SUGI 28 Statistics and Data Analysis

Paper 262-28

Complex Sampling Designs Meet the Flaming Turkey of Glory

David L. Cassell, Design Pathways
AnnMaria Rousey, Spirit Lake Consulting

ABSTRACT

Sophisticated sampling designs can save money, provide
more accurate answers, and answer questions that simple
random sampling (or non-random data) cannot. Yet too many
investigators are guilty of a multitude of sins. These include
not collecting data optimally, not analyzing data according to
the underlying features of the sampling designs or (horrors!)
all of the above. Survey data are the lifeblood of marketing
analyses, healthcare studies, environmental and sociological
research, and many other areas. It is essential that data be
collected and analyzed in the best possible ways. This talk
will focus on key aspects of sampling theory, such as cluster
sampling, weighted samples, stratified sampling, sampling
errors, and non-response errors. This will be combined with a
discussion of the SAS® PROCs which help one design
surveys, and then analyze those surveys: PROC
SURVEYSELECT, PROC SURVEYMEANS, and PROC
SURVEYREG, along with the %SMSUB macro and some
future V9 enhancements. Attendees will also learn the
hazards of using PROC MEANS when PROC
SURVEYMEANS was warranted, which, despite the title, do
not include bursting into flame. Whether or not such
punishment is warranted will also be discussed, with
examples.

PROLOGUE

Once again, we have seen that fiction is no stranger than
truth. The children's cartoon "!Mucha Lucha!" thoughtfully
illustrated this recently. This show is set in an imaginary
world in which everyone and everything is a masked Mexican
wrestler. The main characters of the show are Ricochet,
Buena Girl, and The Flea: three ordinary masked-wrestler
schoolchildren who go to a masked-wrestler school replete
with masked-wrestler teachers. A scene in this show
accurately reflected the complexities of consulting on
sampling designs. The three children prepare to perform their
signature moves to combat a bad guy...

Buena Girl: I choose.. the Torch of Truth!

< she transforms into a living torch, complete with flame>
Ricochet: I choose.. Mirror Mirror!

<he transforms into a living mirror>

The Flea: [in an odd Peter Lorre-like voice] The Flea
chooses.. the Flaming Turkey of Glory!

<he transforms into a plucked, headless, cooked turkey which
is on fire>

<his teammates promptly turn and stare at him>

The Flea: What?!? The Flea LIKES the Flaming Turkey of
Glory!

This is hardly different from the real world...

AnnMaria: I would choose a sampling design which will
reveal accurate estimates for a minimal cost.

David: I would choose a sampling design which will reflect
the complexities of the target population.

The Client: [in an odd Peter Lorre-like voice] The Client
chooses.. stratified sampling!

<pause>

The Client: What?!? The Client LIKES the stratified
sampling!

Note that the client did not actually transform into a flaming
turkey. He only seemed to, in our imaginations. And only
because this would be a situation where stratified sampling
was inappropriate or sub-optimal. But this is one of many
statements that have been made by close relatives of The
Flea. For example, many of you have heard clients or end-
users say [in an odd Peter Lorre-like voice] something like
one of the following statements:

What?!? The Analyst LIKES using PROC MEANS!

What?!? The Client LIKES using data from his web survey!

What?!? The End-user LIKES assuming simple random
sampling!

WHAT IS A PROBABILITY SAMPLE?

Too often, a client or end-user will have a data set ready for
analysis, and then run into the annoying roadblock called The
Statistician. (Of course, we all know that in reality the
consultee only thinks his data set is ready, and the data will
really require hundreds of person-hours to do all the quality
assurance needed to make it usable. But that's another talk.)
So first of all, we need to explain what constitutes a legit
sample.. and what does not. In general, when a complete
census is logistically or budgetarily unreasonable, the user
will want a subset of the possible population values, so that
realistic estimates can be made. But how do we decide what
a 'subset' is? Or a 'population'? Or an 'estimate'? Or even
'realistic'? First, we must define terms.

A sample design should be more than just a collection of
information that hopefully comes from the target population.
It should be a functional process which embodies the entire
process of sample definition, sample selection, sample
collection, data preparation, data analysis, and data use.

Cochran (1977) specified eleven steps in designing,
performing and evaluating a survey. These steps, as he

listed them, are:

8 specifying the objectives of the survey;
2) determining the population to be sampled;
3) deciding the data to be collected;

“4) determining the degree of precision to be required;
(&) determining the methods of measurement;
(6) developing the sampling frame;

7 selecting of the sample;

®) performing the pretest;

9 organizing of the field work;

(10) summarizing and analyzing the data; and
(11) gathering information for future surveys.

A 'population' in this context will be the target group or
groups to be studied. The population cannot be properly
defined until the objectives of the study are fully defined,
since changing the objectives can alter the requirements on
the population to be studied. If the survey objectives are not
specified, then determining which data must be collected is a
hit-or-miss proposition. This is often addressed by attempting
to gather every bit of available information, in the hope that
whatever will be needed is in the final database. Doing a
sample this way tends to have painful effects on budgets and
data management. On the other hand, having people like this
as clients is another way to ensure that SAS® will never go
out of style.

Often, the goal of such a study is to estimate certain
properties or characteristics of this population, which we will
call population values. The true population values will be
unknown, and may not even be fixed constants. We will (in
principle) use the data from the sample to try to come up with
'sample estimates'. But the accuracy of the sample estimates
is dependent on the size and scope of the survey design, as
well as the kind of survey design used. The survey has to be
designed carefully enough that we know exactly what the
'sampling units' are. The sampling units are the elements of
the target population. But the traditional survey sample of
people need not have a person as the sampling unit. Lots of
surveys of people are really only looking at the household as
the sampling unit. Such surveys then have to address such
complexities as households with more than one family,
families spread across more than one household, people who
spend time in more than one household, people who have no
household, etc. Until the sampling unit is fully defined and
these sorts of questions are addressed, we are not really ready
to build a sample, much less collect data.

Once these questions have been answered, then the 'sampling
frame' can be constructed. A sampling frame is (typically) an
enumeration of all the possible sampling units in the target
population. This may be a list of people, a list of households,
a list of hospitals, a list of patients, a list of lakes, a list of
farms, a list of businesses, or any other list which gives us a
list which can be used for sample selection. In cases where a
complete enumeration is not possible, then the sampling
frame has to be built to take this into account. Unfortunately,
despite our best intentions (as George Bernard Shaw would
say), we sometimes find ourselves on a road which has no
reliable list of all sampling units, and no cost-effective way of
obtaining one. Such a problem has been addressed in survey
sampling theory, and the simplest approach to this problem is

SUGI 28 Statistics and Data Analysis

often cluster sampling. Under a cluster sampling design, we
may end up taking blocks (i.e, clusters) of the population and
building complete sampling frames for the clusters only.
Cluster sampling is not the only option at this point, just the
one that more people have heard of.

Note that only after the first six steps above are we ready to
select the sample. This is the point at which PROC
SURVEYSELECT is used. While many people think about
experimental designs as a model for what we want to do in
sampling designs, experimental designs actually have some
major differences from sampling designs. A primary
difference is that experimental designs are usually built under
a structure that incorporates a finite sample from a
theoretically infinite sequence of observations. Survey
sampling classically has a finite population, and has
necessary adjustments in error variances to compensate.

Step nine - organizing of the field work - has no statistical
analysis and no statistical computations. But it is a crucial
component of the sampling process. Response errors - errors
which occur in the values collected - can vastly inflate the
standard errors of the sample estimates, and can even
introduce subtle but crucial biases in the point estimates.
Different interviewers asking the same questions may get
completely different answers.

Equally important are non-response errors, the cases where no
values are obtained for some variable or variables. Those
same interviewers may make the difference in getting people
to answer a question. The design of the questionnaire may
determine whether there is a reasonable chance that any
interviewer can get the subject to answer a sensitive question.
Different interviewers may get very different rates of refusal,
so that one interviewer may have evaluations on nearly all of
her units, while another interviewer may get less than half of
his evaluations.

It is only at step ten that we are ready to use PROC
SURVEYMEANS or PROC SURVEYREG to analyze the
data. The unfortunate fact is that the client may envision the
entire process of the survey as only drawing a sample and
then analyzing it. Or in some cases, only performing the
analysis on already-collected data.

WHAT IS NOT A PROBABILITY SAMPLE?

When the client comes forward and says that she has a terrific
data set and it all comes from a really nice web survey her
people constructed, the first thing you have to do is.. not
laugh. It isn't clear to most people what constitutes a
probability sample and what does not. So let's focus on a few
common problems. In the theory of sample surveys, we
assume that each unit in the population has a set value for
each character Y, and that we got the correct value each time
we collected data. We also assume that we know how 'likely'
it is that a sampling unit was selected, and how likely it is that
two different sampling units both ended up in our sample.
These aspects are typically driven by our sampling design.
When we cannot know the correct value for each collected Y,
or we cannot determine the real probability of a sampling unit
being included, then we are going to have serious problems in
our analysis.

The advent of the Internet has made it possible for anyone to
collect survey data, just by putting up a webpage. But does
this constitute a survey design? Let's look at an example and
see where things can go wrong. A few years ago, Major
League Baseball added to the omnipresent confusion of fan
voting for the All-Star game by adding on-line voting. In
order for a fan to vote, he or she had to fill out a short form,
then select the players of interest and submit the vote. On the
last day of on-line voting, Nomar Garciaparra of the Boston
Red Sox trailed Derek Jeter of the New York Yankees by
roughly twenty thousand votes for American League
shortstop. A Boston Red Sox fan who is a well-known Perl
programmer and author decided to address that gap. He
wrote a small Perl program which went to the webform, filled
it out, and then voted for Nomar Garciaparra.. twenty-five
thousand times.. in just a few hours. He didn't make any
attempt to disguise his ballot-stuffing, so his votes were
thrown out after the fact. But he could have forged his email
address and masked his origins with ten or twenty more lines
of Perl code. So, does this balloting yield a sample survey
design?

Of course not. Even if we define some manner of proxy for
the target population, say, all people on earth who might vote
for their favorite baseball player at any position, we still have
no way of determining how likely it is that a particular fan
may vote. Or may vote as often as he can scare up a new
email address on America Online. This type of data
collection is prone to the problem of self-selection. Any time
people are allowed to choose whether or not to participate in
a survey, there is a risk of selection bias. Webpolls asking for
a yes-no opinion produce a strong self-selection bias, since
the people most likely to vote are those who carry the
strongest opinions one way or the other. Webpolls showing
intermediate results to potential voters may further encourage
voting from those who feel that their opinion is not being
represented, thus producing a 'leveling' effect. This effect
does not yield accuracy, it only causes the percentage to
move away from the printed value.

If two million people are watching a sports news show which
asks a question and gives a URL for voting, and forty
thousand people vote, then the response rate could be
considered to be five percent. While five percent of a target
population may be sufficient for a well-designed sample
survey, a self-selected subset of five percent of an already-
biased population is unlikely to yield an unbiased estimate of
the real population value. And, even worse, there is no way
to tell how big that bias on that sample estimate is.

SOME BASIC PROBABILITY SAMPLES

PROC SURVEYSELECT has the capability of generating
sample designs that can accommodate a variety of common
survey methodologies. The best known sample design is
simple random sampling, either with or without replacement
of the sampling units. This often assumes that all the
probabilities of selection are equal. But sampling can be done
with unequal probabilities of selection. When the sampling
units are ordered sequentially, sampling can be performed in
a systematic manner, taking every kth unit starting from a
randomly chosen position. Sampling can be done after

SUGI 28 Statistics and Data Analysis

breaking the sample into 'strata’, and it can be done when
choosing to sample within 'clusters' of the population.
Sampling can be done as a multi-stage process or a single-
stage process. Replicates of the sample can be created, as
well. PROC SURVEYSELECT can do all of these processes,
and more. But these techniques will be an adequate basis for
this paper.

As an aside, let us note that the efficiency of PROC
SURVEYSELECT makes it less useful for resampling
techniques such as bootstrapping and jackknifing. PROC
SURVEYSELECT is smart enough to notice when a sample
of size n is requested from a population of n units, and simply
generates an exact copy of the original sampling units, with
no randomization. Currently, the easiest way to generate a
bootstrap sample from a data set is to use the macro wrapper
programs %RAND_GEN and %RAND_ANL as described in
the paper "A Randomization-test Wrapper for SAS® PROCs"
from SUGI 27. The macro %RAND_GEN generates all the
replicates for the resampling procedure in a single file, which
may grow extremely large when working with a large number
of replicates of a large data set. Caution should be used when
the size of this bootstrap data set will be of the same order as
the available disk space.

SIMPLE RANDOM SAMPLING IN A
SURVEY

Prior to PROC SURVEYSELECT, the best options for
drawing a simple random sample from a sampling frame were
SAS® code in a DATA step or two. Some excellent
examples of macros to do this have been presented on the
SAS-L mailing list by Dale McLerran. But, as of version §,
we have survey sampling tools in SAS®.

To draw a simple random sample without replacement (i.e.,
the probability of getting the same unit twice in the sample is
zero), you can now invoke PROC SURVEYSELECT. A
recurring question in SAS-L is the issue of drawing a simple
random sample of a set size or sampling rate. To draw a
simple random sample of size 200 out of a sampling frame
called MyFrame, we can write:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize=200
stats;

run;

Note that we create an output data set called MySample,
which will have all the design data that we need later on..
when we are finally forced to analyze the resulting collected
data. Here, because we used the option STATS, the data set
will include a SelectionProb variable and a SamplingWeight
variable. SelectionProb will hold the likelihood of selecting
that datum from the sampling frame. SamplingWeight will
hold the (initial, unadjusted) weight that would be used as the
sample weight when analyzing the data in PROC
SURVEYMEANS or PROC SURVEYREG. The output data

set will automatically include these variables if unequal
probability sampling is performed, or if stratified sampling is
done. The output data set can also contain any variables
included using an ID statement.

We recommend that you always specify your own random
seed, so that your sample can be replicated.. as will be
necessary as soon as you forget to use a random seed. We
also recommend that you not use the seed 12345678 over and
over again, unless you want to have to stand up at some point
and loudly state [in an odd Peter Lorre-like voice]:

What?!? The Programmers LIKES 12345678!

To instead draw a sample of fifteen percent from the same
frame, we can specify a different option:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
samprate=15
stats;

run;

This sampling design could also be specified as:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
samprate=.15
stats;

run;

Note the two different values for SAMPRATE which yield
the same results. The PROC SURVEYSELECT translates
sampling rates above one into a sampling fraction by
assuming the number to be a percentage. However, if you
write

samprate=1

SAS® will assume you want a 100% sample, rather than a
1% sample. For a 1% sample, you must write:

samprate=.01

If, instead of simple random sampling with equal
probabilities, you need a simple random sample where some
sampling units should be sampled with a higher probability
than others, you can perform sampling with unequal
probability of selection, simply by specifying a PPS method
and having a size variable in the MyFrame data set. The size
of a unit should be proportional to the probability of
selection. So, if you want each woman listed in your
sampling frame to have twice the likelihood of being selected
as each man, then you would want to create a sampling size
variable in the MyFrame data set and use that variable in the
SIZE statement of PROC SURVEYSELECT:

data Frame2 / view=Frame2;

SUGI 28 Statistics and Data Analysis

multiplier = 1 + (sex='F');
run;

proc surveyselect
data=Frame?2
out=MySample
method=PPS
seed=12345678
samprate=.15
/* STATS is no longer needed */ ;
size multiplier;
run;

PROC SURVEYSELECT will generate the sampling weights
that are appropriate for the design. These are the weights that
will be needed later on, after the data have been collected. At
that point, sample weights may have to be adjusted due to
problems with the collection of the sample data. The adjusted
sample weights will then be used when running PROC
SURVEYMEANS and PROC SURVEYREG.

SYSTEMATIC AND SEQUENTIAL
SAMPLING

Once upon a time, before computers, systematic sampling
was an extremely useful tool. By ordering one's frame
sequentially and selecting a starting point, an entire sample
could be selected without generating any more random
numbers. Unfortunately, a single systematic sample actually
has no unbiased variance estimate. However, the use of more
than one systematic sample from the same frame will yield an
unbiased variance estimate. The authors do not recommend
the use of standard systematic sampling with only a single
replicate taken. Sequential sampling processes are available
from PROC SURVEYSELECT using the CONTROL
statement. Chromy (1979) devised a way of walking through
the sequentially-ordered sampling units so that there is an
unbiased variance estimator. Systematic and sequential
sampling can, in theory, provide sampling variances smaller
than that of simple random sampling when the frame has been
sorted so that the correlation between pairs of selected units
in a sample is sufficiently small. So here is a survey design
using a sequential sample:

proc surveyselect
data=MyFrame
out=MySample
method=PPS SEQ
seed=12345678
samprate=.15;
run;

STRATIFIED SAMPLING

When the target population can be divided into non-
overlapping subpopulations, stratified sampling may come to
mind. It may not be the technique which should come to
mind, but it usually does. One of the authors has frequent
problems with end-users who have heard of stratified
sampling and want it, whether it is a reasonable choice or not.

There are several reasons why stratified sampling should be
considered. Cochran (1977) listed the classic four cases:
when known precision (i.e., known sample size) is desired for

specific non-overlapping subdivisions of the population;
administrative convenience, such as sampling when field
offices will be conducting the survey for a designated portion
of the population; studies in which sampling problems may
differ in different parts of the population, such as a survey
which samples people living in care facilities and also people
living at home; and finally, studies in which the stratification
may produce a gain in the precision of the variance estimates.

Unfortunately, stratified sampling is not always appropriate.
When known precision is desired, sampling proportional to
size can provide sample sizes close to the precisely-desired
stratum sizes. When gains in precision are desired, the
stratification must be very precise: a misclassification rate of
as little as twenty percent on the stratum definitions can
invalidate any gain in precision from using stratified sampling
over simple random sampling. Logistic reasons are the best
reasons for performing stratified sampling.

Here is an example of stratified sampling where there are four
regions which will be used as strata, and the sample sizes for
the strata are specified so that the total sample of 200 is split
as desired among the strata. The STRATA statement works
analogously to the BY statement in many PROCs. It can take
more than one stratification variable, and it even has
DESCENDING and NOTSORTED keywords like the BY
statement. It can even use an index built on the stratum
variables in PROC DATASETS, just as the BY statement
can. As with the BY statement, NOTSORTED does not mean
that the data are unsorted: it means that the data are arranged
into the strata, but the strata are not necessarily in ascending
or descending order. Here the data are arranged by region but
the regions have been appended in what may not be a sorted
order. Note that you cannot select proportional to size or
using a CONTROL statement unless the strata are sorted or
indexed in ascending order.

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize= (24 48 56 72);
strata region notsorted;
run;

Notice that SAMPSIZE is now used to provide an array of
sample sizes, one per stratum. The order of the strata is now
crucial, or else the wrong sample sizes may be applied to the
strata. The SURVEYSELECT procedure provides a way of
addressing this problem, as well as the problem of providing
stratum sizes when there are a large number of strata. The
SAMPSIZE option can also take the name of an auxiliary
data set. This data set need only have the stratum names and
stratum sizes. The stratum names in the auxiliary data set
must be exactly as provided in the MyFrame data set, with
precisely the same length and type. The stratum sizes should
be put into a variable named NSIZE . The values for
_NSIZE_must be positive integers, and if sampling is done
without replacement, the stratum sizes must be at most the
number of sample units in the stratum. Furthermore, the
order of the strata in the auxiliary data set must match the
order of the strata in the frame data set. If an auxiliary data
set MyStratSizes is used to build the stratum sizes, then the

SUGI 28 Statistics and Data Analysis

procedure would be invoked like this:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize=MyStratSizes;
strata region notsorted;
run;

This will work properly as long as the strata in MyFrame and
MyStratSizes are arranged in the same order, even if that
order is not a sorted order.

CLUSTER SAMPLING AND MULTISTAGE
SAMPLING

There are two main reasons for using cluster sampling. The
first is logistical: sometimes it is not possible to build a
complete, reliable sampling frame for the entire population.
In such cases, clusters of the population can be constructed,
and sampling frames can be built for those clusters. The
second reason is budgetary: it is often far more cost-effective
to sample all students within a school, all patients in a clinic,
or all discharges from a hospital than to randomly sample a
few here and a few there from thousands of institutions. For
example, the NIS selects all discharges with a set of sampled
hospitals.

A multistage sample might be a sample in which you first
draw a first-stage sample as if you were performing a cluster
sample, and then you create a second-stage sample as subsets
of the clusters. The elements composing the frame from
which the first sample is drawn are called the primary
sampling units. Then a second-stage sample is built by taking
a subset of elements from each of the primary sampling units.

While cluster sampling can make your sample more cost-
effective, it can also cause a serious loss in precision of your
estimates as compared to a simple random sample. A
standard technique to deal with this problem in cluster
sampling is to make sure that your sample within each cluster
is as heterogeneous as possible for the variables of interest.

Let us suppose that we want a cluster sample of hospitals
(using the hospital ID variable HospID), and that we will
want to stratify based on the variable REGION, due to the
complications of taking samples in different regions using
different administrative staff and different field personnel.
The stratum sizes are already in the auxiliary data set
MyStratSizes. Here the primary sampling units are the
hospitals, not the patients. We will take a sample of
hospitals, and then survey all patients in each selected
hospital. Since the hospitals are our primary sampling units,
we will only need to use the design information used in
selecting the hospitals in order to use the SURVEYREG and
SURVEYMEANS procedures. The approximations used in
these procedures are based on the design used for the primary
sampling units.

proc surveyselect
data=MyFrame
out=MySample
method=SRS

seed=12345678
sampsize=MyStratSizes;
strata region;
id HospID;
run;

This stratified sample of hospitals now yields a stratified,
clustered sample when we evaluate all patients in each
selected hospital.

If we then choose to take a sample of the patients in each
hospital, rather than surveying all the patients, we would have
a two-stage sample. We can achieve this by building a new
frame comprised of all those patients in the selected hospitals,
and selecting a sample from those patients.

Suppose we have a second data set MyPatients, composed of
all patients in all of our hospitals. We need to subset that to
the patients in the selected hospitals. Then we need to select
a specific number of patients in each hospital. We can do that
in our second stage of sampling by treating the hospitals as if
they were strata, selecting patients within each stratum, and
providing the appropriate stratum sizes in an auxiliary data
set, which we will call MyPatientSizes. If MyPatients is
already sorted in the same order as MySample, then we can
accomplish the second stage of sampling like this:

data MyFrame?2;
merge
MyPatients
MySample (keep=HospID in=inSample) ;
by HospID;
if inSample;
run;

proc surveyselect
data=MyFrame?2
out=MySample?2
method=SRS
seed=87654321
sampsize=MyPatientSizes;

strata HospID;
run;

Now the DATA step above may not be the optimal approach.
Depending on data set sizes and available disk space, it might
be preferable to create the data set MyFrame?2 as a data step
view. Or, if the two files are not sorted or indexed on
HosplD, the programmer might prefer to use PROC SQL to
do this merge. If the data sets are extremely large, or must be
read off tapes, then it might be preferable to read all the
HosplID values into an array, then read in the MyPatients data
set and search the array to find matching patient records to be
output in the MyFrame?2 data set.

Since the above process can be repeated, there is no reason
why this sample cannot be performed as a multi-stage sample,
with more than two stages. Perhaps sampling needs to be
done by hospital, and then within each hospital we need to do
cluster sampling by care facility, with sub-sampling of
patients done in each care facility. We could use the same
techniques to perform a three-stage sample. We build a
facility frame based on the selected hospitals, and select the
facilities to be sampled. Then we build a patient frame based
on the selected facilities within hospitals, and sample those
patients within care facilities in the same way that we

SUGI 28 Statistics and Data Analysis

sampled the facilities within hospitals.

What?!? The Analyst LIKES using PROC
MEANS!

A key point to remember is that the standard SAS® statistical
procedures assume that you are working with a simple
random sample from an infinite population. Instead of a
simple random sample (where every sampling unit has an
equal chance of being selected), consider a sample where
some units have a greater chance of selection. Samples
proportional to size, stratified samples, and cluster samples
can all lead to this situation.

If the data are not randomly sampled, then using PROC
MEANS or PROC REG can mean that the standard errors are
wrong. It may also (if the weights are not taken into account)
mean that the point estimates form PROC MEANS are wrong
too. And even if the weights are used in PROC REG, the
point estimates for the regression coefficients cannot be
trusted. But the joy of PROC SURVEYMEANS and PROC
SURVEYREG is that you do not have to understand the
intricacies of the sampling design as long as you wrote down
that you have a stratified cluster sample with known weights,
and you wrote down the names of the variables for
stratification, clustering, and weighting. Even better, you do
not have to look under the hood and study how the Taylor
series expansion method is used to obtain the sampling errors
for the sample estimators you want. All you need to know is
what design was used to create the primary sampling units.
This is due to the way in which the Taylor series expansion
theory is used to estimate the sampling errors of the
estimators. So, if you have a complex, multi-stage sampling
design as in our hospital-facility-patient example, you still
only need the information used in building the first stage of
the design in order to use the SURVEYREG and
SURVEYMEANS procedures.

USING PROC SURVEYMEANS

So, assuming you did write down the information above, you
are ready to analyze the data properly. You know that the
data are in a file called YourSample, with stratum variable
REGION, cluster variable HosplID, and weighting variable
Adj Weight. You want mean estimates and their standard
errors for the population parameter LOS:

proc surveymeans data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
var LOS;
run;

If you wanted to perform this same analysis by gender, you
might be tempted to sort by gender and then use the BY
statement. Don't do that! At least, if you try this, SAS® will
give you a note that tells you to use the DOMAIN statement.
The SAS® log will contain the note:

NOTE: The BY statement provides
completely separate analyses of the BY
groups. It does not provide a
statistically valid subpopulation or
domain analysis, where the total number

of units in the subpopulation is not
known with certainty. If you want a
domain analysis, you should use the
DOMAIN statement.

Domain analysis, or sub-population analysis as it is
sometimes called, will provide an appropriate analysis, by
adding only one line to the above code:

proc surveymeans data=Your sample;
domain GENDER; /* new line */
strata REGION;
cluster Hispid;
weight Adj Weight;
var LOS;

run;

The DOMALIN statement is available as of SAS® version 8.2,
but if you have an earlier version of SAS® you can still make
do. The %SMSUB macro is available on the SAS® website..
if you know how to search it. But even if you are running
version 8.2 or version 9.x, you still have to watch out for
large numbers of missing values in your data. The
SURVEYMEANS procedure is based on the assumption that
missing data are MCAR - Missing Completely At Random -
so that the pattern of missing values should not affect the
estimates. SAS®, unlike other statistical packages designed
to analyze complex survey data, treats these as records to be
deleted before the analysis, rather than as another subgroup of
respondents, which both authors agree is the appropriate way
to deal with them. Grouping the data by the occasionally-
missing variable (we'll call it GENDER for our example) and
using the %SMSUB macro will give you the results you
would expect to get from other survey analysis packages.
Once you use %INCLUDE to include the %SMSUB macro in
your code, you can call it like this:

filename incl 1lib "path to smsub macro";
%include incl lib (smsub);

%smsub (data=Your sample,
statistics=mean stderr,
weight=Adj Weight,
strata=REGION,
cluster=Hispid,
var=L0S,
table=GENDER) ;

Unfortunately, the %SMSUB macro creates a large number of
temporary data sets, some of which are large. After using the
%SMSUB macro, you will want to clean up your workspace
to prevent %SMSUB from devouring your hard drive:

proc datasets library = work;
delete : ;
run;

USING PROC SURVEYREG

Just as the SURVEYMEANS procedure provides the error-
variance calculations that are needed for complex survey
designs, so the SURVEYREG procedure does regression
analyses using Taylor expansion theory to estimate the proper
variance-covariance matrix for the regression coefficients.
And, joy of joys, you still do not need to learn how Taylor
expansion theory is used in survey sampling theory. It uses a

SUGI 28 Statistics and Data Analysis

structure analogous to PROC REG, only adding STRATA
and CLUSTER statements. So a simple example of modeling
the hospital expenses based on patient income, given the
same sampling design as before, would look like this:

proc surveyreqg data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
model expense = income;
run;

The SURVEYREG procedure also has the CLASS,
CONTRAST, and ESTIMATE statements of PROC REG.
This allows the programmer to use techniques that have been
learned through years of working with the REG procedure.

The SURVEYREG procedure uses ODS directly, rather than
using an OUTPUT statement as is often seen in older
procedures. The parameter estimates for the above model can
be output to a data set using the following code. Note that
this does not require the usual ODS statements before and
after the procedure. All the necessary ODS structure has been
internalized.

proc surveyreg data=Your sample;

strata REGION;

cluster Hispid;

weight Adj Weight;

model expense = income;

ods output ParameterEstimates=MyParams;
run;

More output data sets can be obtained using the same
statements. Here, we also obtain the fit statistics and the
inverse of the X'X matrix.

proc surveyreg data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
model expense = income / inv;
ods output
ParameterEstimates = MyParams
FitStatistics = FitForLife
InvXPX = Inverted;
run;

The INV option in the MODEL statement is needed to obtain
the inverse of the X'X matrix. All such requirements are
listed in the Online documentation, under "ODS Table
Names".

Logistic regression for sample surveys is not yet available in
a procedure, but PROC SURVEYLOGISTIC will be
available in SAS® version 9.1 .

EPILOGUE

There are many ways to properly draw a probability sample.
The SURVEYSELECT procedure gives you a large number
of ways to design sample surveys, so that you can cope with
the complexities of real-life samples. When simple random
sampling (with or without replacement) is appropriate, it can
generate your sample. And, when clustering is needed, or
stratification, or sample weights, or multi-stage sampling, the

SURVEYSELECT procedure can do that too.

Unfortunately, there are far more ways to collect a sample
which is not a probability sample. And there are often
poorly-designed survey samples which may not meet the
objectives of the study due to poor precision or bad accuracy.
Once the data have been collected, perhaps not even Buena
Girl could salvage your study.

Analysis of a well-designed probability sample is usually
straightforward with the proper tools. The SURVEYMEANS
and SURVEYREG procedures will meet those needs.

Analysis of a badly-design sample will most likely yield
numbers which can never be fully evaluated or statistically
adjusted. Unfortunately, bad analysis of a well-designed
sample survey can have equally ugly consequences.
Remember the signature move of The Flea. No one wants to
appear before a client or a boss while resembling a flaming
turkey.

REFERENCES

Cassell, D.L., 2002. "A Randomization-test Wrapper for
SAS® PROCs". SUGI 27 Conference Proceedings, SAS
Institute, Inc.

Chromy, J.R., 1979. "Sequential Sample Selection Methods".
Proceedings of the American Statistical Association, Survey

SUGI 28 Statistics and Data Analysis

Research Methods Section, pp. 401-406.

Cochran, W.G., 1977. Sampling Techniques. Third edition,
New York: John Wiley & Sons, Inc.

ACKNOWLEDGMENTS

SAS is a registered trademark of SAS Institute, Inc. in the
USA and other countries. ® indicates USA registration.

CONTACT INFORMATION

The authors welcome questions and comments. All serious
gaffes are no doubt due to the lead author, who can be
reached at:

David L. Cassell

Design Pathways

3115 NW Norwood Pl.
Corvallis, OR 97330
Cassell.David@epamail.epa.gov

The second author can be reached at:

AnnMaria Rousey
annmaria@spiritlakeconsulting.com

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

