionally, he
states “You must strive to reduce the transfer of data across the
network or modem and attempt to give the work to the machine
with the muscle. The basic concept is quite simple, but applying
the idea often requires some extra time and analysis.”

We also wanted to evaluate the balance between 1) Speed of a
particular machine (the ‘muscle’), 2) The ‘penalty’ associated
with data transfer across a network, and 3) The ability/simplicity
to take advantage of multi-processing. For example, perhaps the
speed of a machine was not so important if we could more easily
utilize parallel processing across several slower machines. Or
perhaps there is no advantage to parallel processing when there
are small data sources. Perhaps, even no amount of CPU speed
or parallel processing could overcome the inherent slowness
associated with RLS. We sought to answer this empirically. The
following test cases represent our efforts to answer these
questions.

TESTING ENVIRONMENT
The following chart shows performance parameters of the
hardware used for these test cases. This table does not show all
possible platforms for which SAS is available; however, these
were the platforms available when testing commenced, and
represent a relatively common set (individually and collectively)
in use across many organizations. These numbers merely give a
basis of the differences between our platforms. It is not intended
to be a comparison between, say, Unix and OS/390 simply
because our Unix processors and our OS/390 processors on the
test systems are not necessarily from the same era.

Platform
Speed of

CPUs

Elapsed time to
execute a large

DATA step (450K
obs) (CPU

intensive work)

Elapsed time to
read 145Mb file

(I/O intensive
work)

OS/390 150 MIPS
(570 Mhz)

19 minutes 16.4 seconds

Solaris
Unix

900 Mhz 7 minutes 15.2 seconds

Windows
2000

733 Mhz 40 minutes 11 seconds

SAS Version 8 was the SAS version used on each of the
computing platforms during the execution of the test cases.

DATA SIZES
In our testing, we elected to assess only medium (M) and large
(L) data sizes. These two sizes were defined:

Category Observations Size
Medium 50,000 observations 15 Mb

Large 1,600,000 observations 502 Mb

SUGI 28 Systems Architecture

2

Small data sizes were left out 1) to reduce the number of test
cases, and 2) because when dealing with a small amount of data,
any asynchronous method will be slower than the synchronous
method due to the overhead cost of creating the parallel
sessions. Each creation of a parallel task takes a few (4-10)
seconds for the sign-on.

TEST CASES
For each data size (medium and large) there were six datasets
created (MEDIUM0-MEDIUM5 and LARGE0-LARGE5). These
datasets were replicated into SAS libraries on the PC, Unix, and
OS/390 platforms. The goal of each test case was to execute the
sugi28 macro (see next section) six times, once for each dataset
of the same size (e.g. MEDIUM0-MEDIUM5) and to record the
time from start to finish. Some test cases ran all six tasks
synchronously and others took advantage of asynchronous (e.g.,
SAS MP Connect) methods to use additional CPUs on the same
system (commonly referred to as “scaling-up”). Some test cases
took advantage of asynchronous execution to use additional
CPUs on remote hosts (referred to as “scaling-out”). Details
regarding each test case are provided in Appendix A.

THE SUGI28 MACRO
A “sugi28” macro (see Appendix B) was created that performs a
mixture of DATA steps and PROCs. These DATA steps and
PROCs simulate common SAS tasks performed against medium
to large datasets in a commercial setting. Tasks were weighted
heavily (in terms of CPU time used) toward DATA steps, with
significant weighting also given to PROC SORTs and PROC
FREQs, and some weighting given to PROC PRINTs and PROC
CONTENTS.

TEST CASES 1 THROUGH 6: NATIVE SYNCHRONOUS
METHODS
In these cases all six tasks were performed synchronously on a
single platform where the data resided on the same platform.
SAS/Connect, RCS, and RLS were not used. These results
provide a benchmark against which the other methods can be
compared.

Test Case Description Data Size Elapsed Time

1 Native OS/390 M 0 min 30 sec

2 Native OS/390 L 20 min 0 sec
3 Native Unix M 0 min 24 sec
4 Native Unix L 6 min 48 sec

5 Native PC M 0 min 42 sec
6 Native PC L 40 min 25 sec

TEST CASES 7 THROUGH 12: OS/390 AS CLIENT
In these cases the OS/390 system functioned as the client and
either accessed (Cases 7 & 8) a Unix system to perform
asynchronous processing, or accessed native OS/390 CPUs
(Cases 9 & 10) to perform asynchronous processing via SAS MP
Connect, or accessed data using RLS from a Unix system
(Cases 11 & 12) to perform synchronous processing on OS/390.

Test Case Description Data Size Elapsed Time

7 Async Unix RCS M 0 min 17 sec

8 Async Unix RCS L 4 min 7 sec
9 Async OS/390 MP M 0 min 43 sec

10 Async OS/390 MP L 8 min 10 sec

11 Sync Unix RLS M 3 min 6 sec
12 Sync Unix RLS L 87 min 14 sec

TEST CASES 13 THROUGH 20: PC AS CLIENT
In these cases a mixture of synchronous and asynchronous
methods combined with either RLS or RCS was used. In Cases
13 & 14, PC SAS executes the six tasks synchronously on the
PC using RLS to read the data from OS/390. In Cases 15 & 16,
the same process is used, but with the data being read from Unix.
RCS is used in Cases 17 & 18 to asynchronously RSUBMIT to
OS/390, which then uses RLS to read data from Unix. Cases 19
& 20 represented an effort to determine the effect on elapsed
time from a process that used asynchronous RCS from the PC to
OS/390 that was combined with the use of FTP and SAS
hiperspaces on OS/390.

Test
Case Description

Data
Size

Elapsed
Time

13 Sync OS/390 RLS M 5 min 1 sec

14 Sync OS/390 RLS L
200 min 0
sec

15 Sync Unix RLS M 1 min 21 sec

16 Sync Unix RLS L
59 min 32
sec

17 Async OS/390 RCS + Unix RLS M 2 min 3 sec

18 Async OS/390 RCS + Unix RLS L
58 min 54
sec

19 Async Special Case 1* M 4 min 1 sec

20 Async Special Case 2* L
120 min 33
sec

*Async Special Case 1 and Special Case 2: PC as the client
executes six tasks asynchronously each of which uses Remote
Compute Services (RCS) to Remote Submit the sugi28 macro to
OS/390. The OS/390 tasks acquire medium or large size
datasets from Unix using FILENAME FTP to PROC COPY each
dataset from a Unix SAS transport file to an OS/390 hiperspace
file, where the sugi28 macro processes it.

TEST CASES SUMMARY
it is readily apparent that use of Remote Library Services (RLS)
degrades performance across all these cases. Degradation is
substantial when data sets are large. This is not unexpected,
since RLS pulls data from the remote system record by record.

The speed boost provided by asynchronous processing is readily
apparent when comparing Test Cases 1 & 2 with Test Cases 9 &
10. Although the performance degraded slightly for the medium
data sets, in the large data set cases the elapsed time dropped
by more than half.

Perhaps the most surprising result was the performance achieved
in Test Cases 7 & 8. The elapsed time for the asynchronous
execution of tasks on Unix via RCS from an OS/390 client
actually beat the performance of asynchronous execution of tasks
via other CPUs on the same OS/390 system. In other words,
“scaling out” of the tasks to another system with faster CPUs was
better, in both the medium and large data set scenarios, than
“scaling up” the tasks on the same system.

CONCLUSION
The twenty test cases described in this paper permit several
conclusions:

• Avoid RLS at almost all costs, especially in cases of large
data sets

• There is a benefit to performing tasks using asynchronous
methods

SUGI 28 Systems Architecture

3

• There can be a benefit to asynchronous “scaling-out” of
tasks to faster CPUs on remote systems

• The benefit in performance using asynchronous methods
(whether scaling-up or scaling-out) can be particularly
significant in cases involving large datasets

REFERENCES
Bentley, John E., (2000) “An Introduction to Parallel Computing”,
Proceedings of the Twenty-Fifth Annual SAS Users Group
International Conference, 1513-1522.

Bentley, John E. (2002) “Using SAS to Extract From a Parallel
RDBMS”, The SESUG Informant, Vol. 4:2, 16-18.

Brinsfield, Eric (1999) “SAS Client-Server Development:
Through Thick and Thin and Version 8”, Proceedings of the
Seventh Annual Conference of the SouthEast SAS Users Group,
427-433.

Garner, Cheryl, (2000) “Multiprocessing with Version 8 of the
SAS System”, Proceedings of the Twenty-Fifth Annual SAS
Users Group International Conference, 95-100.

SAS Institute Inc., Multiprocessing with SAS Software Course
Notes, Cary, NC: SAS Institute Inc., 2002.

Theuwissen, Henri, and Nancy Croonen, (2002) “SAS Accessing
DB2 Data: a Performance Victory Away”, Proceedings of the
Twenty-Seventh Annual SAS Users Group International
Conference, 1-9.

ACKNOWLEDGMENTS
The authors would like to acknowledge the assistance of Thomas
H. Burger and John Krogulecki for reviewing technical aspects of
this manuscript, and Linda E. LaBore for editing assistance.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

John M. LaBore
Lilly Corporate Center
Eli Lilly and Company
DC 1745
Indianapolis, IN 46285
Work phone: 317.277.6387
Email: jml@lilly.com
Web: www.lilly.com

 Fred R. Forst
 Lilly Corporate Center
 Eli Lilly and Company
 DC 2254
 Indianapolis, IN 46285
 Work phone: 317.276.0842
 Email: frf@lilly.com
 Web: www.lilly.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A

Description of Test Cases

Test Case 1:
Native MVS: All six iterations of the sugi28 macro executed synchronously against medium size datasets.

Test Case 2:
Native MVS: All six iterations of the sugi28 macro executed synchronously against large size datasets.

 Test Case 3:
Native Unix: All six iterations of the sugi28 macro executed synchronously against medium size datasets.

Test Case 4:
Native Unix: All six iterations of the sugi28 macro executed synchronously against large size datasets.

Test Case 5:
Native PC: All six iterations of the sugi28 macro executed synchronously against medium size datasets.

Test Case 6:

SUGI 28 Systems Architecture

4

Native PC: All six iterations of the sugi28 macro executed synchronously against large size datasets.

Test Case 7:
OS/390 as the client, with Unix as the remote system. All six iterations of the sugi28 macro executed asynchronously on Unix against
medium size datasets on Unix via SAS/Connect RCS (Remote Computing Services) between OS/390 and Unix.

Test Case 8:
OS/390 as the client, with Unix as the remote system. All six iterations of the sugi28 macro executed asynchronously on Unix against large
size datasets on Unix via SAS/Connect RCS (Remote Computing Services) between OS/390 and Unix.

Test Case 9:
OS/390 as the client Remote Submits all six iterations of the sugi28 macro asynchronously (against medium size datasets) on different CPUs
on OS/390. See the figure (below) for a graphical illustration of the process.

Note: USS stands for Unix System Services, which is the Unix subsystem of OS/390 that allows Unix processes to run on OS/390. The
OS/390 Web server is a USS task, SAS/Intrnet has USS pieces, FTP is a USS task, etc. The SAS/CONNECT relevance comes into play
because with the availability of USS and the spawner, a user can fire up a SAS/CONNECT session from their PC and signon to a USS task
instead of TSO. There is no TSO script file involved (thus signon is slightly faster) and the real advantages are 1) Multiple sessions can be
signed on, 2) TSO is still available for other non-SAS processes.

OS/390

XXXXX.SUGI28.MVS

Medium0
Medium1
….
Medium5

MVS USS
Calling Job (JOBXYZ)

%multi

%multi

%sugi28(medium1)

%sugi28(medium0)

%sugi28(medium5)

%multi

JOBXYZ

JOBXYZ

JOBXYZ

Cwait=no Spawner

Test Case 10:
OS/390 as the client Remote Submits all six iterations of the sugi28 macro asynchronously (against large size datasets) on different CPUs on
OS/390.

Test Case 11:
OS/390 as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size
datasets from Unix.

Test Case 12:

SUGI 28 Systems Architecture

5

OS/390 as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size
datasets from Unix.

Test Case 13:
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size
datasets from OS/390.

Test Case 14:
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size
datasets from OS/390.

Test Case 15:
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read medium size
datasets from Unix.

Test Case 16:
PC as the client executes all six iterations of the sugi28 macro synchronously, using Remote Library Services (RLS) to read large size
datasets from Unix.

Test Case 17:
PC as the client executes six tasks asynchronously on the PC, each task uses Remote Compute Services (RCS) to Remote Submit the
sugi28 macro asynchronously to OS/390. The OS/390 task then uses Remote Library Services (RLS) to read medium size datasets from
Unix. See the figure (below) for a graphical illustration of the process. Note: for simplicity, only two concurrent tasks are illustrated in the
graphic; the test case actually executed six concurrent tasks.

PC
OS/390

Unix

Medium1

MVSUSS

SIGNON…wait=no

SIGNON…wait=no Task0

Task1

Task0

Task1

%sugi28

%sugi28

RLS
Waitfor _all_ task0 task1;
Rget task0;
Rget task1;

Spawner

Medium0

Test Case 18:
PC as the client executes six tasks asynchronously on the PC, each task uses Remote Compute Services (RCS) to Remote Submit the
sugi28 macro asynchronously to OS/390 . The OS/390 task then uses Remote Library Services (RLS) to read medium size datasets from
Unix.

Test Case 19:
PC as the client executes six tasks asynchronously each of which uses Remote Compute Services (RCS) to Remote Submit the sugi28
macro to OS/390. The OS/390 tasks acquire medium size datasets from Unix using FILENAME FTP to PROC COPY each dataset from a
Unix SAS transport file to an OS/390 hiperspace file, where the sugi28 macro processes it.

SUGI 28 Systems Architecture

6

Test Case 20:
PC as the client executes six tasks asynchronously each of which uses Remote Compute Services (RCS) to Remote Submit the sugi28
macro to OS/390. The OS/390 tasks acquire large size datasets from Unix using FILENAME FTP to PROC COPY each dataset from a Unix
SAS transport file to an OS/390 hiperspace file, where the sugi28 macro processes it.

APPENDIX B

SUGI28 Macro

%MACRO SUGI28(SIZE=&SIZE,I=&I);
 DATA &SIZE.&I;SET in.&SIZE.&I in.&SIZE.&I;

 LENGTH X $ 10. ;
 PCCPUBY=INT(PCCPUBY);
 INAVG=INT(INAVG);
 IORATE=INT(IORATE);
 BACHAVG=INT(BACHAVG);
 READYMAX=MAX(OF READY00-READY15);
 READYMIN=MIN(OF READY00-READY15);
 IF 0 LE PCCPUBY LE 10 THEN X='SLOW';
 IF 10 LT PCCPUBY LE 50 THEN X='MEDIUM';
 IF 50 LT PCCPUBY LE 80 THEN X='BUSY';
 IF PCCPUBY GT 80 THEN X='VERY BUSY';
 WHERE (MACHINE='SYSA' OR MACHINE='SYSB')
 AND DATE GE '01JAN95'D;;

PROC SORT DATA=&SIZE.&I;BY MACHINE HOUR
 TSOMAX BATMPL BACHAVG;
DATA TEMP&I;SET &SIZE.&I;
 BACHAVG=INT(BACHAVG);
 BACHMAX=CEIL(BACHMAX);
 BACHMIN=INT(BACHMIN);
 BACHRAT=INT(BACHRAT);
 BATMPL=CEIL(BATMPL);
 BATRESP=INT(BATRESP);
 BATSUSEC=CEIL(BATSUSEC/1000);
 BATSVC=SQRT(BATSVC);
 IF INMAX GE 5 THEN DO;
 %DO K=10 %TO 15;
 READY+READY&K;
 %END;
 END;
 IF TSOMAX GE 5 THEN DO;
 MAXINIT=MAX(BACHMAX,TSOMAX);
 MININIT=MIN(BACHMIN,TSOMIN);
 END;
 IF TSOAVG GE 2 THEN DO;
 RESP=MEAN(BATRESP,TSORESP);
 END;

 WHERE MACHINE='SYSA' ;
DATA _NULL_;
SET TEMP&I ;
 DO I=1 TO 200;
 BURN=RANUNI(3993030);
 END;
PROC SORT DATA=TEMP&I ;
 BY X MACHINE READY DATETIME;
PROC SORT DATA=TEMP&I OUT=JUNK&I;
 BY DESCENDING DATETIME BATSVC BATTRANS;
PROC FREQ DATA=TEMP&I ORDER=FREQ;
 BY X MACHINE;
 TABLES HOUR INMIN INMAX INAVG TSOAVG TSOMIN
 TSOMAX BAT: /
 NOPRINT OUT=FREQ&I;

PROC UNIVARIATE NOPRINT DATA=&SIZE.&I;
BY MACHINE HOUR;
 VAR INAVG INMAX INMIN PCCPUBY IORATE;
 OUTPUT OUT=OUT&I MEAN=INAVG INMAX INMIN
 PCCPUBY IORATE ;

SUGI 28 Systems Architecture

7

PROC PRINT DATA=OUT&I;
 TITLE1 "OUT&I";
PROC PRINT DATA=&SIZE.&I(OBS=1000);
 TITLE1 "&SIZE.&I";
 VAR HOUR MACHINE INAVG PCCPUBY IORATE DATE
 BACHAVG;
PROC CONTENTS DATA=WORK.OUT&I.;
PROC DATASETS LIBRARY=WORK;
 MODIFY OUT&I;
 INDEX CREATE HOUR;
 MODIFY TEMP&I;
 INDEX CREATE READY HOUR MAXINIT
 MININIT;
 DELETE TEMP&I JUNK&I FREQ&I;

%MEND SUGI28;

APPENDIX C
An example of SAS code used to invoke asynchronus multiprocessing for one of the test cases. This instance illustrates the launching of six
threads on an OS/390 system to process large datasets using the “multi” macro (see appendix D for an example of the multi macro).

OPTIONS LS=80 NOOVP FULLSTATS SGEN MPRINT
 sasautos=('xxxxxx.sas.macros' sasautos);

*---;
* ;
* SIZE=MEDIUM OR LARGE ;
* I=0 THROUGH 5 ;
* ;
*---;

*---;
* ;
* GET START TIME ;
* ;
*---;

DATA _NULL_;
 TIME=TIME();
 CALL SYMPUT('START',TIME);
 RUN;

*---;
* ;
* submit tasks to remote platform ;
* ;
*---;
%let mvs0=mvs.spawner;
%let mvs1=mvs.spawner;
%let mvs2=mvs.spawner;
%let mvs3=mvs.spawner;
%let mvs4=mvs.spawner;
%let mvs5=mvs.spawner;

%multi(SIZE=MEDIUM,I=0,platform=MVS,remote=mvs0);
%multi(SIZE=MEDIUM,I=1,platform=MVS,remote=mvs1);
%multi(SIZE=MEDIUM,I=2,platform=MVS,remote=mvs2);
%multi(SIZE=MEDIUM,I=3,platform=MVS,remote=mvs3);
%multi(SIZE=MEDIUM,I=4,platform=MVS,remote=mvs4);
%multi(SIZE=MEDIUM,I=5,platform=MVS,remote=mvs5);
 RUN;

waitfor _all_ mvs0 mvs1 mvs2 mvs3 mvs4 mvs5;

rget mvs0;
rget mvs1;
rget mvs2;
rget mvs3;
rget mvs4;
rget mvs5;

SUGI 28 Systems Architecture

8

*---;
* ;
* GET END TIME AND CALCULATE ELAPSED TIME;
* ;
*---;
DATA _NULL_;
 FORMAT START 8.;
 TIME=TIME();
 START=SYMGET('START');
 DURATION=TIME-START;
 PUT '****** START TIME= ******' START TIME12.5;
 PUT '****** END TIME= ******' TIME TIME12.5;
 PUT '****** DURATION = ******' DURATION TIME12.2;
 RUN;

APPENDIX D
An example of the “multi” macro executed by the code in Appendix C.

%MACRO multi(SIZE=,I=,platform=,remote=,);

 /* MVS EXECUTION */

 %IF &platform=MVS %THEN %DO;
 OPTIONS autosignon=yes cwait=no /* async signons */
 sascmd="x: comamid=xmsn SASAUTOS=('XXXXXX.sas.macros' sasautos /* sascmd implies MP */

 MAUTOSOURCE" ;
 SIGNON &remote ; /* signon to mvsn.spawner */
 %syslput size=&size ; /* pass local macro vars */
 %syslput i=&i; /* into MP session */

 RSUBMIT process=&remote; /* rsub to mvsn.spawner */
 LIBNAME in 'XXXXXX.SUGI28.MVS' DISP=SHR;
 %sugi28(size=&size,i=&i) ; /* Run for specific size */
 run; /* and I */
 endrsubmit;
 %END;

 /* unix execution */

 %else %IF &platform=SunOs %THEN %DO;
 FILENAME RLINK 'XXXXXX.CONNECT.RLINK(TCPUNIX)' ;
 OPTIONS REMOTE=&REMOTE COMAMID=TCP;
 SIGNON &remote ;
 %syslput size=&size ;
 %syslput i=&i;
 RSUBMIT wait=no;
 FILENAME RLINK '/home/xxxxxx/mvs1' ;
 OPTIONS mautosource SASAUTOS=('/home/XXXXXX/macros')
 REMOTE=MVS comamid=tcp SET=TCPTN3270 1;
 /* LIBNAME in '/home/xxxxxx/data' */ ;
 SIGNON MVS;
 LIBNAME in REMOTE 'XXXXXX.SUGI28.MVS' SERVER=mvs;
 %sugi28(size=&size,i=&i) ;
 run;
 SIGNOFF MVS;
 endrsubmit;
 %END;

 /* pc execution */

 %ELSE %IF &platform=WIN_PRO %THEN %DO;
 LIBNAME in 'c:\documents and settings\jl86201' ;
 %END;
%mend multi;

SUGI 28 Systems Architecture

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

