
 1

 Paper 275-28

SAS® Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data

David Izrael, Annabella A. Battaglia, David C. Hoaglin, and Michael P. Battaglia, Abt Associates Inc., Cambridge, MA

1. Introduction

When the data come from a survey with weights, working
with logistic regression models often involves a number of
challenges. We present SAS macros to facilitate three key
steps: 1) selecting a model, 2) comparing the predictive
ability of several models, and 3) assessing variability. For
stepwise selection of a model, one macro augments the
SAS output by displaying two information criteria, the
Akaike Information Criterion and the Schwartz Criterion,
at each step and identifying a stopping point for the
stepwise model. One measure of predictive ability is the
statistic c, which PROC LOGISTIC calculates in
unweighted form. We present a SAS macro for c that takes
the survey weights into account. The resampling method
known as the bootstrap provides a framework for assessing
variability of models and estimates. For comparing the
models, we needed to assess the differences in c against the
variation in the data. We developed a set of bootstrap
samples, and those allowed us to calculate a bootstrap
standard error for the difference in c. With this brief
overview we now describe these three steps and then
discuss the application of them in our study.

2. Selecting a Model

The building of a logistic regression model often proceeds
stepwise, adding one explanatory variable at each step.
Customarily, the variable added is the one that produces the
greatest increase in the (binomial) likelihood. These steps
can be allowed to continue until all available explanatory
variables are in the model; but beyond some point the
contributions are often minor, reflecting mainly noise in the
data. A variety of criteria have been proposed for
determining when to stop adding variables to the model or
for selecting a suitably parsimonious model. One basic
strategy uses the likelihood-ratio test (based on the chi-
squared distribution of –2 times the logarithm of the
likelihood, under appropriate assumptions) and requires
that each variable added be significant at a specified level
(e.g., SLENTRY = 0.05, the default value).

Another approach starts with –2 log L and adds a “penalty
term” that is an increasing function of the number of
parameters in the model. Without the penalty term,
maximizing the likelihood (L) is equivalent to minimizing
–2 log L. Thus the penalty term aims to guide the selection
toward a more-parsimonious model by causing the
minimum of the modified log-likelihood to occur at a
smaller number of parameters. The two best-known

instances of this approach are the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion
(BIC), also known as the Schwartz Criterion (SC). If si is
the number of parameters associated with the explanatory
variables that are in the model at Step i and k is the total
number of response levels minus one (k = 1, if the response
is binomial), then

 AICi = -2 log Li + 2(k+si) .

And if n is the number of observations, then

 SCi = -2 log Li + (k+si)log(n).

The above formulas are used by PROC LOGISTIC to
calculate AIC and SC. Because these criteria have
advantages and disadvantages, we usually prefer to display
both AIC and SC for each step, until the likelihood-ratio
test adds no further variables to the model. Shtatland et al.
(2000) discuss some properties of AIC and SC and
recommend their complementary use.

Using SAS to select a weighted logistic regression model

We use stepwise model selection to calculate, tabulate, and
plot AIC and SC at each step in a user-friendly format, and
to determine the step at which SC reaches its minimum. In
contrast to the conventional significance level of entry
(SLENTRY or SLE) equal to 0.05, we use (following
Shtatland et al. 2000) SLE high enough (0.95, for instance)
to allow the stepwise selection to continue until the model
includes all explanatory variables of interest.

The macro %SELECT presented below uses ODS facilities
to retrieve the data related to AIC and SC along with other
statistics at each step of the stepwise procedure, calculates
and marks the recommended stopping point as the step
where SC reaches its minimum, and also calculates the
change in AIC and SC at each step. The macro consolidates
all analytical data into one customized table and generates
AIC and SC plots as functions of STEP (Table A1 and
Figure A1 in the Appendix).

The macro is presented in Exhibit 1. It includes extensive
comments and hardly needs further explanation.

Exhibit 1. Macro %SELECT

%macro select (ds = /* input data set */
 outds = /* output data set */

SUGI 28 Statistics and Data Analysis

 2

 weight= /* survey weight */
 model = /* all predictors must
 be categorical */
 depvar= /* dependent variable */
 sle = /* probability for entry */
);

ods listing close;
ods output FitStatistics=_crit
ModelBuildingSummary=_summary; /* define data sets for
 ODS output */

proc logistic descending data=&ds; /* proc logistic */
weight &weight/norm; /* weight normalized */
class &model; /* all variables
 categorical */
 model &depvar = &model
/selection= stepwise sle=&sle; /* modifiable SLENTRY */
run;

ods listing;
data _crit (keep=step AIC_: SC_:); /* retrieve AIC
 and SC related */
set _crit(where =(Criterion in ('AIC','SC'))); /* values from
 ODS data set */
by step;
retain AIC_IO AIC_IC SC_IO SC_IC;
if first.step then do; AIC_IO=InterceptOnly; /* regrouping
 variables for customization*/

AIC_IC=InterceptAndCovariates;end;
if last.step then do;SC_IO=InterceptOnly;
SC_IC=InterceptAndCovariates; output; end;
run;

data _crit;
merge _crit _summary; /* merge with step-by-step data */
by step; /* for entered and removed variables */
length Variable $100;
if EffectEntered ne ' '
then Variable=trim('+' || EffectEntered); /* + in front of entered
 variable */
else
Variable=trim('-' || EffectRemoved); /* - in front of
 removed variable */
drop Effect: AIC_IO SC_IO;
run;

proc sql noprint; /* determine step where SC
 reaches minimum */
create table _sc as
select Step
from _crit
having SC_IC=min(SC_IC);
quit;

data _crit; /* put together tables with
 criteria */
retain
Step Variable Label DF NumberInModel
ScoreChiSq WaldChiSq ProbChiSq AIC_IC
diff_aic SC_ICC diff_sc;

merge _crit _sc(in=_2);
by Step;
retain aic_ret sc_ret;
if _2 then SC_ICC=put(SC_IC,11.2) || '*'; else /* mark step with
 minimum SC */
 SC_ICC=put(SC_IC,11.2);
if _n_ =1 then do; aic_ret=aic_ic; sc_ret=sc_ic; end;
else
do;
diff_aic=aic_ret - aic_ic; /* change in AIC at each step */

diff_sc=sc_ret - sc_ic; /* change in SC at each step */
aic_ret=aic_ic;
sc_ret = sc_ic;
end;
format diff_: 10.2;
drop aic_ret sc_ret label ;
run;

ods listing close;
ods pdf file="select.pdf"; /* output into PDF file */
ods proclabel="Stepwise Regression Table";

options ls=150;
 /* print the table */
proc print noobs width=min label;
var Step Variable DF NumberInModel
ScoreChiSq WaldChiSq ProbChiSq
AIC_IC diff_aic SC_ICC diff_sc
;
label
 AIC_IC='AIC'
 SC_ICC ='SC'
 label = 'Label'
 ScoreChiSq='Score Chi- Square'
 WaldChiSq ='Wald Chi- Square'
 ProbChiSq ='Pr > Chi- Square'
 diff_aic='Decrease in AIC'
 diff_sc ='Decrease in SC'
 Variable='Variable Entered(+) or Removed(-)';

footnote "NOTE: SLE=&sle IS USED FOR ENTRY INTO MODEL";
footnote2 ' * INDICATES MINIMUM OF SC ';
run;

data _crit(keep=step value criterion);
set _crit;
criterion='AIC'; value=aic_ic; output;
criterion='SC '; value=sc_ic; output;
run;
 /* plot AIC and SC by step */

 goptions reset=global gunit=pct rotate=portrait
 cback=white colors=(black)
 htitle=2 htext=2.0 autofeed ftext="Helvetica/bold"
 device=pdf;

footnote1 justify=right "&sysdate &systime";
symbol1 interpol=join value=dot height=2 color=black;
symbol2 interpol=join value=circle height=2 color=black;

axis1 label=("Step") offset=(5,5)pct minor=none;
axis2 label=("Value") offset = (5,5) pct;
ods proclabel="Plot of Criteria by Step" ;

 proc gplot data=_crit;
 plot
 Value*Step=criterion
 / haxis=axis1 vaxis=axis2;
run;

ods pdf close;

%mend;

3. Comparing Predictive Ability of Models

For comparing the predictive ability of logistic regression
models, one useful measure is the area under the receiver
operating characteristic (ROC) curve, abbreviated AUC.
Previously, we presented a macro for calculating AUC

SUGI 28 Statistics and Data Analysis

 3

directly for weighted data from a survey, by summing the
area of trapezoids (Izrael et al. 2002). As is shown in
Hanley and McNeil (1982), an equivalent measure is the
statistic c, which PROC LOGISTIC computes (for
unweighted survey data) and displays in the Association of
Predicted Probabilities and Observed Responses table; that
is, the value of c equals AUC. Because c is usually more
convenient computationally, we have also developed a
macro for calculating it for weighted survey data.

The receiver operating characteristic curve is often used to
describe the accuracy of tests in diagnostic medicine, as
summarized in the review by Pepe (2000). Briefly, the test
yields a numerical result X, such that larger values are
more indicative of disease. One can choose a threshold z
and dichotomize the test by defining X ≥ z as a positive
result. From subjects whose true disease status is known
(both diseased and nondiseased), one obtains the false-
positive rate and the false-negative rate for each value of z.
The ROC curve is obtained by plotting 1 minus the false-
negative rate against the false-positive rate for all possible
choices of z. That is, each value of z yields a point on the
curve, which includes the point (0,0) (if z is high enough,
the test produces no positives) and the point (1,1) (if z is
low enough, all outcomes are positive).

The area under the ROC curve provides a summary of the
accuracy of the diagnostic test. As Pepe points out, the
AUC “can be interpreted as the probability that the test
result from a randomly chosen diseased individual is more
indicative of disease than that from a randomly chosen
nondiseased individual.” This interpretation or
equivalence, discussed also by Hanley and McNeil (1982),
focuses attention on the distributions of the test result (for
example, the concentration of a chemical in blood) in
diseased and nondiseased persons. If the two distributions
are clearly separated, the probability will be close to 1; but
if they are centered at the same value, the probability will
be ½. In the context of logistic regression we refer to event
cases and non-event cases, rather than diseased and
nondiseased persons. The “test result” is the predicted
probability of an event, from the logistic regression model.

The definition of c involves concordant and discordant
pairs of observations. One begins by forming all pairs in
which one case is an event and the other is a non-event.
Denote the total number of pairs by t. A pair is concordant
if the event observation has a higher predicted probability
than the non-event observation; a pair is discordant if the
event observation has a lower predicted probability than the
non-event observation; and if the predicted probabilities are
equal for the two observations, the pair is a tie. Denote the
number of concordant pairs by nc and the number of
discordant pairs by nd. Then the number of tied pairs is t –
nc – nd. In unweighted data the formula for c is

 c = (nc + 0.5(t – nc – nd))/t . (1)

Using SAS to estimate c for the weighted logistic
regression

In this paper we investigate the behavior of c in a weighted
logistic regression model. It turns out that in fitting a
model, the Logistic procedure takes the survey weights into
account, but it ignores them or uses them incorrectly in
calculating the measures in the Association of Predicted
Probabilities and Observed Responses table, the c-statistic
in particular. One can test a model with a few predictors
with and without weights to confirm that the Logistic
procedure gives the same value of c for both of them. To
calculate c in the presence of survey weights, we wrote a
macro, %WTC, that takes the survey weights into account.
We give an overview of the macro below and consider its
application, both as a stand-alone program and as a
subroutine in a bootstrap procedure.

The macro computes c based on the formula (1) calculating
weighted components nc, nd, and t.

Let the number of event responses in a sample be E and the
number of non-event responses be N. The total unweighted
number of pairs being considered is E*N. Let us consider
the (i,j) pair of observations, and let the weight and the
predicted probability for the event observation (response is
1) be wi and p_hati and for the non-event observation
(response is 0) be wj and p_hatj. If p_hati is greater than
p_hatj, then, following the definition given above, the pair
is concordant and its weighted representation wi * wj is
added to the weighted total of concordant pairs (nc).

Similarly, if p_hati is less than p_hatj, then the pair is
discordant, and its weighted representation wi * wj is added
to the weighted total of discordant pairs (nd). Finally, if the
pair is neither concordant nor discordant, the product wi *
wj is added to the weighted total of tied pairs. Denoting WE
as the total weighted number of event responses and WN as
the total weighted number of non-event responses, the
weighted total number of pairs is calculated as t = WE *WN.
Based upon the weighted totals accumulated after E*N
comparisons, the macro calculates the c-statistic by formula
(1). The macro prints the value of c and stores it in a
specified data set. Exhibit 2 presents the macro. We now
describe its function section by section.

Ø contain the macro’s input parameters; model represents
the string of explanatory variables, all of which must be
categorical (otherwise the number of distinct predicted
probabilities could be very large); depvar is a response
variable, assumed to have the value of 1 for an event and 0
for a non-event; replica must be blank when running the
macro as a stand-alone program; otherwise it must be
assigned the name of a macro variable that serves as a
replicate counter when calculation of c is done for each
bootstrap replicate.

SUGI 28 Statistics and Data Analysis

 4

Ù check that the variables in the model are present in the
input data set. If not, the macro outputs names of absent
variables into the LOG and stops execution.

Ú PROC LOGISTIC’s statements and options. The data
set _PROBS specified in the option OUT will include all
variables of the input data set, along with the predicted
probability _P_HAT.

Û
 calculate unweighted and weighted numbers that

contribute to formula (1).

Ü

calculate weighted c according to formula (1).

Exhibit 2. Macro %WTC

%macro wtc (ds = , /* input data set */ Ø
 outds = , /* output data set */
 weight = , /* survey weight */
 model = , /* all explanatory variables must
 be categorical */
 depvar = , /* dependent variable */
 replica= , /* replicate number for
 bootstrap calculation */
) ;

%global control; Ù
%let control = 1;
%macro check;
 %local dsid i nullstr rc varnum;

%let model=%upcase(&model);
%let depvar=%upcase(&depvar);
%let weight=%upcase(&weight);
%let string=&model &depvar &weight;

%let i=1;
%let control=1;
%let dsid=%sysfunc(open(&ds));
%if &dsid ne 1 %then %do;
%put **** DATA SET &ds DOES NOT EXIST ***;
%let control =0;
%end;
%if &control=1 %then %do;
%do %until(%scan(&string,&i)=&nullstr);
 %let varnum=%sysfunc(varnum(&dsid,%scan(&string,&i)));
%if &varnum=0 %then %do;
 %let control=0;
 %put ;
 %put **** VARIABLE %scan(&string,&i) APPEARS IN THE
MODEL, BUT NOT IN THE INPUT DATA SET;
 %put ;
 %end;
 %let i=%eval(&i+1);
%end;

%let rc=%sysfunc(close(&dsid));

%put ;
%put ***** VARIABLE THAT CAN BE USED AS FLAG IS
CONTROL=&control *****;
%put ;
 %end;
%mend check;
 %if (&replica=) or (&replica=1) %then %check;

 %if &control = 0 %then %do;
 %put **** MACRO TERMINATED BECAUSE OF ERRORS
ABOVE ******;
 %goto exit;
 %end;
 %else %do;

proc logistic descending
 noprint data=&ds; /* 1 is event; 0 is non-event */ Ú
weight &weight./norm; /* use normalized weight */
class &model;
model &depvar= &model;
output out=_probs(keep=&depvar &weight _p_hat) predicted=_p_hat;
run;

proc sql noprint; Û
select sum(&weight) into: _tot_wgt /* total weighted number
 of records */
from _probs;

select count(*) into: _tot_unw /* total unweighted number
 of records */
from _probs;

select count(*) into: p1count /* total unweighted number of
 events*/
from _probs
where &depvar =1;

select count(*) into: p0count /* total unweighted number of non-
 events*/
from _probs
where &depvar =0;
quit;

data _probs;
set _probs;
&weight= &weight.*&_tot_unw./&_tot_wgt; /*normalize
 weights */
run;

proc sql noprint;
select sum(&weight) into: _total1 /* total weighted number of
 events */
from _probs
where &depvar=1;

select sum(&weight) into: _total0 /* total weighed number of
 non-events */
from _probs
where &depvar=0;
quit;

 /* transpose predicted probabilities for events */ Ü

proc transpose data=_probs(keep=_p_hat &depvar where=(&depvar=1))
 out=_probs1p(drop=_label_) prefix=ph1_;
var _p_hat;
run;

/* transpose weight for event records */

proc transpose data=_probs(keep= &weight &depvar
where=(&depvar=1))
 out=_probs1w(drop=_label_) prefix=w1_;
var &weight;
run;

 /* transpose predicted probabilities for non-event records */
proc transpose data=_probs(keep=_p_hat &depvar where=(&depvar=0))
out=_probs0p(drop=_label_) prefix=ph0_;
var _p_hat;
run;

SUGI 28 Statistics and Data Analysis

 5

 /* transpose weights for non-event records */
proc transpose data=_probs(keep= &weight &depvar
where=(&depvar=0))
 out=_probs0w(drop=_label_) prefix=w0_;
var &weight;
run;

 /* accumulate weighted number of concordant and discordant pairs */
data out(keep= _discord _concord _tie);
retain _concord _discord _tie 0;

set _probs1p;
 if _n_=1 then set _probs1w;
 if _n_=1 then set _probs0p;
 if _n_=1 then set _probs0w;

 /* arrays with predicted probabilities */
 array p1[&p1count] ph1_1 - ph1_%left(&p1count);
array p0[&p0count] ph0_1 - ph0_%left(&p0count);
 /* arrays with weights */
array w1[&p1count] w1_1 - w1_%left(&p1count);
array w0[&p0count] w0_1 - w0_%left(&p0count);

do i=1 to &p1count; /* accumulation of weighted discordant and*/
 do j=1 to &p0count; /* concordant pairs */
 if p1[i]< p0[j] then _discord=_discord+w1[i]*w0[j];
else
 if p1[i]> p0[j] then _concord=_concord+w1[i]*w0[j];
else
 _tie=_tie+w1[i]*w0[j];
 end;
end;
run;

data &outds (keep=Wgt_c); /* calculate weighted c by formula (1) */
set out;
total= &_total1 * &_total0; /* total weighted number of pairs*/
Wgt_c=(_concord + .5*(total - _concord -_discord))/ total;
run;

proc print;
run;
%end;
 %exit:;
%mend;

4. The Bootstrap Method for Variance Estimation

The bootstrap (Efron 1982) uses resampling to provide a
basis for studying the behavior of estimates. For a simple
random sample of size n, with observations 1 2, ,..., ,nx x x
the main steps involve setting B (the number of “bootstrap
samples,” usually large); using sampling with replacement
to draw a bootstrap sample of n, * * *

1 2, ,..., ,nX X X from the

set { 1 2, ,..., nx x x } (B times, independently); and
calculating the estimate, t, from each bootstrap sample to
obtain * * *

1 2, ,..., .Bt t t Analysis of the *
bt then yields

information on the sampling distribution of t when the data
come from the population that underlies 1,..., .nx x For

example, the sample standard deviation of the *
bt is the

bootstrap standard error of t .

As mentioned earlier, many analyses involve fitting two or
more logistic regression models to the same survey data.
Then, in choosing among the models, it may be useful to
compare their predictive value, via the c statistic. To assess
the size of the difference in the c statistic relative to the
variation in the data (i.e., sampling variability), we need the
estimated standard error of the difference. One suitable
approach is the bootstrap method, which uses replication
(Wolter 1985). The bootstrap involves drawing repeated
independent samples (with replacement) from the original
sample and then estimating the c statistic for each model
and the difference in the c statistic, for each of these
bootstrap samples. The sample standard deviation of that
difference (over the bootstrap samples) is the bootstrap
estimate of its standard error.

In practice, the survey data used to estimate logistic
regression models almost never come from a simple
random sample. Survey data generally come from complex
sample designs that involve features such as stratification,
multi-stage cluster sampling, unequal selection
probabilities, and unequal sampling weights. Rust and Rao
(1996) discuss the use of replication methods to obtain
standard errors for complex survey designs. The
application of the bootstrap procedure to a complex sample
design involves drawing B bootstrap samples (replicates)
within each stratum of the design. Application of the
bootstrap requires that B be large. Efron and Tibshirani
(1993) recommend B = 200. Korn and Graubard (1999)
indicate that larger values of B (e.g., B = 400 or 800) yield
more-stable variance estimators.

Rust and Rao (1996) give a method for adjusting the final
sampling weights to obtain bootstrap weights. They also
note, however, that for the variance estimators to remain
close to unbiased, the weight adjustment steps applied to
the original sample should be applied to each bootstrap
replicate. This is likely to be an important consideration in
most complex sample designs, given the considerable
number of weight adjustments that are commonly made to
obtain the final sampling weights. Thus, for each bootstrap
replicate one should repeat all of the weight calculation
steps. As a result each of the bootstrap replicates would
have its own set of final sampling weights. Given the
complexities of the bootstrap, it is wise to consult with a
statistician who is familiar with the bootstrap method of
variance estimation before creating bootstrap samples and
bootstrap replicate weights.

Using SAS to create bootstrap replicates

Our data came from a stratified one-stage cluster sample of
over 20,000 persons that incorporates several weighting
adjustments. The sample design entails stratification of the
U.S. into close to 100 geographic areas. The application of
the bootstrap procedure to our sample design involves
drawing the bootstrap samples (replicates) within each

SUGI 28 Statistics and Data Analysis

 6

stratum. In connection with other analyses of the same
data, we had previously constructed 1,000 bootstrap
replicates, in order to obtain bounds for 95% confidence
intervals directly from the distribution of the bootstrap
estimates, as well as bootstrap standard errors. Thus, it was
natural to use those 1,000 replicates in estimating the
standard error of the difference in c.

The following statements show how the SURVEYSELECT
procedure was used to draw the 1,000 bootstrap replicates:

%let dd = ourdirectory;
%let ini_iter=1;
%let max_iter=1000;
%let in_smpfile=&dd..samplefile;
%let in_nsize= geo_area_tot;

 /* create a data set with sample sizes to be drawn from each stratum */

proc freq data=&in_smpfile;
 table geo_area/out=&in_nsize(rename=(count=_nsize_)
 drop=percent);
run;

/* macro to draw 1000 bootstrap samples */

%MACRO BOOTREP;

%do i=&ini_iter %to &max_iter;

 proc printto new print="brep_&i..lst";
 proc printto new log="brep_&i..log";
 title3 " REPLICATE =&i URS selection";
 options pageno=1;

 proc surveyselect data=&in_smpfile
 method=urs
 sampsize=&in_nsize
 out=&dd..urs_&i outhits;
 strata geo_area;
 run;

 proc freq data=&dd..urs_&i;
 tables NumberHits;
 run;
%end;
%MEND BOOTREP;
%BOOTREP

To draw the 1,000 sample replicates with equal probability
and with replacement, we used METHOD=URS
(Unrestricted Random Sampling). SAMPSIZE =
GEO_AREA_TOT identifies the SAS data set that contains
NSIZE , the different sample sizes for the strata. The
OUT=&dd..urs_&i option outputs each of the 1,000
samples into a separate permanent SAS dataset. The
OUTHITS option outputs a separate observation for each
selection when an observation is selected more than once.
The output dataset contains for each observation the
variable NumberHits, the number of times a household
was selected into the sample in a given replicate. The
STRATA statement defines the variable GEO_AREA as the
stratification variable.

Using SAS and the bootstrap replicates to estimate the
variance of c

We demonstrate in Exhibit 3 the macro %ALLREPL, which
uses the macro %WTC as a subroutine to refit a weighted
logistic regression model and obtain c for each of 1,000
bootstrap replicates.

Exhibit 3: %ALLREPL Macro

%let youranal = analyt /*analytic file with all data */
%let dsbswts = replwts; /* data set with ID variable and replicate
 weights */
%let model = yourmodel; /* string with explanatory variables */
%let depvar = yourresponse; /* response variable */

%macro allrepl (start,end);

%do v=&start %to &end ; /* &START and &END are first and
 last replicate to process, 1 and 1,000 by default */
data _analyt
merge &youranal (in=_1)
&dsbswts (keep=ID w&v where=(w&v ne 0) in=_2);

 /* retrieve &V-th replicate where V-th replicate
 weight is not zero */

by ID;
if _2;
wgt=w&v;
drop w&v;
run;

%wtc(ds = _ANALYT, /* calculate c for &V-th replicate */
 outds = C,
 id = ID,
 weight = WGT,
 model = &YOURMODEL, /* refit model to data in &V-th
 replicate */
 depvar = &YOURESPONSE,
 replica = &V,
);
%end;
%mend;

%allrepl(1,1000)

5. Example

For our modeling we had a pool of nineteen potential
explanatory variables (all of them categorical) expl_var1
, … , expl_var19 and a two-level (1,0) response variable
present_or_absent. Our goal was to build several
weighted logistic regression models based on certain
criteria, estimate their effectiveness by calculating the
weighted c-statistic, and compare those models by
assessing differences in c against the variation in the data
applying the bootstrap approach. Data processing involved
in our investigation is reflected in the flowchart in Figure
A2 in the Appendix. The weighted logistic regression
models used the stepwise selection in PROC LOGISTIC
(SAS version 8.2). We normalized the weights so that the

SUGI 28 Statistics and Data Analysis

 7

sum of the weights equaled the unweighted number of
cases.

In selecting the models we first satisfied our curiosity about
how well we could do with the best single variable among
19 predictors – expl_var1. Using the macro %WTC, we
calculated c for the one-variable model, which we denoted
by C1. In selecting the full model, we first applied the
macro %SELECT with SLENTRY=0.95, thus letting the
maximum number of variables into the model. Table A1
and Figure A1 in the Appendix present the output of the
macro %SELECT. According to Table 1A, the 14-variable
model (expl_var1, … , expl_var14) was a good
candidate for the full model. We confirmed this by
obtaining the same set of predictors after applying the
conventional stepwise model with the usual SAS default,
SLENTRY=0.05.

Using the macro %WTC, we calculated c for the full model,
which we denoted by C14. Analyzing Table A1 and
Figure A1 in the Appendix, we selected a 6-variable model
(expl_var1, … , expl_var6) as a reduced model
because it gave the global minimum of SC (marked by * in
the SC column of Table A1). We calculated weighted c for
the reduced model using the macro %WTC and denoted it
by C6.

The estimated predictive values of the three investigated
models are shown in Table 1. They are: C1 = 0.56965, C6
= 0.64543, and C14 = 0.66905. The addition of the 5
additional predictors increased c by a substantial amount,
0.076. On the other hand, adding in the next 8 predictors
increased c by only 0.024, which is less than a third of the
first increase.

To estimate the standard errors of assessed c’s and later of
differences in c’s, we applied the bootstrap methodology to
our data. Our sample design entails stratification of the
U.S. into close to 100 geographic areas The application of
the bootstrap procedure to our sample design involved
drawing the bootstrap samples (replicates) within each
stratum. In practice, we drew 1,000 bootstrap samples
using the macro %BOOTREP described earlier.

Once we had drawn our bootstrap replicates, we had to run
each of them through the entire process of weight
calculation as described in Section 4. The process of
calculating survey weights is a large undertaking and,
therefore, is beyond the scope of this paper. We simply
assume that we have 1,000 bootstrap replicates --- each
with a set of survey weights calculated.

To calculate the standard errors of predicted values and of
differences in predicted values, we first calculated c’s for
each of the 1,000 replicates for each of three models using
macro %ALLREPL described earlier. As a result, we
obtained three sets of weighted replicate c’s: CR1i, CR6i,

and CR14i (i = 1 to 1,000) for the one-variable, reduced,
and full models, respectively.

To estimate the bootstrap standard errors of C1, C6, and
C14, we simply applied PROC UNIVARIATE to CR1i,
CR6i, and CR14i (i = 1 to 1,000) to obtain the standard
deviations.

To estimate the standard error of the difference in c
between the three models, DIFF14,6 = C14 - C6, and
DIFF6,1 = C6 - C1, we applied PROC UNIVARIATE to
the differences CR14i - CR6i (i = 1 to 1,000) and CR6i –
CR1i (i = 1 to 1,000), respectively, to obtain the standard
deviations STD14,6 and STD6,1. Then we calculate t-values
using those differences and standard deviations:

 t14,6 = abs(DIFF14,6 / STD14,6) and

 t6,1= abs(DIFF6,1 / STD6,1).

The respective p-values are

 p14,6 = (1-PROBT(t14,6, df))*2 and

 p6,1 = (1-PROBT(t6,1, df))*2

where df=1,000.

Calculated c-statistics, standard errors, t- and p- values are
shown in Table 1.

Table 1. c Statistics and Bootstrap Standard Errors

 c or Difference in c Number of
Predictors c or

Difference
Std. Err. Variance t p

1 0.56965 0.00725 0.00005250

6 0.64543 0.00716 0.00005130

14 0.66905 0.00682 0.00004651

6 vs 1 0.07578 0.00733 0.00005373 10.338 .0000

14 vs. 6 0.02362 0.00418 0.00001747 5.650 .0000

6. Discussion

In analyzing data from a survey, researchers often need to
compare the effectiveness of several logistic regression
models. We have used stepwise model selection in
conjunction with the %SELECT SAS macro to calculate,
tabulate, and plot the AIC and SC criteria at each step, and
to determine the step at which SC reaches its minimum.
The c statistic is an important measure of the predictive
ability of a logistic regression model. Most survey data
files have survey weights attached. The LOGISTIC
procedure does not take the weights into account in its

SUGI 28 Statistics and Data Analysis

 8

calculation of c and therefore usually does not give the
correct value. The SAS macro %WTC uses the survey
weights in the calculation of c. We have used c to compare
the predictive ability of three logistic regression models
estimated from the same survey data file. Using bootstrap
samples, it is possible to test the null hypothesis that the
two models being compared have the same c value. We
provide some background on how SURVEYSELECT can
be used to create bootstrap samples and present the macro
%BOOTREP, which implements the task.

References

Efron, B. (1982). The Jackknife, the Bootstrap and Other
Resampling Plans. Philadelphia: Society for Industrial
and Applied Mathematics.

Efron, B and Tibshirani, R.J. (1993). An Introduction to the
Bootstrap. New York: Chapman and Hall.

Hanley, J.A. and McNeil, B.J. (1982). “The Meaning and
Use of the Area under a Receiver Operating Characteristic
(ROC) Curve,” Radiology, 143, 29-36.

Izrael, D., Battaglia, A.A., Hoaglin, D.C., Battaglia, M.P.
(2002). ”Use of the ROC Curve and the Bootstrap in
Comparing Weighted Logistic Regression Models,”
Proceedings of Twenty-Seventh Annual SAS Users Group
International Conference, Paper 248.

Korn, E.L. and Graubard, B.I. (1999). Analysis of Health
Surveys. New York, John Wiley & Sons, Inc.

Pepe, M.S. (2000). “Receiver Operating Characteristic
Methodology,” Journal of the American Statistical
Association, 95, 308-311.

Rust, K.F. and Rao, J.N.K. (1996). “Variance Estimation
for Complex Surveys Using Replication Techniques,”
Statistical Methods in Medical Research, 5, 283-310.

SAS Institute Inc. (1995). Logistic Regression Examples
Using the SAS System, Version 6, First Edition. Cary, NC:
SAS Institute Inc.

SAS Institute Inc. (1999). SAS/STAT, Version 8, Chapter
39. Cary, NC: SAS Institute Inc.

Shtatland, E.S., Moore, S., Dashevsky, I., Miroshnik, I.,
Cain, E., Barton, M.B. (2000) “How To Be a Bayesian in
SAS: Model Selection Uncertainty in Proc Logistic and
Proc Genmode,” Proceedings of North-Eastern SAS Users
Group Conference, 2000, pp. 724-732.

Wolter, K.M. (1985). Introduction to Variance Estimation.
New York: Springer-Verlag.

Contact Information

David Izrael
Abt Associates Inc.
55 Wheeler St.
Cambridge, MA 02138
617-349-2434
david_izrael@abtassoc.com

SUGI 28 Statistics and Data Analysis

 9

Appendix

 Table A1. AIC and SC and other statistics at each step of stepwise logistic regression model

Step

Variable
Entered(+) or
Removed(-)

Degrees of
Freedom

Number
In

Score
Chi-

Squared

Wald
Chi-

Squared
Pr > Chi-
Squared AIC

Decrease
in AIC SC

Decrease
in SC

1 +EXPL_VAR1 2 1 269.5891 . <.0001 22328.78 . 22352.85 .

2 +EXPL_VAR2 3 2 238.8323 . <.0001 22092.00 236.78 22140.14 212.71

3 + EXPL_VAR3 1 3 137.7295 . <.0001 21955.92 136.08 22012.08 128.06

4 + EXPL_VAR4 1 4 93.3166 . <.0001 21863.21 92.71 21927.39 84.69

5 + EXPL_VAR5 2 5 118.9826 . <.0001 21748.10 115.12 21828.32 99.07

6 + EXPL_VAR6 5 6 99.5123 . <.0001 21661.57 86.53 21781.90* 46.42

7 + EXPL_VAR7 50 7 197.4572 . <.0001 21559.03 102.54 22080.47 -298.57

8 + EXPL_VAR8 1 8 58.8086 . <.0001 21503.37 55.66 22032.83 47.64

9 + EXPL_VAR9 3 9 55.0349 . <.0001 21455.39 47.98 22008.93 23.91

10 + EXPL_VAR10 2 10 36.6041 . <.0001 21423.72 31.68 21993.29 15.63

11 + EXPL_VAR11 1 11 19.7777 . <.0001 21406.19 17.53 21983.79 9.51

12 + EXPL_VAR12 5 12 18.9453 . 0.0020 21397.52 8.67 22015.23 -31.44

13 + EXPL_VAR13 2 13 10.2071 . 0.0061 21391.27 6.25 22025.03 -9.79

14 + EXPL_VAR14 1 14 6.3577 . 0.0117 21387.03 4.25 22028.80 -3.78

15 + EXPL_VAR15 1 15 2.2745 . 0.1315 21386.78 0.25 22036.57 -7.77

16 - EXPL_VAR15 1 14 . 2.2735 0.1316 21387.03 -0.25 22028.80 7.77

 Figure A1: AIC and SC versus step of stepwise logistic regression model

criterion AIC
SC

Value

21300

21400

21500

21600

21700

21800

21900

22000

22100

22200

22300

22400

Step
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SUGI 28 Statistics and Data Analysis

 10

Select full model
using SLE=0.05 in
stepwise logistic
regression

 Figure A2 : Flowchart of data processing and analysis

Calculate weighted
c using macro WTC for
whole sample and for

each of 1000 replicates
using full, reduced and

one-variable models

Calculate standard
error of c for full, reduced
and one-variable models
and for difference in c

between them

Compute t-statistic of
difference and p-value.

Draw conclusion
about predictive ability of

the three models

Analytic data set with
survey weight and

variables of interest

Select one-variable
model based on
most important

variable

Based on SC criterion
select reduced model
using SLE = 0.95

Draw 1000 bootstrap
replicates using

PROC
SURVEYSELECT

Compute set of
weights for each of

1000 replicates
(beyond scope of

this paper)

SUGI 28 Statistics and Data Analysis

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

