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1. Introduction 
 
When the data come from a survey with weights, working 
with logistic regression models often involves a number of 
challenges.  We present SAS macros to facilitate three key 
steps: 1) selecting a model, 2) comparing the predictive 
ability of several models, and 3) assessing variability. For 
stepwise selection of a model, one macro augments the 
SAS output by displaying two information criteria, the 
Akaike Information Criterion and the Schwartz Criterion, 
at each step and identifying a stopping point for the 
stepwise model.  One measure of predictive ability is the 
statistic c, which PROC LOGISTIC calculates in 
unweighted form. We present a SAS macro for c that takes 
the survey weights into account. The resampling method 
known as the bootstrap provides a framework for assessing 
variability of models and estimates. For comparing the 
models, we needed to assess the differences in c against the 
variation in the data.  We developed a set of bootstrap 
samples, and those allowed us to calculate a bootstrap 
standard error for the difference in c.  With this brief 
overview we now describe these three steps and then 
discuss the application of them in our study.   
 
2.  Selecting a Model 
 
The building of a logistic regression model often proceeds 
stepwise, adding one explanatory variable at each step.  
Customarily, the variable added is the one that produces the 
greatest increase in the (binomial) likelihood.  These steps 
can be allowed to continue until all available explanatory 
variables are in the model; but beyond some point the 
contributions are often minor, reflecting mainly noise in the 
data.  A variety of criteria have been proposed for 
determining when to stop adding variables to the model or 
for selecting a suitably parsimonious model.  One basic 
strategy uses the likelihood-ratio test (based on the chi-
squared distribution of –2 times the logarithm of the 
likelihood, under appropriate assumptions) and requires 
that each variable added be significant at a specified level 
(e.g., SLENTRY = 0.05, the default value). 
 
Another approach starts with –2 log L and adds a “penalty 
term” that is an increasing function of the number of 
parameters in the model.  Without the penalty term, 
maximizing the likelihood (L) is equivalent to minimizing 
–2 log L.  Thus the penalty term aims to guide the selection 
toward a more-parsimonious model by causing the 
minimum of the modified log-likelihood to occur at a 
smaller number of parameters.  The two best-known 

instances of this approach are the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion 
(BIC), also known as the Schwartz Criterion (SC).  If  si is 
the number of parameters associated with the explanatory 
variables that are in the model at Step i and k is the total 
number of response levels minus one (k = 1, if the response 
is binomial), then 
 
           AICi = -2 log Li + 2(k+si) . 
 
And if  n  is the number of observations, then 
 
                        SCi = -2 log Li + (k+si)log(n). 
 
The above formulas are used by PROC LOGISTIC to 
calculate AIC and SC. Because these criteria have 
advantages and disadvantages, we usually prefer to display 
both AIC and SC for each step, until the likelihood-ratio 
test adds no further variables to the model. Shtatland et al. 
(2000) discuss some properties of AIC and SC and 
recommend their complementary use.  
 
Using SAS to select a weighted logistic regression model 

We use stepwise model selection to calculate, tabulate, and 
plot AIC and SC at each step in a user-friendly format, and 
to determine the step at which SC reaches its minimum. In  
contrast to the conventional significance level of entry 
(SLENTRY or SLE) equal to 0.05, we use (following 
Shtatland et al. 2000) SLE high enough (0.95, for instance)  
to allow the stepwise selection to continue until the model 
includes all explanatory variables of interest.   
 
The macro %SELECT presented below uses ODS facilities 
to retrieve the data related to AIC and SC along with other 
statistics at each step of the stepwise procedure, calculates 
and marks the  recommended stopping point as the step 
where SC reaches its minimum, and also calculates the 
change in AIC and SC at each step. The macro consolidates 
all analytical data into one customized table and generates 
AIC and SC plots as functions of STEP  (Table A1 and 
Figure A1 in the Appendix).   
 
The macro is presented in Exhibit 1. It includes extensive 
comments and hardly needs further explanation.  
 
Exhibit 1. Macro %SELECT 
 
 
%macro select ( ds =              /* input data set */ 
                          outds =          /* output data set */ 
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                weight=        /* survey weight */ 
                model =        /* all predictors must 
                                              be categorical */ 
                depvar=        /* dependent variable */ 
                sle   =           /* probability for entry */ 
              );       
 
ods listing close; 
ods output FitStatistics=_crit  
ModelBuildingSummary=_summary;   /* define data sets for   
                                                                             ODS output */ 
 
proc logistic descending data=&ds;      /* proc logistic */ 
weight &weight/norm;                          /* weight normalized */ 
class &model;                                         /* all variables  
                                                                             categorical */ 
 model &depvar = &model 
/selection= stepwise sle=&sle;          /* modifiable SLENTRY */ 
run; 
 
ods listing; 
data _crit (keep=step AIC_: SC_:);                /* retrieve AIC  
                                                                          and SC related */  
set _crit(where =(Criterion in ('AIC','SC')));  /* values from  
                                                                         ODS data set   */ 
by step; 
retain AIC_IO AIC_IC SC_IO SC_IC; 
if first.step then do; AIC_IO=InterceptOnly;    /* regrouping  
                                                      variables for  customization*/ 
                                                                                                   
AIC_IC=InterceptAndCovariates;end; 
if last.step then do;SC_IO=InterceptOnly;  
SC_IC=InterceptAndCovariates;  output; end;  
run; 
 
data _crit; 
merge _crit _summary;          /* merge with step-by-step data */                         
by step;                           /* for entered and  removed variables */  
length Variable $100; 
if EffectEntered ne ' ' 
then Variable=trim('+' || EffectEntered);   /* + in front of  entered   
                                                                                         variable */  
else  
Variable=trim('-' || EffectRemoved);            /* - in front of  
                                                                     removed variable */    
drop Effect: AIC_IO SC_IO;   
run; 
 
proc sql noprint;                            /* determine step where SC  
                                                                     reaches minimum */  
create table _sc as 
select Step 
from _crit 
having SC_IC=min(SC_IC); 
quit; 
 
data _crit;                                       /* put together tables with  
                                                                                     criteria */  
retain  
Step Variable Label DF NumberInModel   
ScoreChiSq  WaldChiSq ProbChiSq  AIC_IC  
diff_aic SC_ICC diff_sc;   
 
merge _crit _sc(in=_2); 
by Step; 
retain aic_ret sc_ret; 
if _2 then SC_ICC=put(SC_IC,11.2) || '*'; else        /* mark step with 
                                                                                   minimum SC  */ 
                  SC_ICC=put(SC_IC,11.2); 
if _n_ =1 then do; aic_ret=aic_ic; sc_ret=sc_ic; end;  
else 
do; 
diff_aic=aic_ret - aic_ic;          /* change in AIC at each step */ 

diff_sc=sc_ret - sc_ic;              /* change in SC at each step   */ 
aic_ret=aic_ic; 
sc_ret = sc_ic;  
end; 
format diff_: 10.2; 
drop aic_ret sc_ret label  ; 
run; 
 
ods listing close; 
ods pdf file="select.pdf";                            /* output into PDF file */ 
ods proclabel="Stepwise Regression Table"; 
 
options ls=150; 
                                                                     /* print the table */                                                 
proc print noobs width=min label; 
var Step Variable DF NumberInModel  
ScoreChiSq  WaldChiSq ProbChiSq   
AIC_IC diff_aic SC_ICC diff_sc 
; 
label 
      AIC_IC='AIC' 
      SC_ICC ='SC'  
      label = 'Label' 
      ScoreChiSq='Score Chi- Square' 
      WaldChiSq ='Wald Chi- Square' 
      ProbChiSq ='Pr > Chi- Square' 
      diff_aic='Decrease in AIC' 
      diff_sc ='Decrease in SC'  
      Variable='Variable Entered(+) or Removed(-)'; 
 
footnote  "NOTE: SLE=&sle IS USED FOR ENTRY INTO MODEL"; 
footnote2 '      * INDICATES MINIMUM OF SC            '; 
run; 
 
data _crit(keep=step value criterion); 
set _crit; 
criterion='AIC'; value=aic_ic; output; 
criterion='SC '; value=sc_ic; output; 
run; 
                                                                   /* plot AIC and SC by step */ 
 
 goptions reset=global gunit=pct rotate=portrait 
          cback=white colors=(black) 
          htitle=2 htext=2.0 autofeed ftext="Helvetica/bold" 
          device=pdf; 
 
footnote1 justify=right "&sysdate &systime"; 
symbol1 interpol=join  value=dot  height=2 color=black; 
symbol2 interpol=join  value=circle  height=2 color=black; 
 
axis1 label=("Step") offset=(5,5)pct minor=none; 
axis2 label=("Value")  offset = (5,5) pct; 
ods proclabel="Plot of Criteria by Step" ; 
 
 proc gplot data=_crit; 
    plot 
         Value*Step=criterion  
        / haxis=axis1 vaxis=axis2;   
run; 
 
ods pdf close; 
 
%mend; 
 
 
3. Comparing Predictive Ability of Models 
 
For comparing the predictive ability of logistic regression 
models, one useful measure is the area under the receiver 
operating characteristic (ROC) curve, abbreviated AUC.  
Previously, we presented a macro for calculating AUC 
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directly for weighted data from a survey, by summing the 
area of trapezoids (Izrael et al. 2002). As is shown in 
Hanley and McNeil (1982), an equivalent measure is the 
statistic c, which PROC LOGISTIC computes (for 
unweighted survey data) and displays in the Association of 
Predicted Probabilities and Observed Responses table; that 
is, the value of c equals AUC.  Because c is usually more 
convenient computationally, we have also developed a 
macro for calculating it for weighted survey data. 
 
The receiver operating characteristic curve is often used to 
describe the accuracy of tests in diagnostic medicine, as 
summarized in the review by Pepe (2000).  Briefly, the test 
yields a numerical result X, such that larger values are 
more indicative of disease.  One can choose a threshold z 
and dichotomize the test by defining X ≥  z as a positive 
result.  From subjects whose true disease status is known 
(both diseased and nondiseased), one obtains the false-
positive rate and the false-negative rate for each value of z.  
The ROC curve is obtained by plotting 1 minus the false-
negative rate against the false-positive rate for all possible 
choices of z. That is, each value of z yields a point on the 
curve, which includes the point (0,0) (if z is high enough, 
the test produces no positives) and the point (1,1) (if z is 
low enough, all outcomes are positive). 
 
The area under the ROC curve provides a summary of the 
accuracy of the diagnostic test.  As Pepe points out, the 
AUC “can be interpreted as the probability that the test 
result from a randomly chosen diseased individual is more 
indicative of disease than that from a randomly chosen 
nondiseased individual.”  This interpretation or 
equivalence, discussed also by Hanley and McNeil (1982), 
focuses attention on the distributions of the test result (for 
example, the concentration of a chemical in blood) in 
diseased and nondiseased persons.  If the two distributions 
are clearly separated, the probability will be close to 1; but 
if they are centered at the same value, the probability will 
be ½.  In the context of logistic regression we refer to event 
cases and non-event cases, rather than diseased and 
nondiseased persons.  The “test result” is the predicted 
probability of an event, from the logistic regression model. 
 
The definition of c involves concordant and discordant 
pairs of observations.  One begins by forming all pairs in 
which one case is an event and the other is a non-event.  
Denote the total number of pairs by t.  A pair is concordant 
if the event observation has a higher predicted probability 
than the non-event observation; a pair is discordant if the 
event observation has a lower predicted probability than the 
non-event observation; and if the predicted probabilities are 
equal for the two observations, the pair is a tie.  Denote the 
number of concordant pairs by nc and the number of 
discordant pairs by nd.  Then the number of tied pairs is t – 
nc – nd.  In unweighted data the formula for c is 
 
 c = (nc + 0.5(t – nc – nd))/t .                        (1) 
 

Using SAS to estimate c for the weighted logistic 
regression 
 
In this paper we  investigate the behavior of c in a weighted 
logistic regression model. It turns out that in fitting a 
model, the Logistic procedure takes the survey weights into 
account, but it ignores them or uses them incorrectly in 
calculating the measures in the Association of Predicted 
Probabilities and Observed Responses table, the c-statistic 
in particular. One can test a model with a few predictors 
with and without weights to confirm that the Logistic 
procedure gives the same value of  c for both of them. To 
calculate c in the presence of survey weights, we wrote a 
macro, %WTC, that takes the survey weights into account. 
We give an overview of the macro below and consider its 
application, both as a stand-alone program and as a 
subroutine in a bootstrap procedure. 
 
The macro computes c based on the formula (1) calculating 
weighted components nc, nd, and t.  
 
Let the number of event responses in a sample be E and the 
number of non-event responses be N. The total unweighted 
number of pairs being considered is E*N. Let us consider 
the (i,j) pair of observations, and let the weight and the 
predicted probability for the event observation (response is 
1) be wi and p_hati and for the non-event observation 
(response is 0)  be wj and p_hatj.  If  p_hati is greater than 
p_hatj,  then, following the definition given above, the pair 
is concordant and its weighted representation wi * wj is 
added to the weighted total of concordant pairs (nc).  
 
Similarly, if  p_hati is less than p_hatj, then the pair is 
discordant, and its weighted representation wi * wj is added 
to the weighted total of discordant pairs (nd). Finally, if the 
pair is neither concordant nor discordant, the product wi * 
wj is added to the weighted total of tied pairs. Denoting WE 
as the total weighted number of event responses and WN  as 
the total weighted number of non-event responses, the 
weighted total  number of pairs is calculated as t = WE *WN.  
Based upon the weighted totals accumulated after E*N 
comparisons, the macro calculates the c-statistic by formula 
(1). The macro prints the value of c and stores it in a 
specified data set. Exhibit 2 presents the macro. We now 
describe its function section by section.    
 
Ø contain the macro’s input parameters; model represents 
the string of explanatory variables, all of which must be 
categorical (otherwise the number of distinct predicted 
probabilities could be very large);  depvar is a response 
variable, assumed to have the value of 1 for an event and 0 
for a non-event; replica must be blank when running the 
macro as a stand-alone program; otherwise it must be 
assigned the name of a macro variable that serves as a 
replicate counter when calculation of c is done for each 
bootstrap replicate. 
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Ù check that the variables in the model are present in the 
input data set. If not, the macro outputs   names of absent 
variables into the LOG and stops execution. 
 
Ú PROC LOGISTIC’s statements and options. The data 
set  _PROBS  specified in the option OUT will include all 
variables of the input data set, along with the predicted 
probability _P_HAT. 
 

Û
 calculate unweighted and weighted numbers that 

contribute to formula (1). 

Ü
 

calculate weighted c according to formula (1). 
 
 
Exhibit 2. Macro %WTC 
  
%macro wtc     ( ds    = ,        /* input data set   */                 Ø                   
                            outds  = ,    /* output data set */ 
                            weight = ,   /* survey weight  */ 
                             model =  ,   /* all explanatory variables must  
                                                                         be categorical */ 
                             depvar = ,   /* dependent variable */ 
                             replica= ,     /* replicate number for  
                                                            bootstrap calculation  */            
                                          ) ;  
 
%global control;                                                                       Ù  
%let control = 1;       
%macro check;                                                                                                                                    
    %local dsid  i nullstr rc varnum;                                                                                                         
                                                                                                                      
%let model=%upcase(&model);                                                                                                              
%let depvar=%upcase(&depvar);                                                                                                            
%let weight=%upcase(&weight);  
%let string=&model &depvar &weight;                                                                                                              
                                                                                                                                       
%let i=1;                                                                                                                                
%let control=1;                                                                                                                           
%let dsid=%sysfunc(open(&ds));                                                                                                                                                                                                                  
%if &dsid ne 1 %then %do; 
%put **** DATA SET &ds DOES NOT EXIST ***; 
%let control =0; 
%end; 
%if &control=1 %then %do;   
%do %until(%scan(&string,&i)=&nullstr);                                                                                     
  %let varnum=%sysfunc(varnum(&dsid,%scan(&string,&i)));                                                                                 
%if &varnum=0 %then %do; 
    %let control=0; 
    %put ; 
    %put **** VARIABLE %scan(&string,&i) APPEARS IN THE 
MODEL, BUT NOT IN THE INPUT DATA SET; 
    %put ; 
  %end; 
  %let i=%eval(&i+1);                                                                                                                    
%end;                                                                                                                                    
                                                                                                                                    
%let rc=%sysfunc(close(&dsid));                                                                                                          
                                                                                                                                         
%put ;                                                                                                                                   
%put ***** VARIABLE THAT CAN BE USED AS FLAG IS 
CONTROL=&control *****;                                                                    
%put ;                                                                                                                                   
 %end;                                                                                                                
%mend check; 
 %if (&replica=) or (&replica=1) %then %check; 

  %if &control = 0 %then %do; 
    %put **** MACRO TERMINATED  BECAUSE OF ERRORS 
ABOVE ******; 
    %goto exit; 
     %end; 
      %else %do;                                                                                                                           

proc logistic descending  
     noprint data=&ds;     /* 1 is event; 0 is non-event */                   Ú
weight &weight./norm;    /* use normalized weight */ 
class &model; 
model &depvar= &model;     
output out=_probs(keep=&depvar &weight _p_hat)  predicted=_p_hat; 
run;                                                                                                                                    
 
proc sql noprint;                                                                                Û 
select sum(&weight) into: _tot_wgt   /* total weighted number  
                                                                             of records */ 
from _probs; 
 
select count(*) into: _tot_unw       /* total unweighted number  
                                                                                of records */  
from _probs;   
 
select count(*) into: p1count       /* total unweighted number of  
                                                                                       events*/  
from _probs 
where &depvar =1; 
   
select count(*) into: p0count   /* total unweighted number of non-   
                                                                                                 events*/    
from _probs 
where &depvar =0; 
quit; 
 
data _probs; 
set _probs; 
&weight= &weight.*&_tot_unw./&_tot_wgt;    /*normalize  
                                                                                     weights */      
run; 
 
proc sql noprint; 
select sum(&weight) into: _total1   /* total weighted number of  
                                                                                             events */ 
from _probs 
where &depvar=1; 
 
select sum(&weight) into: _total0   /* total weighed number of  
                                                                                non-events */ 
from _probs 
where &depvar=0; 
quit;                                                                                                                                     
 
    /* transpose predicted probabilities for events */                             Ü 
 
proc transpose data=_probs(keep=_p_hat &depvar where=(&depvar=1) ) 
               out=_probs1p(drop=_label_) prefix=ph1_; 
var _p_hat;           
run; 
 
/* transpose weight for event records */ 
 
proc transpose data=_probs(keep= &weight &depvar  
where=(&depvar=1))  
               out=_probs1w(drop=_label_) prefix=w1_; 
var &weight; 
run; 
 
              /* transpose predicted probabilities for non-event records */ 
proc transpose data=_probs(keep=_p_hat &depvar where=(&depvar=0))               
out=_probs0p(drop=_label_) prefix=ph0_; 
var _p_hat; 
run; 
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                                     /* transpose weights for non-event records */ 
proc transpose data=_probs(keep= &weight &depvar 
where=(&depvar=0))  
               out=_probs0w(drop=_label_) prefix=w0_; 
var &weight; 
run; 
 
  /* accumulate weighted number of concordant and discordant pairs */ 
data out(keep= _discord _concord _tie); 
retain _concord _discord _tie 0; 
 
set _probs1p;  
    if _n_=1 then set _probs1w; 
     if _n_=1 then set _probs0p; 
      if _n_=1 then set _probs0w; 
 
                                                 /* arrays with predicted probabilities */ 
 array p1[ &p1count] ph1_1 - ph1_%left(&p1count);   
array p0[ &p0count] ph0_1 - ph0_%left(&p0count);   
                                                              /* arrays with weights */ 
array w1[ &p1count] w1_1 - w1_%left(&p1count); 
array w0[ &p0count] w0_1 - w0_%left(&p0count); 
 
do i=1 to &p1count;      /* accumulation of weighted discordant and*/ 
 do j=1 to &p0count;                                             /* concordant pairs */ 
       if p1[i]< p0[j] then _discord=_discord+w1[i]*w0[j];  
else 
       if p1[i]> p0[j] then _concord=_concord+w1[i]*w0[j];  
else  
       _tie=_tie+w1[i]*w0[j];  
 end; 
end; 
run; 
 
data &outds (keep=Wgt_c );    /* calculate weighted c by formula  (1)   */  
set out;                                 
total= &_total1 * &_total0;     /* total weighted number of pairs*/ 
Wgt_c=(_concord + .5*(total - _concord -_discord))/ total; 
run; 
 
proc print; 
run; 
%end; 
 %exit:;                                                                                                                            
%mend; 
 
 
4. The Bootstrap Method for Variance Estimation 
 
The bootstrap (Efron 1982) uses resampling to provide a 
basis for studying the behavior of estimates.  For a simple 
random sample of size n, with observations 1 2, ,..., ,nx x x  
the main steps involve setting B (the number of “bootstrap 
samples,” usually large); using sampling with replacement 
to draw a bootstrap sample of n, * * *

1 2, ,..., ,nX X X from the 

set { 1 2, ,..., nx x x } (B times, independently); and 
calculating the estimate, t, from each bootstrap sample to 
obtain * * *

1 2, ,..., .Bt t t   Analysis of the *
bt  then yields 

information on the sampling distribution of t when the data 
come from the population that underlies 1,..., .nx x   For 

example, the sample standard deviation of the *
bt  is the 

bootstrap standard error of  t . 

As mentioned earlier, many analyses involve fitting two or 
more logistic regression models to the same survey data.  
Then, in choosing among the models, it may be useful to 
compare their predictive value, via the c statistic.  To assess 
the size of the difference in the c statistic relative to the 
variation in the data (i.e., sampling variability), we need the 
estimated standard error of the difference.  One suitable 
approach is the bootstrap method, which uses replication 
(Wolter 1985).  The bootstrap involves drawing repeated 
independent samples (with replacement) from the original 
sample and then estimating the c statistic for each model 
and the difference in the c statistic, for each of these 
bootstrap samples.  The sample standard deviation of that 
difference (over the bootstrap samples) is the bootstrap 
estimate of its standard error.  
 
In practice, the survey data used to estimate logistic 
regression models almost never come from a simple 
random sample.  Survey data generally come from complex 
sample designs that involve features such as stratification, 
multi-stage cluster sampling, unequal selection 
probabilities, and unequal sampling weights.  Rust and Rao 
(1996) discuss the use of replication methods to obtain 
standard errors for complex survey designs.  The 
application of the bootstrap procedure to a complex sample 
design involves drawing B bootstrap samples (replicates) 
within each stratum of the design.  Application of the 
bootstrap requires that B be large.  Efron and Tibshirani 
(1993) recommend B = 200.  Korn and Graubard (1999) 
indicate that larger values of B (e.g., B = 400 or 800) yield 
more-stable variance estimators. 
 
Rust and Rao (1996) give a method for adjusting the final 
sampling weights to obtain bootstrap weights.  They also 
note, however, that for the variance estimators to remain 
close to unbiased, the weight adjustment steps applied to 
the original sample should be applied to each bootstrap 
replicate.  This is likely to be an important consideration in 
most complex sample designs, given the considerable 
number of weight adjustments that are commonly made to 
obtain the final sampling weights. Thus, for each bootstrap 
replicate one should repeat all of the weight calculation 
steps. As a result each of the bootstrap replicates would 
have its own set of final sampling weights.  Given the 
complexities of the bootstrap, it is wise to consult with a 
statistician who is familiar with the bootstrap method of 
variance estimation before creating bootstrap samples and 
bootstrap replicate weights. 
 

Using SAS to create bootstrap replicates 

Our data came from a stratified one-stage cluster sample of 
over 20,000 persons that incorporates several weighting 
adjustments.  The sample design entails stratification of the 
U.S. into close to 100 geographic areas.  The application of 
the bootstrap procedure to our sample design involves 
drawing the bootstrap samples (replicates) within each 
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stratum. In connection with other analyses of the same 
data, we had previously constructed 1,000 bootstrap 
replicates, in order to obtain bounds for 95% confidence 
intervals directly from the distribution of the bootstrap 
estimates, as well as bootstrap standard errors. Thus, it was 
natural to use those 1,000 replicates in estimating the 
standard error of the difference in c. 
 
The following statements show how the SURVEYSELECT 
procedure was used to draw the 1,000 bootstrap replicates: 
 
 
%let dd = ourdirectory; 
%let ini_iter=1; 
%let max_iter=1000; 
%let in_smpfile=&dd..samplefile;  
%let in_nsize= geo_area_tot; 
 
 /* create a data set with sample sizes to be drawn from each stratum */ 
     
proc freq data=&in_smpfile; 
 table geo_area/out=&in_nsize(rename=(count=_nsize_) 
                                                   drop=percent); 
run; 
 
/* macro to draw 1000 bootstrap samples */ 
 
%MACRO BOOTREP; 
 
%do i=&ini_iter %to &max_iter; 
 
  proc printto new print="brep_&i..lst"; 
  proc printto new log="brep_&i..log"; 
  title3 " REPLICATE =&i URS selection"; 
  options pageno=1; 
 
  proc surveyselect data=&in_smpfile 
     method=urs 
     sampsize=&in_nsize 
     out=&dd..urs_&i  outhits; 
     strata geo_area; 
  run; 
 
  proc freq data=&dd..urs_&i; 
    tables NumberHits; 
   run; 
%end; 
%MEND BOOTREP; 
%BOOTREP 
 
 
To draw the 1,000 sample replicates with equal probability 
and with replacement, we used METHOD=URS 
(Unrestricted Random Sampling).  SAMPSIZE = 
GEO_AREA_TOT identifies the SAS data set that contains  
_NSIZE_  , the different sample sizes for the strata. The 
OUT=&dd..urs_&i  option outputs each of the 1,000 
samples into a separate permanent SAS dataset.  The 
OUTHITS option outputs a separate observation for each 
selection when an observation is selected more than once. 
The output dataset contains for each observation the 
variable NumberHits, the number of times a household 
was selected into the sample in a given replicate. The 
STRATA statement defines the variable GEO_AREA as the 
stratification variable.  
 

Using SAS and the bootstrap replicates to estimate the 
variance of c  
 
We demonstrate in Exhibit 3 the macro %ALLREPL, which 
uses the macro %WTC as a subroutine  to refit a weighted 
logistic regression model and obtain c  for each of 1,000 
bootstrap replicates.  
 
Exhibit 3: %ALLREPL Macro 
 
%let youranal = analyt            /*analytic file with all data */ 
%let dsbswts = replwts;         /* data set with ID variable and replicate   
                                                                                            weights */ 
%let model = yourmodel;     /* string with explanatory variables   */ 
%let depvar = yourresponse;  /*  response variable */ 
 
%macro allrepl (start,end);                  
 
 
%do v=&start %to &end ;         /* &START and &END are first and  
                                   last replicate to process, 1 and 1,000 by default */   
data _analyt 
merge &youranal (in=_1 )  
&dsbswts (keep=ID w&v where=(w&v ne 0) in=_2);  
 
   /* retrieve  &V-th replicate where  V-th replicate    
                                                              weight is not  zero */   
 
by ID; 
if _2; 
wgt=w&v; 
drop w&v; 
run; 
                                                                                        
%wtc( ds = _ANALYT,             /*  calculate c for  &V-th replicate */             
            outds  = C,  
            id   = ID, 
            weight = WGT, 
            model =  &YOURMODEL,  /* refit model to data in &V-th  
                                                               replicate                               */ 
           depvar =  &YOURESPONSE, 
         replica = &V, 
           ); 
%end; 
%mend; 
 
%allrepl(1,1000) 
 

5. Example 

For our modeling we had a pool of nineteen potential 
explanatory variables (all of them categorical) expl_var1 
, … , expl_var19 and a two-level (1,0) response variable 
present_or_absent. Our goal was to build several 
weighted logistic regression models based on certain 
criteria, estimate their effectiveness by calculating the 
weighted  c-statistic,  and compare those models by 
assessing differences in c against the variation in the data 
applying the bootstrap approach.  Data processing involved 
in our investigation is reflected in the flowchart in Figure 
A2 in the Appendix. The weighted logistic regression 
models used the stepwise selection in PROC LOGISTIC 
(SAS version 8.2). We normalized the weights so that the 
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sum of the weights equaled the unweighted number of 
cases.  
 
In selecting the models we first satisfied our curiosity about 
how well we could do with the best single variable among 
19 predictors – expl_var1.  Using the macro %WTC, we 
calculated c for the one-variable model, which we denoted 
by C1. In selecting the full model, we first applied the 
macro %SELECT with SLENTRY=0.95, thus letting the 
maximum number of variables into the model. Table A1 
and Figure A1 in the Appendix present the output of the 
macro %SELECT. According to Table 1A,  the 14-variable 
model (expl_var1, … , expl_var14) was a good 
candidate for  the full model. We confirmed this by 
obtaining the same set of predictors after applying the 
conventional stepwise model with the usual SAS default, 
SLENTRY=0.05.    
 
Using the macro %WTC, we calculated c for the full model, 
which we denoted by C14.  Analyzing Table A1 and  
Figure A1 in the Appendix, we selected a 6-variable model 
(expl_var1, … , expl_var6) as a reduced model 
because it gave the global minimum of SC (marked by * in 
the SC column of Table A1).  We calculated weighted c for 
the reduced model using the macro %WTC  and denoted it 
by C6.  
 
The estimated predictive values of the three investigated 
models are shown in Table 1. They are: C1 = 0.56965,  C6 
= 0.64543, and C14 = 0.66905. The addition of the 5 
additional predictors increased c by a substantial amount, 
0.076. On the other hand, adding in the next 8 predictors 
increased c by only 0.024, which is less than a third of the 
first increase. 
 
To estimate the standard errors of assessed c’s and later of 
differences in c’s, we applied the bootstrap methodology to 
our data. Our sample design entails stratification of the 
U.S. into close to 100 geographic areas The application of 
the bootstrap procedure to our sample design involved 
drawing the bootstrap samples (replicates) within each 
stratum. In practice, we drew 1,000 bootstrap samples 
using the macro %BOOTREP  described earlier.  
 
Once we had drawn our bootstrap replicates, we had to run 
each of them through the entire process of weight 
calculation as described in Section 4.  The process of 
calculating survey weights is a large undertaking and, 
therefore, is beyond the  scope of this paper. We simply 
assume that we have 1,000 bootstrap replicates --- each 
with a set of survey weights calculated. 
 
To calculate the standard errors of predicted values and of 
differences in predicted values, we first calculated c’s for 
each of the 1,000 replicates for each of three models using 
macro %ALLREPL  described earlier.  As a result, we 
obtained three sets of weighted replicate c’s: CR1i, CR6i, 

and CR14i  (i = 1 to 1,000) for the one-variable, reduced, 
and full models, respectively.  
 
To estimate the bootstrap standard errors of C1, C6, and 
C14, we simply applied PROC UNIVARIATE to CR1i, 
CR6i, and CR14i ( i = 1 to 1,000) to obtain the standard 
deviations.  
 
To estimate the standard error of the difference in c 
between the three models, DIFF14,6 = C14 - C6, and  
DIFF6,1 = C6 - C1, we applied PROC UNIVARIATE to 
the differences CR14i - CR6i    ( i  = 1 to 1,000) and  CR6i – 
CR1i   ( i  = 1 to 1,000),  respectively, to obtain the standard 
deviations STD14,6 and STD6,1. Then we calculate t-values 
using those differences and standard deviations:                            
 
                t14,6 = abs(DIFF14,6 / STD14,6  ) and   
  
                 t6,1= abs(DIFF6,1 / STD6,1 ). 
 
The respective p-values are  
                 
                 p14,6 = (1-PROBT(t14,6, df))*2 and  
 
                 p6,1 = (1-PROBT(t6,1, df))*2 
 
where df=1,000. 
 
Calculated c-statistics, standard errors, t- and p- values are  
shown in Table 1. 
 
Table 1. c Statistics and Bootstrap Standard Errors 

                         c or Difference in c Number of
Predictors c or 

Difference 
Std. Err. Variance t p 

1 0.56965 0.00725 0.00005250 

6 0.64543 0.00716 0.00005130 

14 0.66905 0.00682 0.00004651 

 

6 vs 1 0.07578 0.00733 0.00005373 10.338 .0000 

14 vs. 6 0.02362 0.00418 0.00001747 5.650 .0000 

 

 
 
6. Discussion 

In analyzing data from a survey, researchers often need to 
compare the effectiveness of several logistic regression 
models.  We have used stepwise model selection in 
conjunction with the %SELECT SAS macro to calculate, 
tabulate, and plot the AIC and SC criteria at each step, and 
to determine the step at which SC reaches its minimum.  
The c statistic is an important measure of the predictive 
ability of a logistic regression model. Most survey data 
files have survey weights attached.  The LOGISTIC 
procedure does not take the weights into account in its 
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calculation of c and therefore usually does not give the 
correct value. The SAS macro %WTC  uses the survey 
weights in the calculation of c.  We have used c to compare 
the predictive ability of three logistic regression models 
estimated from the same survey data file.  Using bootstrap 
samples, it is possible to test the null hypothesis that the 
two models being compared have the same c value.  We 
provide some background on how SURVEYSELECT can 
be used  to create bootstrap  samples and present  the macro 
%BOOTREP, which implements the task.  
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Appendix  
 
         Table A1. AIC and SC and other statistics at each step of stepwise logistic regression model 
 

Step 

Variable 
Entered(+) or 
Removed(-) 

Degrees of 
Freedom 

Number 
In 

Score 
Chi- 

Squared

Wald 
Chi- 

Squared
Pr > Chi- 
Squared AIC 

Decrease 
in AIC SC 

Decrease 
in SC 

1 +EXPL_VAR1 2 1 269.5891 . <.0001 22328.78 . 22352.85 .

2 +EXPL_VAR2 3 2 238.8323 . <.0001 22092.00 236.78 22140.14 212.71

3 + EXPL_VAR3 1 3 137.7295 . <.0001 21955.92 136.08 22012.08 128.06

4 + EXPL_VAR4 1 4 93.3166 . <.0001 21863.21 92.71 21927.39 84.69

5 + EXPL_VAR5 2 5 118.9826 . <.0001 21748.10 115.12 21828.32 99.07

6 + EXPL_VAR6 5 6 99.5123 . <.0001 21661.57 86.53 21781.90* 46.42

7 + EXPL_VAR7 50 7 197.4572 . <.0001 21559.03 102.54 22080.47 -298.57

8 + EXPL_VAR8 1 8 58.8086 . <.0001 21503.37 55.66 22032.83 47.64

9 + EXPL_VAR9 3 9 55.0349 . <.0001 21455.39 47.98 22008.93 23.91

10 + EXPL_VAR10 2 10 36.6041 . <.0001 21423.72 31.68 21993.29 15.63

11 + EXPL_VAR11 1 11 19.7777 . <.0001 21406.19 17.53 21983.79 9.51

12 + EXPL_VAR12 5 12 18.9453 . 0.0020 21397.52 8.67 22015.23 -31.44

13 + EXPL_VAR13 2 13 10.2071 . 0.0061 21391.27 6.25 22025.03 -9.79

14 + EXPL_VAR14 1 14 6.3577 . 0.0117 21387.03 4.25 22028.80 -3.78

15 + EXPL_VAR15 1 15 2.2745 . 0.1315 21386.78 0.25 22036.57 -7.77

16 - EXPL_VAR15 1 14 . 2.2735 0.1316 21387.03 -0.25 22028.80 7.77
 
          Figure A1: AIC and SC versus step of stepwise logistic regression model                  

                

criterion AIC
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     Figure A2 :  Flowchart of data processing and analysis                                                                                                          
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