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ABSTRACT 
 
Mixed models are an extension of regression models that allows for 
incorporation of random effects. The application of mixed-effects 
models to practical data analysis has greatly expanded with 
consequent development of theory and computer software. It also 
turns out that mixed models are closely related to smoothing. 
Nonparametric regression models, especially the general smoothing 
spline models, are well known for their ability to fit an arbitrary mean 
response function. This paper describes the use of the MIXED 
procedure for fitting nonparametric or semi-parametric regression 
models. Compared with such SAS procedures as PROC LOESS 
and PROC TPSPLINE, the use of the PROC MIXED allows the 
fitting of a wide spectrum of complex non-parametric and semi-
parametric regression models with simultaneous modeling of trends 
and covariance structure.   

 
 
INTRODUCTION 
 
Many statistical models rely on the assumption that the effects of 
continuous predictors are linear. However, the linearity assumption 
may be too simple to represent the effects of some risk factors 
correctly. More specifically, if the linearity assumption is incorrect for 
a given risk factor, the parametric estimate may underestimate its 
effect over some range of values or overestimate the effect over 
some other range, or both. 
In the last decade, a number of flexible nonparametric extensions of 
the conventional linear model have been proposed in the statistical 
literature (Green and Silverman 1995, Eubank 1999). These 
nonparametric regression methods eliminate the restrictive linearity 
assumption and thus allow greater flexibility in modeling the data so 
that the estimated effects of continuous predictors may follow an 
arbitrary continuous smooth function. Accordingly the risk of bias is 
greatly reduced as the estimates depend more on empirical data and 
less on a priori assumptions.  

 
 
NONPARAMETRIC REGRESSION 
 
The result of a nonparametric regression analysis is a curve fitted to 
a set of data (yi,xi): 
 
yi=f(xi) + εi,     (1) 
 

with f(x) a smooth function and error εi, i=1,..,n iid N(0, 2
εσ ) 

 
Starting with Version 7, SAS has incorporated two new procedures 
for performing non-parametric regression analysis: PROC LOESS 
(local regression) and PROC TPSPLINE  (thin-plate smoothing 
splines).  

In the LOESS procedure the method of weighted least 
squares is used to fit linear or quadratic functions of the predictors 
at the centers of neighborhoods whose radii are chosen so that each 
neighborhood contains a specified percentage of data points.  

The TPSPLINE procedure uses a penalized least 
squares method to estimate multivariate regression surface with 
thin-plate smoothing splines. The regression spline represents the fit 
as a piecewise polynomial.  The regions that define the pieces are 

separated by a sequence of knots, and it is customary to force the 
piecewise polynomials to join smoothly at these knots. The smooth 
function f(x) can be found as result of minimization of the residual 
sum of squares plus a roughness penalty, 
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where f(p)(x) is the pth derivative of the function f(x).  
The resultant curve fitted to the data is a piecewise polynomial of 
degree 2p-1. The smoothing parameter λ governs the trade-off 
between smoothness and goodness of fit. This parameter is often 
unknown in practice and needs to be estimated from the data. A 
classical data-driven approach to selecting the smoothing parameter 
is cross-validation, which leaves out one subject’s entire data at a 
time. However, this approach is often computationally intensive and 
the subsequent inference is difficult.   
In addition to the LOESS and TPSPLINE procedures, starting with 
version 8 SAS introduced PROC GAM, which incorporates a 
generalized additive model (Hastie and Tibshirani 1990). 
Generalized additive models are based on the additivity assumption 
for a multivariate function f(X1, X2,…,Xm) 
 
f(X1, X2,…,Xm)= f(X1) +  f(X2) + …+  f(Xm) 
 
and allow for a link between f(X1, X2,…,Xm) and the expected value 
of outcome Y. The GAM procedure can utilize either penalized spline 
or local regression methods to perform smoothing. Different levels of 
smoothness are possible for different model components, but how 
smooth each component should be is not an easy question, because 
cross-validation is very difficult to apply for multiple smoothing 
parameter problems. The PROC GAM uses a complex iterative 
procedure, known as backfitting algorithm, to fit the data. 

  
 
SMOOTHING THROUGH MIXED MODEL 
 
In all the aforementioned methods observations are regarded as 
independent. However in many longitudinal studies the data 
collected for each subject are correlated and such correlation should 
be taken into account in order to produce a valid inference. 
New methods have recently been developed in which inference for 
all model components can easily proceed in a unified linear mixed 
model framework. These additive models describe complex covariate 
effects in each subject, while allowing for unexplained population 
heterogeneity and serial or spatial correlation among repeated 
measurements.    
Let k1,…,kK be a set of distinct numbers inside the range of the xi’s 
and let x+=max(0,x). 
A random coefficient linear regression spline model for f(x) is  
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where u=[u1,…,uK]T~N(0, 2

uσ I) is independent of ε=[ε1,…, εn]
T. Set 

of  functions such as (x-κk)+ is called a linear spline basis and the 

values of κk are referred as a knots. When 2
uσ =0, f(x) is linear, but 

for 2
uσ >0, the truncated lines (x-κk)+ flexibly allow for nonlinearities 
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in f. More smoothness could be attained by instead using quadratic 
(or cubic) polynomials: 
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We can combine equations (1) and (3b) in one model 
 

y=Xβ + Zu + ε,   [u, ε]T~N(0,diag( 2
uσ I, 2

εσ I)),  (4) 

 
where  
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Equation (4) is nothing but a normal linear mixed model and, for any 
given σu and σε, the estimated best linear unbiased predictor 
(EBLUP) of y,  
 

uZXf ˆˆˆ += β   (6) 

 
Unbiased refers here to the property that the average value of the 
estimate is equal to the average value of the quantity being 

estimated, that is E( f̂ )=E(f). Equation (6) can be rewritten 

(McCulloch and Searle 2001) as 
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where C=[X Z], D=diag(0p+1,IK) and λp=σε/σu for the pth degree of 
penalized spline model (p=2 in the case of the quadratic spline 
model (3b)) 
 
It has been shown  (Wang 1998, Brumback and Rice 1998) that the 
EBLUP estimates (7) evaluated at design points are the same as the 
penalized regression spline solution to Equation 2.   Thus it turns out 
that the nonparametric smoothing spline regression is equivalent to a 
mixed-effects model (4). In this representation the smoothing 
parameter is related to the ratio of variance components: λp=σε/σu. 
One can now fit models of the form seen in Equation 4 using PROC 
MIXED.  
 
 
DATA SET 
 
     As a motivating example, we will use data from a clinical trial, 
which was conducted to evaluate a novel approach to hemodialysis 
vascular access offered by the LifeSite Hemodialysis Access 
System (Vasca, Inc., Tewksbury, MA). The LifeSite® Hemodialysis 
Access System is a subcutaneous access device designed to 
provide superior blood flow while minimizing access-related 
complications.  The study was an open-label, prospective, 
multicenter, randomized clinical trial (Schwab et al. 2002) The study 
population consisted of patients with end-stage renal disease 
(ESRD) who required hemodialysis and were appropriate candidates 
for both the LifeSite and the Tesio-Cath devices (control device). 
Seventy patients were randomized using a central randomization 
scheme.  Of these, 36 patients were implanted with the LifeSite and 
34 patients were implanted with Tesio-Cath devices. There were 7 
visits resulting in collection of study data in a three-month evaluation 
period. The performance of each device was determined by its 
capacity to provide adequate blood flow rate during dialysis. The 
blood pumps were set to achieve target machine-indicated blood 
flow rates (QB) of 100, 150, 200, 250, 300, 400, 500 and 600 
mL/min. At these blood pump settings, true blood flow rates (BFR) 
and return (arterial) pressures (RP) were recorded. The primary goal 

of the trial was to estimate the growth curves for BFR vs. RP for the 
two treatment groups and to test the equality of the curves. 
 
Challenges in modeling the blood flow rate in hemodialysis include 
the incorporation into the analysis the complex functional form of 
BFR as well as the longitudinal characteristic of the measurements. 
The use of non-linear parametric models could lead to 
misspecification of the model (Pedan 2001). The alternative solution 
is to use the nonparametric approach, which offers a convenient way 
to accommodate the non-linear behavior of BFR without making any 
a priori assumptions.  
 
We will use the mixed effect approach to get non-parametric 
estimate of the growth curve for the BFR vs. RP. In this case the 
nonparametric model has the form: 
 
BFRi = s(RPi) +  errori                                                           
 
Here s() - smooth function of return pressure. Note that this model 
does not contain an intercept term because this is absorbed into the 
function s(). 
 
The input data set to the initial DATA step is the longitudinal data set 
containing 2061 observations. There are 6 variables in the data set: 
 
SUBJ_NO = subject number 
VISIT = visit number 
GROUP = 0, if control group 
                 1, if test group 
QB = machine-indicated blood flow 
BFR = true blood flow rate 
RP = return pressure 
  
In the example below, we will restrict ourselves to analysis of data for 
the control device (GROUP=0). Part of the data set is shown in 
Table 1. 
 
Table 1.  Part of the VASCA data set with the observations for 
subject 33 at visits 1 and 2. 
        
OBS    SUBJ_NO   GROUP      VISIT          QB         BFR         RP 
  
126 33  0    1     100   111.4     40 
127 33  0    1     150   156.0          80 
128 33  0    1     200   204.6       120 
129 33  0    1     250   247.0   160 
130 33  0    1     300   282.0   200 
131 33  0    1     400   356.0   280 
132 33  0    1     500   414.8   340 
133 33  0    1     600   447.3   380 
134 33  0    2     100     80.1     40 
135 33  0    2     150   139.4   180 
136 33  0    2     200   191.4   182 
137 33  0    2     250   225.2   220 
138 33  0    2     300   267.7   260 
139 33  0    2     400   327.7   300 
140 33  0    2     500   356.8   340 
141 33  0    2     600   373.6   360 
 
 
Figure 1 shows the noisy scatter plot of BFR vs. RP from the 
VASCA data set.  
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Figure 1: BFR measurements for Control device from VASCA 
clinical trial plotted against Return Pressure 
 

 
 
 
SMOOTH CURVE BUILDING 
 
Below, for the sake of simplicity, we will assume that observations 
are not correlated. 
 
In order to avoid numerical problems when fitting the data, variables 
RP and BFR were re-scaled from units of mm Hg and mL/min to the 
units 100mm Hg (RP_S) and L/min (BFR_S) correspondingly: 

 
RP_S=RP/100; 
BFR_S=BFR/1000; 
 
To generate a non-parametric curve using PROC MIXED we have to 
create a set of basis functions +− )( kx κ  for linear regression spline 

models or 2)( +− kx κ  for quadratic regression spline model. This is 

performed by the following programming code: 
 
array rp_{8}; 
 do k=1 to 8; 
   *rp_{k}=max(0,rp_s-k*0.5); 
     rp_{k}=max(0,rp_s-k*0.5)**2; 
end; 

 
Here we selected set of K=8 equally spaced knots kk=0.5,1,…,4. 
Because smoothing is mainly controlled by the penalty parameter, λ, 
the number of knots, K, is not crucial . A set of new variables rp_1, 
rp_2, …, rp_8 for the observations presented in the Table 1 are 
shown in Table 2.  
 
Table 2: Set of quadratic spline basis functions rp_1, rp_2, …, rp_8 
with knots κk at 0.5,1,…,4  
 
OBS    rp_1    rp_2    rp_3      rp_4     rp_5    rp_6     rp_7     rp_8 
   
126     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00    
127     0.09     0.00     0.00     0.00     0.00     0.00     0.00     0.00    
128     0.49     0.04     0.00     0.00     0.00     0.00     0.00     0.00    
129     1.21     0.36     0.01     0.00     0.00     0.00     0.00     0.00    
130     2.25     1.00     0.25     0.00     0.00     0.00     0.00     0.00    
131     5.29     3.24     1.69     0.64     0.09     0.00     0.00     0.00    
132     8.41     5.76     3.61     1.96     0.81     0.16     0.00     0.00    
133   10.89     7.84     5.29     3.24     1.69     0.64     0.09     0.00     
134     0.00     0.00     0.00     0.00     0.00     0.00     0.00     0.00    
135     1.69     0.64     0.09     0.00     0.00     0.00     0.00     0.00    
136     1.71     0.66     0.11     0.00     0.00     0.00     0.00     0.00    
137     2.89     1.44     0.49     0.04     0.00     0.00     0.00     0.00    
138     4.41     2.56     1.21     0.36     0.01     0.00     0.00     0.00    
139     6.25     4.00     2.25     1.00     0.25     0.00     0.00     0.00    
140     8.41     5.76     3.61     1.96     0.81     0.16     0.00     0.00    

Now we can fit the mixed model (4) by using the following code: 

 
proc mixed data=Vasca method=reml; 
model tfr_s=rp_s|rp_s/solution outpred=Smooth;   
parms (0.0015) (0.015);  
*parms (0.0015) (0.015)/hold=1;        
random   rp_1-rp_8 /solution type=toep(1);  
where group=0;   
quit; 
run; 
 
The statements and options used in this PROC MIXED (SAS 
Institute 1999) are described below: 
 
DATA= names the input data set (Vasca) for nonparametric growth 
curve estimation 
METHOD= specifies the estimation method for the covariance 
parameters. The most popular methods being REML (restricted 
maximum likelihood)  the default method, ML(maximum likelihood), 
MIVQUE0  (minimum variance quadratic unbiased estimation) 
MODEL specifies the equation for fixed effects. An intercept is 
included in the fixed –effects model by default. When bar | is used, 
the right- and left-hand sides become effects, and the cross of them 
becomes an effect. Multiple bars are permitted. In the example 
above rp_s|rp_s is equivalent to rp_s + rp_s*rp_s. An option 
SOLUTION requests that a solution for the fixed-effects parameters 
(β0, β1, β2) be produced and OUTPRED = specifies an output 
dataset (Smooth) containing EBLUP (pred) and related quantities 
(Lower, Upper – lower and upper t-type confidence limits for 
estimated smooth curve (EBLUP) at all study points, Alpfa – number 
defining the confidence level (1- Alpha) for constructing confidence 
interval, DF-degrees of freedom for the t-type confidence limits, 
StdErrPred – standard error of EBLUP and Resid - residual). (see 
Ruppert, D., Wand, M.P. and Carroll, R.J. (2003) for details)   
PARMS specifies initial values for the covariance parameters and 
HOLD= specifies which parameters values should be held equal to 
the specified values 
RANDOM defines the random effects constituting u=(u1, u2,…,u8)

T 
vector in the mixed model (4) and  SOLUTION requests that a 
solution for the random-effects parameters (u1,u2,…,u8) be 
produced, TYPE= specifies the covariance structure of G=var(u) 
and TOEP(1) specifies 2

uσ I structure, where I is an identity matrix. 
Multiple RANDOM statements are possible.  
 
In our example the smoothing parameter λ=

uσ
σ ε  was selected 

via REML estimation of the variance components: εσˆ = 0.002237 

and uσ̂ = 0.007310, which gives us λ=0.55. Sometimes, due to 

numerical instability, such automatic smoothing parameter selection 
could give us a zero variance component uσ̂ , resulting in an over-

smoothing of the curve. In order to make this procedure more stable 
one can use MIVQUE0 method of estimation rather than REML or 
ML. Another option is to fit various models while keeping one or 
more of the variance components fixed to a specific value and then 
to choose the best model. This could be done by using option 
HOLD=1 in the PARMS statement to fix σu , HOLD=2 to fix σε or 
HOLD=1,2 to fix both the σu and σε parameters.  
The effect of the degree of the polynomial on estimated function f is 
illustrated in Figure 2. Graph (a) shows REML fit of the linear 
polynomial model (λ=0.69) and graph (b) shows REML fit of the 
quadratic polynomial (λ=0.55) model. It is easily seen from graph (a) 
of Figure 2 that the fitted growth curve f(x) in the case of the linear 
polynomial model consists of piecewise straight lines connecting at 
the knots. As result, the structure has multiple artificial corners and 
does not look very smooth. We can see from graph (b) of the Figure 
2, that the use of the quadratic polynomial model eliminates corners, 
making the fit much smoother. 
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Figure 2: Solid lines: estimated regression curves using (a) linear 
spline smoother (b) quadratic spline smoother. Dashed lines: 95% 
confidence intervals  

 

 
 
 

 
The effect of smoothing parameter λ to the fit is illustrated in Figure 
3. On the first graph quadratic spline (3) fit without penalty (λ=0) is 
shown. Estimate of the curve f in this case is a somewhat wiggly 
piecewise quadratic function, which strongly depends on the number 
of the knots and their locations. As the smoothing parameter λ 
increases, the importance of the knot locations and their number 
decreases and estimates of  f  become smoother, but with loss of 
some finer details. The case of λ = ∞ represents the simple least 
square quadratic regression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Quadratic penalized spline regression fits to VASCA data 
for λ values of 0, 0.1, 1, ∞. 
 
 

 
 
 
CORRELATED ERRORS 
 
In the example above we assumed that the observations are 
independent. This assumption is definitely violated for the VASCA 
dataset due to the longitudinal character of data.  As we mentioned 
before, for each subject there were up to 7 visits resulting in 
collection of study data in a three-month evaluation period. It was 
shown (Wang 1998) that correlation has a great effect on the 
selection of smoothing parameters, which are critical to the 
performance of smoothing spline estimates. Very often failure to take 
into account correlations will result in undersmoothing. One of the 
big advantages of the use of mixed model representation for 
smoothing is that it allows to estimate the smoothing and the 
correlation parameters simultaneously.  For example, to take into 
account within subject correlations in the VASCA dataset we need to 
add REPEATED or RANDOM statement(s) with specified 
correlation structure to the PROC MIXED: 
 
  random /solution type=AR(1) subject=subj_no;  
 
Here we assumed the first-order autoregressive (AR(1) with 
parameter α) model for errors. The estimates of the parameters σε, 
σu and α are 0.002280,  0.000132  and 0.6069 respectively. The 
estimate of smoothing parameter λα under this covariance structure 
is 4.2, which is significantly bigger than under assumption of 
independent errors (α=0). 

 
CONCLUSION  
 
Curve data arise frequently in scientific studies and are an active 
topic of current statistical research. Non-parametric regression 
analysis is a powerful tool when there is little prior information about 
such data or we want to describe new features that parametric 
analysis ignores. Recent developments in the non-parametric fitting 
of the non-linear data can be related to the mixed model 
representation of the penalized spline scatter plot smoothing. This 
connection suggests a way of fitting non-parametric models using 
existing software for linear mixed-effects models.  
Among the advantages of using a mixed model approach for fitting 
non-parametric regression (Ruppert, Wand and Carroll 2003) are 
that this approach utilizes such basic principles of statistics as 
maximum likelihood and best prediction and that the estimation and 
inference can be performed in a unified fashion within the mixed 
model framework, by appealing to the likelihood ratio principles. The 
mixed model representation can be used to facilitate fitting, inference 
and model selection. This approach makes it easy to fit more 
complex models by including additional fixed or random effects or 
interactions (Coull, Ruppert and Wand 2001). Such a model 
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assumes that each group has its own mean response curve. Various 
error structures may be assumed for random errors to account for 
spatial or longitudinal correlations. In addition, the final model could 
be chosen by comparison of various goodness-of-fit statistics, such 
as  -2⋅log-likelihood, AIC or BIC. 
SAS PROC MIXED provides an excellent work environment for 
implementing all such analyses.  
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