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ABSTRACT 
Analysts who work frequently with linear models using 
the SAS System® often use the LSMEANS statement 
in PROC GLM or PROC MIXED to obtain “adjusted 
means.”  The absence of a clear analogue to these 
least-squares means for nonlinear or generalized 
linear models can be an obstacle for both the analyst 
and the eventual audience of the analysis. This paper 
shows how to use PROC IML to estimate standard 
errors of CLASS variable effects from a logit model 
and from a linear model on log-transformed data. The 
macro used is designed for logit or log-transformed 
linear models used in the analysis of health care 
claims data but it is easily adapted to other contexts. 
The log-transformation example involves a linear 
model on the logarithm of a continuous variable (health 
care costs) for which the effect of interest was the 
difference in cost, not the difference in the logarithm of 
cost. The retransformation of log(cost) back to the 
original units incorporates Duan’s (JASA 1983) 
“smearing estimate” to compensate for the bias that 
usually arises in the retransformation. A partial check 
on the correctness of the PROC IML code can be 
obtained by comparing results from PROC IML with 
results from PROC GLM or PROC MIXED in the linear 
case. Once the principles are understood and the 
basic PROC IML manipulations are coded, it is easy to 
adapt the method to other studies and to other models.   
An earlier version of this paper was presented at the 
6th Annual Western Users of SAS Software conference 
(Pasta, Cisternas, and Williamson, 1998). 

INTRODUCTION 
Most data analysts and most audiences of statistical 
analyses are comfortable with linear models to some 
degree. In its simplest form, the linear model for 
comparing two groups is obtained by calculating the 
mean value for each group and subtracting one mean 
from the other. In the context of a randomized 
experiment with one “untreated” (or placebo) group 
and one “treated” group, this mean difference is the 
unadjusted estimate of the treatment effect. 

More complicated linear models designed to assess 
treatment effects include linear regression, analysis of 
variance (ANOVA), and analysis of covariance 
(ANCOVA). For these models, it has become common 
to compute least-squares means, also called adjusted 
means, for the untreated and treated groups. Those 
adjusted means and their difference, which is the 
adjusted estimate of the treatment effect, are often 

reported along with their standard errors or associated 
confidence intervals. These values can be interpreted as 
the estimated mean values after adjusting for the effect 
of the other variables included in the linear model. 

As sophisticated statistical methodology becomes more 
and more widespread, in part because of the 
proliferation of the associated statistical software, 
various extensions to the general linear model have 
become increasingly commonplace. One extension to 
the general linear model is to perform a nonlinear 
transformation on the response variable before 
estimating an ordinary linear model. For example, in 
studies that analyze health care costs, it has become 
common to employ logarithmic transformations of the 
cost data. 

Another form of extension to the general linear model 
is the generalized linear model as popularized by 
Nelder and Wedderburn (1972). In the generalized 
linear model, a nonlinear function of the response 
variable is assumed to be linearly related to a set of 
predictor variables. The choice of the so-called link 
function that specifies the relationship between the 
response variable and the predictors determines the 
name given to the analysis. When the logit function is 
used, defined as logit(p)=log(p/(1-p)), the analysis is 
called logit regression or more commonly logistic 
regression. When the link function is the inverse of the 
cumulative normal distribution, the analysis is called a 
normit regression model or a probit regression model. 

A practical difficulty of working with these extensions to 
the general linear model is that there is no clear 
analogue to the least-squares means that can be 
obtained from the LSMEANS statement of PROC GLM 
or PROC MIXED. Those adjusted means are 
convenient for reporting the results of general linear 
models. In order to determine appropriate analogues 
for nonlinear and generalized linear models and to 
estimate their standard errors, it is first necessary to 
take a closer look at linear models and least-squares 
means. 

LINEAR MODELS 
The mathematics and statistics of linear regression, 
analysis of variance, and analysis of covariance are 
essentially identical; the primary differences have more 
to do with terminology than substance. In multiple 
linear regression you model a quantitative response 
variable as a linear combination of quantitative 

SUGI 28 Statistics and Data Analysis



 

-2- 

predictor variables. The model is linear in the sense 
that the relationship between the response variable 
and any predictor variable in the model is a straight 
line. It is permitted for the predictor variables to be 
nonlinearly related to other variables, which may or 
may not be included in the model. For example, the 
total cost of a hospital stay (the response variable) 
might be predicted by a linear model containing an 
intercept and three predictors: the length of stay, the 
square of the length of stay, and the cube of the length 
of stay. Although such a regression equation is often 
referred to as curvilinear, it is linear in the predictors 
and therefore can be considered a linear model. 

In analysis of variance you model a quantitative 
response variable as a linear combination of effects 
due to qualitative factors (main effects of predictors) 
and combinations of factors (interactions). The 
possible values of a factor are called the levels of the 
factor and they do not need to be quantitative or even 
ordered. For example, the total cost of a hospital stay 
might be predicted by an analysis of variance model 
with two factors, the hospital type and the gender of 
the patient. The hospital type might have three levels, 
“public,” “private,” and “Veterans Administration.”  
Gender would have two levels, “male” and “female.” 

Analysis of covariance in its most general form is a 
linear model of a quantitative response variable with 
both qualitative factors (as for ANOVA) and 
quantitative variables (as for linear regression) as 
predictors. This combination of qualitative and 
quantitative predictors is also called the “general linear 
model,” and some authors limit the term ANCOVA to 
certain special cases of the general linear model that 
emphasize qualitative factors and only one or 
sometimes two quantitative variables (covariates). 

The SAS System includes many procedures for 
estimating linear models, each with slightly different 
features. For models where all or almost all of the 
predictors are quantitative, regression procedures such 
as PROC REG may be the most convenient. 
Qualitative predictors can be accommodated in the 
linear regression context by the inclusion of one or 
more appropriately-coded binary variables (variables 
that take on only two values). To represent a 
qualitative variable with k levels, usually “dummy-
variable coding” or “effect coding” is used to construct 
k-1 variables that take on the value 0 or 1. For models 
where all of the variables are qualitative, analysis of 
variance procedures such as PROC ANOVA may be 
the most convenient. When many but not all of the 
predictor variables are qualitative, the more general 
procedures PROC GLM and PROC MIXED will almost 
certainly be the most convenient. The qualitative 
factors are specified in the CLASS statement of these 
procedures. 

LEAST-SQUARES MEANS 
In PROC GLM and PROC MIXED, the LSMEANS 
statement provides a convenient way to obtain least-
squares means for even complicated general linear 
models. These least-squares means, often called 
adjusted means, can be thought of as the mean value 
that would have been obtained in a design that was 
balanced in a certain way (which depends on whether 
OBSMARGINS is specified on the LSMEANS 
statement). In the context of the randomized 
experiment with a treated group and an untreated 
group, the least-squares means of primary interest are 
usually those for the treated and untreated groups. 
Although the difference between these two least-
squares means depends only on the specification of 
the model, the least-squares means themselves 
depend on the exact sense in which the model is 
assumed to be balanced. In particular, the presence of 
the OBSMARGINS (or OM) option on the LSMEANS 
statement can change the adjusted means 
substantially or even dramatically. For additional details 
on least-squares means and the OBSMARGINS 
option, see Potter and Pasta (1997). 

For simple models without any interactions between 
the treatment effect and other predictors, the least-
squares means for the two levels of the treatment 
variable with the OM option can be calculated from a 
model in either of two equivalent ways. One way is to 
set every variable except the treatment variable at its 
mean value and calculate the predicted value under 
the model as though this observation were in the 
treatment group, and then calculate the predicted 
value again as though this observation were in the 
untreated group. This method will be referred to as the 
“predicted value of the mean” approach. The precise 
definition of “setting a variable at its mean value” for 
qualitative variables has to do with the details of the 
OM option; it may be easiest to think of creating a set 
of dummy variables and taking the mean of those 
variables. 

The other way to calculate the least-squares means is 
called the “mean of the predicted values” approach. In 
this approach, two predicted values are computed for 
all of the observations in the input data set, once with 
the treatment variable coded as though the 
observation were in the treated group and once as 
though the observation were in the untreated group. 
The means of those predicted values are the least-
squares means for the treated group and the untreated 
group, respectively. 

The important thing to understand is that these two 
methods are equivalent for the linear model, but 
generally are not equivalent for nonlinear models. 
Either method extends to nonlinear models and to the 
case where there are interactions between the 
treatment factor and other predictors. The second 
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method, the “mean of the predicted values” method, is 
perhaps easier to extend. The treatment variable and 
all other variables (including interactions) derived from 
the treatment variable can be coded first as though all 
the observations are in the untreated group and then 
again as though all were in the treated group. 

These methods of calculating least-squares means in 
the linear model do not apply to the original definition 
of least-squares means used in the SAS System 
before the introduction of the OBSMARGINS option. 
Without the OM option, the least-squares means 
assume that the observed data is spread equally over 
each of the possible levels of each qualitative factor. 
This can lead to unreasonable estimated means, as 
shown in Potter and Pasta (1997). 

STANDARD ERRORS OF  
TREATMENT EFFECTS 

The variance or standard error of a function of the 
linear model parameters can be estimated in various 
ways. When the function in question is a linear 
function, as it is for estimating treatment effects in 
general linear models, those methods generally reduce 
to formulas that are easily derived in the simple linear 
regression case. For more complicated models, it is 
convenient to write the formulas using matrix algebra. 
When one of the extensions to the general linear 
model is used, the variance can be approximated 
using the delta method. Rutten-van Molken et al. 
(1994) provide an illustration of this in the case of the 
logarithmic transformation. 

For least-squares means for the untreated and treated 
groups in the linear case, the estimated variance is 

 1 1 
(1) n D’XVX’D n 

where D is an n x 1 column vector of 1s, X is the n x k 
matrix of data values, and V is the estimated variance-
covariance matrix of the parameters. Obtaining the 
variance of the difference between the two treatment 
groups entails calculating two predicted values for 
each observation, one as though it was in the 
untreated group and one as though it was in the 
treated group. The variance of the difference between 
the treated group “T” and the untreated group “U,” 
adjusted for the other variables, is 

 

 1  XT  DT 1
(2) n 

DT’|-DU’   XU  
V XT’|XU’ -DU n

where DT is a n x 1 column vector of 1s and –DU is an 
n x 1 column vector of -1s. The reason for this 
somewhat awkward notation will become clear when 
the model is generalized. 

The XT data matrix has all the observations coded as 
though the subjects were in the treatment group, and 
the XU data matrix has all the observations coded as 
though the subjects were in the untreated group. The V 
matrix is the variance-covariance matrix of the 
parameters and generally can be obtained from the 
SAS procedure used to estimate the model. 

CALCULATING STANDARD  
ERRORS WITH PROC IML 

Given the data matrices and the variance-covariance 
matrix, it is not difficult to use PROC IML to calculate 
the standard error (square root of the variance) of the 
adjusted treatment effect according to the formula (2). 
This standard error should match the standard error 
reported by PROC REG for the treatment effect. We 
have created a macro to perform the calculations but it 
is too lengthy to reproduce here; it can be downloaded 
from www.mgcdata.com/tools.  To give the reader 
some flavor of the necessary steps, fragments of the 
code for implementing this formula using REG and IML 
is given below. 

FIG 1: CODE FOR CALCULATING THE STANDARD ERROR OF 
THE TREATMENT EFFECT USING PROC IML 

* perform regression ; 
proc reg covout outest=estim data=analysis; 
  model &dep_var = &effect_var_list &control_var; 
  output out=regout(keep=resid) residual=resid; 
quit; 
 
* obtain model “n” in a macro variable; 
proc summary data=regout; 
    output out=modeln (keep=modeln) 
        n(pred)=modeln; 
run; 
data _null_; 
   set modeln; 
   call symput(‘modeln’,left(put(modeln,14.))); 
run; 
 
* Create a dataset concatenating both the treated 
and untreated versions of the analysis dataset; 
data xt; 
    set analysis; 
    tx=1; 
run; 
data xu; 
    set analysis; 
    tx=0; 
run; 
data dataplusminus; 
    set xt xu; 
run; 
 
* use score to get predicted values; 
proc score data=dataplusminus predict type=parms 
  score=estim (drop=_NAME_) 
  out=datapred (rename=(model1=lin_pred)); 
  var intercept &effect_var_list &control_var; 
run; 
 
* calculate derivatives; 
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data pred_deriv; 
  set datapred; 
  if &effect_var eq &plus then app_sign=1; 
  else if &effect_var eq &minus then app_sign=-1; 
  deriv=app_sign; 
  pred=lin_pred; 
run; 
 
* extract covariance matrix; 
data covonly; 
  set estim; 
  if _type_ eq ‘PARMS’ then delete; 
  drop _model_ _type_ _name_ _depvar_ _rmse_  
     &dep_var; 
run; 
 
* read in the matrices using IML and calculate 
standard errors ; 
proc iml; 
  *create a dataset for the variance scalar; 
  stderr=.; 
  create stderrwk from  
     stderr[colname=’stderr’]; 
  *get the covariance matrix; 
  use covonly; 
  read all into cov; 
  *get standard error; 
  use pred_deriv; 
  read all var{Intercept &effect_var_list 
     &control_var} into valuen_k; 
  read all var{deriv} into derivn_1; 
  valuek_n = valuen_k`; 
  deriv1_n = derivn_1`; 
  varpt1 = deriv1_n * valuen_k * cov * valuek_n  
     * derivn_1 ; 
  stderr=sqrt(varpt1)/&modeln; 
  *put into external dataset; 
  append from stderr; 
quit; 

GENERALIZING  
LEAST-SQUARES MEANS 

With these formulations of the least-squares means 
and this way of expressing the formula for the standard 
error of the adjusted treatment effect, it is not difficult 
to express generalizations to the case of nonlinear 
models or generalized linear models. One analogue to 
the least-squares mean for the treatment groups is to 
calculate the predicted value under the generalized 
model for an observation with all variables set at their 
mean except the treatment variable, which is set once 
as though the observation were in the treated group 
and once as though it were in the untreated group. The 
other approach is to calculate predicted values for all 
the observations as though they were from the treated 
group and calculate the mean of those values and then 
repeat the process for the untreated group.  

For the linear model, the two methods were equivalent. 
For the nonlinear and generalized linear models, which 
method is better?  This is to some extent a matter of 
taste, but we believe that the second method, the 
“mean of the predicted values” provides a better 
analogue to the least-squares means of linear models. 
It provides, in a very specific sense, a mean value for 
each group that reflects the observed values of the 
predictor variables and adjusts for any imbalance 
between the treatment groups. It also has the 

advantage of calculating predicted values for plausible 
values of the predictor variables, rather than for some 
mythical hybrid observation that is, for example, 42% 
male and 58% female and also 27% a person with no 
college, 41% a person with some college, and 32% a 
college graduate. Another argument in support of this 
method is that it is closely related to the smearing 
estimate described below. 

STANDARD ERRORS FOR NONLINEAR 
AND GENERALIZED LINEAR MODELS 

We would like to be able to estimate standard errors 
for adjusted means calculated by the recommended 
method, the “mean of the predicted values” approach. 
It turns out that the estimation of the standard error of 
those treatment means and the standard error of the 
difference between treatments is not difficult. Using the 
delta method, the variance of a function of the 
parameter vector is the variance-covariance matrix of 
the parameters pre- and post-multiplied by the vector 
of derivatives of the function with respect to the 
parameters. This corresponds to a simple Taylor 
series approximation to the function. In the context of 
the extended models we consider here, this means 
that the vector D in formulas (1) and (2) needs to 
correspond to the derivative of the function, evaluated 
at the specific observation. 

In the case of a logit model, we replace the vectors of 
+1 and –1 with vectors of the derivatives, which are +1 
or –1 times exp(xβ) divided by (1+exp(xβ))∗∗2. 

THE SMEARING ESTIMATE FOR 
RETRANSFORMED DATA 

For the log-transformed data, one simple estimate of 
the retransformed value can be obtained from exp(xβ), 
for which the derivative is also exp(xβ). However, Duan 
(1983) has proposed a simple adjustment for the bias 
that results from this retransformation. This estimate, 
called the smearing estimate, is related to the 
bootstrap in that it is nonparametric and does not 
require the underlying distribution to have any 
particular form. 

The smearing estimate is based on the following idea. 
Although the retransformed data, exp(predicted), is a 
reasonable estimate of the median of the original 
distribution, it is not a very good estimate of the mean 
of the original distribution which, because of the long 
tail of the distribution, could be substantially larger. 
There are ways to account for this under the 
assumption that the original data are lognormally 
distributed, but the smearing estimate works well 
without assuming a specific distribution. To apply the 
smearing estimate, one simply calculates the mean 
value of the retransformed residuals, i.e. the mean of 
exp(residual), across all the observations. Although for 
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a least-squares model the mean of the residuals will be 
zero (assuming a constant is included in the model), it 
is not necessarily the case that the mean of the 
retransformed residuals will be one. In fact, it will 
(when a log transform is appropriate), nearly always be 
greater than one, possibly substantially greater. The 
smearing estimate of predicted values is calculated by 
multiplying the retransformed values, exp(predicted), 
by the mean of the exponentiated residuals. 

STANDARD ERRORS USING PROC IML 
For the log-transformed and the logit models, the 
modification to the PROC IML code to accommodate 
those models is quite straightforward, as shown below. 

FIG 2. STANDARD ERRORS FOR LOG-TRANSFORMED DATA 
* get smearing estimate; 
data expresid; 
  set regout; 
  expresid=exp(resid); 
run; 
 
proc summary data=expresid; 
  var expresid; 
  output out=smeared(keep=smeared) 
     mean(expresid)=smeared; 
run; 
 
* calculate derivatives: note that datapred 
dataset is created as is Fig 1 so the code is not 
reproduced here; 
data pred_deriv; 
  set datapred; 
  if _n_=1 then set smeared; 
  if &effect_var eq &plus then app_sign=1; 
  else if &effect_var eq &minus then app_sign=-1; 
  exp_lin_pred=exp(lin_pred); 
  deriv=app_sign*smeared*exp_lin_pred; 
  pred=smeared*exp_lin_pred; 
run; 

FIG 3. STANDARD ERRORS FOR LOGIT MODEL 
* logit version; 
proc logistic descending covout outest=estim  
   data=analysis; 
  model &dep_var=&effect_var_list &control_var; 
run; 
 
* the dataplusminus dataset is created dataset is 
created as in Fig 1 so the code is not reproduced 
here; 
proc score data=dataplusminus(drop=&dep_var)  
   score=estim predict type=parms  
   out=datapred(rename=(&dep_var=lin_pred)); 
var intercept &effect_var_list &control_var; 
run; 
 
* calculate derivatives; 
data pred_deriv; 
  set datapred; 
  if &effect_var eq &plus then app_sign=1; 
  else if &effect_var eq &minus then app_sign=-1; 
  exp_lin_pred=exp(lin_pred); 
  deriv=app_sign*exp_lin_pred/(1+exp_lin_pred)**2; 
  pred=exp_lin_pred/1+exp_lin_pred); 
run; 

CONCLUSION 
There are two reasonable extensions of “adjusted 
means” to nonlinear and generalized linear models. 
These two methods, the “predicted value of the mean” 
and the “mean of the predicted values” methods, give 
the same answers for the linear model but different 
answers for the nonlinear and generalized linear 
models. We recommend use of the second method, 
the “mean of the predicted values.”  The code for 
calculating adjusted means by this method and 
associated standard errors is not difficult once the 
initial structure is prepared. That initial structure can be 
tested by comparing the results from PROC IML with 
the results from the REG, GLM, or MIXED procedures 
for linear models. The modifications needed for log-
transformed and the logit models are only a few lines 
of code. We recommend that the smearing estimate 
be used when retransforming nonlinear models back to 
the original scale and that standard errors be routinely 
calculated for nonlinear and generalized linear models 
using the methods described here. 
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