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ABSTRACT

Sophisticated sampling designs can save money, provide
more accurate answers, and answer questions that simple
random sampling (or non-random data) cannot. Yet too many
investigators are guilty of a multitude of sins. These include
not collecting data optimally, not analyzing data according to
the underlying features of the sampling designs or (horrors!)
all of the above. Survey data are the lifeblood of marketing
analyses, healthcare studies, environmental and sociological
research, and many other areas. It is essential that data be
collected and analyzed in the best possible ways. This talk
will focus on key aspects of sampling theory, such as cluster
sampling, weighted samples, stratified sampling, sampling
errors, and non-response errors. This will be combined with a
discussion of the SAS® PROCs which help one design
surveys, and then analyze those surveys: PROC
SURVEYSELECT, PROC SURVEYMEANS, and PROC
SURVEYREG, along with the %SMSUB macro and some
future V9 enhancements. Attendees will also learn the
hazards of using PROC MEANS when PROC
SURVEYMEANS was warranted, which, despite the title, do
not include bursting into flame. Whether or not such
punishment is warranted will also be discussed, with
examples.

PROLOGUE

Once again, we have seen that fiction is no stranger than
truth. The children's cartoon "!Mucha Lucha!" thoughtfully
illustrated this recently. This show is set in an imaginary
world in which everyone and everything is a masked Mexican
wrestler. The main characters of the show are Ricochet,
Buena Girl, and The Flea: three ordinary masked-wrestler
schoolchildren who go to a masked-wrestler school replete
with masked-wrestler teachers. A scene in this show
accurately reflected the complexities of consulting on
sampling designs. The three children prepare to perform their
signature moves to combat a bad guy...

Buena Girl: I choose.. the Torch of Truth!

< she transforms into a living torch, complete with flame>
Ricochet: I choose.. Mirror Mirror!

<he transforms into a living mirror>

The Flea: [in an odd Peter Lorre-like voice] The Flea
chooses.. the Flaming Turkey of Glory!

<he transforms into a plucked, headless, cooked turkey which
is on fire>

<his teammates promptly turn and stare at him>

The Flea: What?!? The Flea LIKES the Flaming Turkey of
Glory!

This is hardly different from the real world...

AnnMaria: I would choose a sampling design which will
reveal accurate estimates for a minimal cost.

David: I would choose a sampling design which will reflect
the complexities of the target population.

The Client: [in an odd Peter Lorre-like voice] The Client
chooses.. stratified sampling!

<pause>

The Client: What?!? The Client LIKES the stratified
sampling!

Note that the client did not actually transform into a flaming
turkey. He only seemed to, in our imaginations. And only
because this would be a situation where stratified sampling
was inappropriate or sub-optimal. But this is one of many
statements that have been made by close relatives of The
Flea. For example, many of you have heard clients or end-
users say [in an odd Peter Lorre-like voice] something like
one of the following statements:

What?!? The Analyst LIKES using PROC MEANS!

What?!? The Client LIKES using data from his web survey!

What?!? The End-user LIKES assuming simple random
sampling!

WHAT IS A PROBABILITY SAMPLE?

Too often, a client or end-user will have a data set ready for
analysis, and then run into the annoying roadblock called The
Statistician. (Of course, we all know that in reality the
consultee only thinks his data set is ready, and the data will
really require hundreds of person-hours to do all the quality
assurance needed to make it usable. But that's another talk.)
So first of all, we need to explain what constitutes a legit
sample.. and what does not. In general, when a complete
census is logistically or budgetarily unreasonable, the user
will want a subset of the possible population values, so that
realistic estimates can be made. But how do we decide what
a 'subset' is? Or a 'population'? Or an 'estimate'? Or even
'realistic'? First, we must define terms.

A sample design should be more than just a collection of
information that hopefully comes from the target population.
It should be a functional process which embodies the entire
process of sample definition, sample selection, sample
collection, data preparation, data analysis, and data use.

Cochran (1977) specified eleven steps in designing,
performing and evaluating a survey. These steps, as he



listed them, are:

8 specifying the objectives of the survey;
2) determining the population to be sampled;
3) deciding the data to be collected;

“4) determining the degree of precision to be required;
(&) determining the methods of measurement;
(6) developing the sampling frame;

7 selecting of the sample;

®) performing the pretest;

9 organizing of the field work;

(10) summarizing and analyzing the data; and
(11) gathering information for future surveys.

A 'population' in this context will be the target group or
groups to be studied. The population cannot be properly
defined until the objectives of the study are fully defined,
since changing the objectives can alter the requirements on
the population to be studied. If the survey objectives are not
specified, then determining which data must be collected is a
hit-or-miss proposition. This is often addressed by attempting
to gather every bit of available information, in the hope that
whatever will be needed is in the final database. Doing a
sample this way tends to have painful effects on budgets and
data management. On the other hand, having people like this
as clients is another way to ensure that SAS® will never go
out of style.

Often, the goal of such a study is to estimate certain
properties or characteristics of this population, which we will
call population values. The true population values will be
unknown, and may not even be fixed constants. We will (in
principle) use the data from the sample to try to come up with
'sample estimates'. But the accuracy of the sample estimates
is dependent on the size and scope of the survey design, as
well as the kind of survey design used. The survey has to be
designed carefully enough that we know exactly what the
'sampling units' are. The sampling units are the elements of
the target population. But the traditional survey sample of
people need not have a person as the sampling unit. Lots of
surveys of people are really only looking at the household as
the sampling unit. Such surveys then have to address such
complexities as households with more than one family,
families spread across more than one household, people who
spend time in more than one household, people who have no
household, etc. Until the sampling unit is fully defined and
these sorts of questions are addressed, we are not really ready
to build a sample, much less collect data.

Once these questions have been answered, then the 'sampling
frame' can be constructed. A sampling frame is (typically) an
enumeration of all the possible sampling units in the target
population. This may be a list of people, a list of households,
a list of hospitals, a list of patients, a list of lakes, a list of
farms, a list of businesses, or any other list which gives us a
list which can be used for sample selection. In cases where a
complete enumeration is not possible, then the sampling
frame has to be built to take this into account. Unfortunately,
despite our best intentions (as George Bernard Shaw would
say), we sometimes find ourselves on a road which has no
reliable list of all sampling units, and no cost-effective way of
obtaining one. Such a problem has been addressed in survey
sampling theory, and the simplest approach to this problem is
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often cluster sampling. Under a cluster sampling design, we
may end up taking blocks (i.e, clusters) of the population and
building complete sampling frames for the clusters only.
Cluster sampling is not the only option at this point, just the
one that more people have heard of.

Note that only after the first six steps above are we ready to
select the sample. This is the point at which PROC
SURVEYSELECT is used. While many people think about
experimental designs as a model for what we want to do in
sampling designs, experimental designs actually have some
major differences from sampling designs. A primary
difference is that experimental designs are usually built under
a structure that incorporates a finite sample from a
theoretically infinite sequence of observations. Survey
sampling classically has a finite population, and has
necessary adjustments in error variances to compensate.

Step nine - organizing of the field work - has no statistical
analysis and no statistical computations. But it is a crucial
component of the sampling process. Response errors - errors
which occur in the values collected - can vastly inflate the
standard errors of the sample estimates, and can even
introduce subtle but crucial biases in the point estimates.
Different interviewers asking the same questions may get
completely different answers.

Equally important are non-response errors, the cases where no
values are obtained for some variable or variables. Those
same interviewers may make the difference in getting people
to answer a question. The design of the questionnaire may
determine whether there is a reasonable chance that any
interviewer can get the subject to answer a sensitive question.
Different interviewers may get very different rates of refusal,
so that one interviewer may have evaluations on nearly all of
her units, while another interviewer may get less than half of
his evaluations.

It is only at step ten that we are ready to use PROC
SURVEYMEANS or PROC SURVEYREG to analyze the
data. The unfortunate fact is that the client may envision the
entire process of the survey as only drawing a sample and
then analyzing it. Or in some cases, only performing the
analysis on already-collected data.

WHAT IS NOT A PROBABILITY SAMPLE?

When the client comes forward and says that she has a terrific
data set and it all comes from a really nice web survey her
people constructed, the first thing you have to do is.. not
laugh. It isn't clear to most people what constitutes a
probability sample and what does not. So let's focus on a few
common problems. In the theory of sample surveys, we
assume that each unit in the population has a set value for
each character Y, and that we got the correct value each time
we collected data. We also assume that we know how 'likely'
it is that a sampling unit was selected, and how likely it is that
two different sampling units both ended up in our sample.
These aspects are typically driven by our sampling design.
When we cannot know the correct value for each collected Y,
or we cannot determine the real probability of a sampling unit
being included, then we are going to have serious problems in
our analysis.



The advent of the Internet has made it possible for anyone to
collect survey data, just by putting up a webpage. But does
this constitute a survey design? Let's look at an example and
see where things can go wrong. A few years ago, Major
League Baseball added to the omnipresent confusion of fan
voting for the All-Star game by adding on-line voting. In
order for a fan to vote, he or she had to fill out a short form,
then select the players of interest and submit the vote. On the
last day of on-line voting, Nomar Garciaparra of the Boston
Red Sox trailed Derek Jeter of the New York Yankees by
roughly twenty thousand votes for American League
shortstop. A Boston Red Sox fan who is a well-known Perl
programmer and author decided to address that gap. He
wrote a small Perl program which went to the webform, filled
it out, and then voted for Nomar Garciaparra.. twenty-five
thousand times.. in just a few hours. He didn't make any
attempt to disguise his ballot-stuffing, so his votes were
thrown out after the fact. But he could have forged his email
address and masked his origins with ten or twenty more lines
of Perl code. So, does this balloting yield a sample survey
design?

Of course not. Even if we define some manner of proxy for
the target population, say, all people on earth who might vote
for their favorite baseball player at any position, we still have
no way of determining how likely it is that a particular fan
may vote. Or may vote as often as he can scare up a new
email address on America Online. This type of data
collection is prone to the problem of self-selection. Any time
people are allowed to choose whether or not to participate in
a survey, there is a risk of selection bias. Webpolls asking for
a yes-no opinion produce a strong self-selection bias, since
the people most likely to vote are those who carry the
strongest opinions one way or the other. Webpolls showing
intermediate results to potential voters may further encourage
voting from those who feel that their opinion is not being
represented, thus producing a 'leveling' effect. This effect
does not yield accuracy, it only causes the percentage to
move away from the printed value.

If two million people are watching a sports news show which
asks a question and gives a URL for voting, and forty
thousand people vote, then the response rate could be
considered to be five percent. While five percent of a target
population may be sufficient for a well-designed sample
survey, a self-selected subset of five percent of an already-
biased population is unlikely to yield an unbiased estimate of
the real population value. And, even worse, there is no way
to tell how big that bias on that sample estimate is.

SOME BASIC PROBABILITY SAMPLES

PROC SURVEYSELECT has the capability of generating
sample designs that can accommodate a variety of common
survey methodologies. The best known sample design is
simple random sampling, either with or without replacement
of the sampling units. This often assumes that all the
probabilities of selection are equal. But sampling can be done
with unequal probabilities of selection. When the sampling
units are ordered sequentially, sampling can be performed in
a systematic manner, taking every kth unit starting from a
randomly chosen position. Sampling can be done after
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breaking the sample into 'strata’, and it can be done when
choosing to sample within 'clusters' of the population.
Sampling can be done as a multi-stage process or a single-
stage process. Replicates of the sample can be created, as
well. PROC SURVEYSELECT can do all of these processes,
and more. But these techniques will be an adequate basis for
this paper.

As an aside, let us note that the efficiency of PROC
SURVEYSELECT makes it less useful for resampling
techniques such as bootstrapping and jackknifing. PROC
SURVEYSELECT is smart enough to notice when a sample
of size n is requested from a population of n units, and simply
generates an exact copy of the original sampling units, with
no randomization. Currently, the easiest way to generate a
bootstrap sample from a data set is to use the macro wrapper
programs %RAND_GEN and %RAND_ANL as described in
the paper "A Randomization-test Wrapper for SAS® PROCs"
from SUGI 27. The macro %RAND_GEN generates all the
replicates for the resampling procedure in a single file, which
may grow extremely large when working with a large number
of replicates of a large data set. Caution should be used when
the size of this bootstrap data set will be of the same order as
the available disk space.

SIMPLE RANDOM SAMPLING IN A
SURVEY

Prior to PROC SURVEYSELECT, the best options for
drawing a simple random sample from a sampling frame were
SAS® code in a DATA step or two. Some excellent
examples of macros to do this have been presented on the
SAS-L mailing list by Dale McLerran. But, as of version §,
we have survey sampling tools in SAS®.

To draw a simple random sample without replacement (i.e.,
the probability of getting the same unit twice in the sample is
zero), you can now invoke PROC SURVEYSELECT. A
recurring question in SAS-L is the issue of drawing a simple
random sample of a set size or sampling rate. To draw a
simple random sample of size 200 out of a sampling frame
called MyFrame, we can write:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize=200
stats;

run;

Note that we create an output data set called MySample,
which will have all the design data that we need later on..
when we are finally forced to analyze the resulting collected
data. Here, because we used the option STATS, the data set
will include a SelectionProb variable and a SamplingWeight
variable. SelectionProb will hold the likelihood of selecting
that datum from the sampling frame. SamplingWeight will
hold the (initial, unadjusted) weight that would be used as the
sample weight when analyzing the data in PROC
SURVEYMEANS or PROC SURVEYREG. The output data



set will automatically include these variables if unequal
probability sampling is performed, or if stratified sampling is
done. The output data set can also contain any variables
included using an ID statement.

We recommend that you always specify your own random
seed, so that your sample can be replicated.. as will be
necessary as soon as you forget to use a random seed. We
also recommend that you not use the seed 12345678 over and
over again, unless you want to have to stand up at some point
and loudly state [in an odd Peter Lorre-like voice]:

What?!? The Programmers LIKES 12345678!

To instead draw a sample of fifteen percent from the same
frame, we can specify a different option:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
samprate=15
stats;

run;

This sampling design could also be specified as:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
samprate=.15
stats;

run;

Note the two different values for SAMPRATE which yield
the same results. The PROC SURVEYSELECT translates
sampling rates above one into a sampling fraction by
assuming the number to be a percentage. However, if you
write

samprate=1

SAS® will assume you want a 100% sample, rather than a
1% sample. For a 1% sample, you must write:

samprate=.01

If, instead of simple random sampling with equal
probabilities, you need a simple random sample where some
sampling units should be sampled with a higher probability
than others, you can perform sampling with unequal
probability of selection, simply by specifying a PPS method
and having a size variable in the MyFrame data set. The size
of a unit should be proportional to the probability of
selection. So, if you want each woman listed in your
sampling frame to have twice the likelihood of being selected
as each man, then you would want to create a sampling size
variable in the MyFrame data set and use that variable in the
SIZE statement of PROC SURVEYSELECT:

data Frame2 / view=Frame2;
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multiplier = 1 + (sex='F');
run;

proc surveyselect
data=Frame?2
out=MySample
method=PPS
seed=12345678
samprate=.15
/* STATS is no longer needed */ ;
size multiplier;
run;

PROC SURVEYSELECT will generate the sampling weights
that are appropriate for the design. These are the weights that
will be needed later on, after the data have been collected. At
that point, sample weights may have to be adjusted due to
problems with the collection of the sample data. The adjusted
sample weights will then be used when running PROC
SURVEYMEANS and PROC SURVEYREG.

SYSTEMATIC AND SEQUENTIAL
SAMPLING

Once upon a time, before computers, systematic sampling
was an extremely useful tool. By ordering one's frame
sequentially and selecting a starting point, an entire sample
could be selected without generating any more random
numbers. Unfortunately, a single systematic sample actually
has no unbiased variance estimate. However, the use of more
than one systematic sample from the same frame will yield an
unbiased variance estimate. The authors do not recommend
the use of standard systematic sampling with only a single
replicate taken. Sequential sampling processes are available
from PROC SURVEYSELECT using the CONTROL
statement. Chromy (1979) devised a way of walking through
the sequentially-ordered sampling units so that there is an
unbiased variance estimator. Systematic and sequential
sampling can, in theory, provide sampling variances smaller
than that of simple random sampling when the frame has been
sorted so that the correlation between pairs of selected units
in a sample is sufficiently small. So here is a survey design
using a sequential sample:

proc surveyselect
data=MyFrame
out=MySample
method=PPS SEQ
seed=12345678
samprate=.15;
run;

STRATIFIED SAMPLING

When the target population can be divided into non-
overlapping subpopulations, stratified sampling may come to
mind. It may not be the technique which should come to
mind, but it usually does. One of the authors has frequent
problems with end-users who have heard of stratified
sampling and want it, whether it is a reasonable choice or not.

There are several reasons why stratified sampling should be
considered. Cochran (1977) listed the classic four cases:
when known precision (i.e., known sample size) is desired for



specific non-overlapping subdivisions of the population;
administrative convenience, such as sampling when field
offices will be conducting the survey for a designated portion
of the population; studies in which sampling problems may
differ in different parts of the population, such as a survey
which samples people living in care facilities and also people
living at home; and finally, studies in which the stratification
may produce a gain in the precision of the variance estimates.

Unfortunately, stratified sampling is not always appropriate.
When known precision is desired, sampling proportional to
size can provide sample sizes close to the precisely-desired
stratum sizes. When gains in precision are desired, the
stratification must be very precise: a misclassification rate of
as little as twenty percent on the stratum definitions can
invalidate any gain in precision from using stratified sampling
over simple random sampling. Logistic reasons are the best
reasons for performing stratified sampling.

Here is an example of stratified sampling where there are four
regions which will be used as strata, and the sample sizes for
the strata are specified so that the total sample of 200 is split
as desired among the strata. The STRATA statement works
analogously to the BY statement in many PROCs. It can take
more than one stratification variable, and it even has
DESCENDING and NOTSORTED keywords like the BY
statement. It can even use an index built on the stratum
variables in PROC DATASETS, just as the BY statement
can. As with the BY statement, NOTSORTED does not mean
that the data are unsorted: it means that the data are arranged
into the strata, but the strata are not necessarily in ascending
or descending order. Here the data are arranged by region but
the regions have been appended in what may not be a sorted
order. Note that you cannot select proportional to size or
using a CONTROL statement unless the strata are sorted or
indexed in ascending order.

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize= (24 48 56 72);
strata region notsorted;
run;

Notice that SAMPSIZE is now used to provide an array of
sample sizes, one per stratum. The order of the strata is now
crucial, or else the wrong sample sizes may be applied to the
strata. The SURVEYSELECT procedure provides a way of
addressing this problem, as well as the problem of providing
stratum sizes when there are a large number of strata. The
SAMPSIZE option can also take the name of an auxiliary
data set. This data set need only have the stratum names and
stratum sizes. The stratum names in the auxiliary data set
must be exactly as provided in the MyFrame data set, with
precisely the same length and type. The stratum sizes should
be put into a variable named NSIZE . The values for
_NSIZE_must be positive integers, and if sampling is done
without replacement, the stratum sizes must be at most the
number of sample units in the stratum. Furthermore, the
order of the strata in the auxiliary data set must match the
order of the strata in the frame data set. If an auxiliary data
set MyStratSizes is used to build the stratum sizes, then the
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procedure would be invoked like this:

proc surveyselect
data=MyFrame
out=MySample
method=SRS
seed=12345678
sampsize=MyStratSizes;
strata region notsorted;
run;

This will work properly as long as the strata in MyFrame and
MyStratSizes are arranged in the same order, even if that
order is not a sorted order.

CLUSTER SAMPLING AND MULTISTAGE
SAMPLING

There are two main reasons for using cluster sampling. The
first is logistical: sometimes it is not possible to build a
complete, reliable sampling frame for the entire population.
In such cases, clusters of the population can be constructed,
and sampling frames can be built for those clusters. The
second reason is budgetary: it is often far more cost-effective
to sample all students within a school, all patients in a clinic,
or all discharges from a hospital than to randomly sample a
few here and a few there from thousands of institutions. For
example, the NIS selects all discharges with a set of sampled
hospitals.

A multistage sample might be a sample in which you first
draw a first-stage sample as if you were performing a cluster
sample, and then you create a second-stage sample as subsets
of the clusters. The elements composing the frame from
which the first sample is drawn are called the primary
sampling units. Then a second-stage sample is built by taking
a subset of elements from each of the primary sampling units.

While cluster sampling can make your sample more cost-
effective, it can also cause a serious loss in precision of your
estimates as compared to a simple random sample. A
standard technique to deal with this problem in cluster
sampling is to make sure that your sample within each cluster
is as heterogeneous as possible for the variables of interest.

Let us suppose that we want a cluster sample of hospitals
(using the hospital ID variable HospID), and that we will
want to stratify based on the variable REGION, due to the
complications of taking samples in different regions using
different administrative staff and different field personnel.
The stratum sizes are already in the auxiliary data set
MyStratSizes. Here the primary sampling units are the
hospitals, not the patients. We will take a sample of
hospitals, and then survey all patients in each selected
hospital. Since the hospitals are our primary sampling units,
we will only need to use the design information used in
selecting the hospitals in order to use the SURVEYREG and
SURVEYMEANS procedures. The approximations used in
these procedures are based on the design used for the primary
sampling units.

proc surveyselect
data=MyFrame
out=MySample
method=SRS



seed=12345678
sampsize=MyStratSizes;
strata region;
id HospID;
run;

This stratified sample of hospitals now yields a stratified,
clustered sample when we evaluate all patients in each
selected hospital.

If we then choose to take a sample of the patients in each
hospital, rather than surveying all the patients, we would have
a two-stage sample. We can achieve this by building a new
frame comprised of all those patients in the selected hospitals,
and selecting a sample from those patients.

Suppose we have a second data set MyPatients, composed of
all patients in all of our hospitals. We need to subset that to
the patients in the selected hospitals. Then we need to select
a specific number of patients in each hospital. We can do that
in our second stage of sampling by treating the hospitals as if
they were strata, selecting patients within each stratum, and
providing the appropriate stratum sizes in an auxiliary data
set, which we will call MyPatientSizes. If MyPatients is
already sorted in the same order as MySample, then we can
accomplish the second stage of sampling like this:

data MyFrame?2;
merge
MyPatients
MySample (keep=HospID in=inSample) ;
by HospID;
if inSample;
run;

proc surveyselect
data=MyFrame?2
out=MySample?2
method=SRS
seed=87654321
sampsize=MyPatientSizes;

strata HospID;
run;

Now the DATA step above may not be the optimal approach.
Depending on data set sizes and available disk space, it might
be preferable to create the data set MyFrame?2 as a data step
view. Or, if the two files are not sorted or indexed on
HosplD, the programmer might prefer to use PROC SQL to
do this merge. If the data sets are extremely large, or must be
read off tapes, then it might be preferable to read all the
HosplID values into an array, then read in the MyPatients data
set and search the array to find matching patient records to be
output in the MyFrame?2 data set.

Since the above process can be repeated, there is no reason
why this sample cannot be performed as a multi-stage sample,
with more than two stages. Perhaps sampling needs to be
done by hospital, and then within each hospital we need to do
cluster sampling by care facility, with sub-sampling of
patients done in each care facility. We could use the same
techniques to perform a three-stage sample. We build a
facility frame based on the selected hospitals, and select the
facilities to be sampled. Then we build a patient frame based
on the selected facilities within hospitals, and sample those
patients within care facilities in the same way that we
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sampled the facilities within hospitals.

What?!? The Analyst LIKES using PROC
MEANS!

A key point to remember is that the standard SAS® statistical
procedures assume that you are working with a simple
random sample from an infinite population. Instead of a
simple random sample (where every sampling unit has an
equal chance of being selected), consider a sample where
some units have a greater chance of selection. Samples
proportional to size, stratified samples, and cluster samples
can all lead to this situation.

If the data are not randomly sampled, then using PROC
MEANS or PROC REG can mean that the standard errors are
wrong. It may also (if the weights are not taken into account)
mean that the point estimates form PROC MEANS are wrong
too. And even if the weights are used in PROC REG, the
point estimates for the regression coefficients cannot be
trusted. But the joy of PROC SURVEYMEANS and PROC
SURVEYREG is that you do not have to understand the
intricacies of the sampling design as long as you wrote down
that you have a stratified cluster sample with known weights,
and you wrote down the names of the variables for
stratification, clustering, and weighting. Even better, you do
not have to look under the hood and study how the Taylor
series expansion method is used to obtain the sampling errors
for the sample estimators you want. All you need to know is
what design was used to create the primary sampling units.
This is due to the way in which the Taylor series expansion
theory is used to estimate the sampling errors of the
estimators. So, if you have a complex, multi-stage sampling
design as in our hospital-facility-patient example, you still
only need the information used in building the first stage of
the design in order to use the SURVEYREG and
SURVEYMEANS procedures.

USING PROC SURVEYMEANS

So, assuming you did write down the information above, you
are ready to analyze the data properly. You know that the
data are in a file called YourSample, with stratum variable
REGION, cluster variable HosplID, and weighting variable
Adj Weight. You want mean estimates and their standard
errors for the population parameter LOS:

proc surveymeans data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
var LOS;
run;

If you wanted to perform this same analysis by gender, you
might be tempted to sort by gender and then use the BY
statement. Don't do that! At least, if you try this, SAS® will
give you a note that tells you to use the DOMAIN statement.
The SAS® log will contain the note:

NOTE: The BY statement provides
completely separate analyses of the BY
groups. It does not provide a
statistically valid subpopulation or
domain analysis, where the total number



of units in the subpopulation is not
known with certainty. If you want a
domain analysis, you should use the
DOMAIN statement.

Domain analysis, or sub-population analysis as it is
sometimes called, will provide an appropriate analysis, by
adding only one line to the above code:

proc surveymeans data=Your sample;
domain GENDER; /* new line */
strata REGION;
cluster Hispid;
weight Adj Weight;
var LOS;

run;

The DOMALIN statement is available as of SAS® version 8.2,
but if you have an earlier version of SAS® you can still make
do. The %SMSUB macro is available on the SAS® website..
if you know how to search it. But even if you are running
version 8.2 or version 9.x, you still have to watch out for
large numbers of missing values in your data. The
SURVEYMEANS procedure is based on the assumption that
missing data are MCAR - Missing Completely At Random -
so that the pattern of missing values should not affect the
estimates. SAS®, unlike other statistical packages designed
to analyze complex survey data, treats these as records to be
deleted before the analysis, rather than as another subgroup of
respondents, which both authors agree is the appropriate way
to deal with them. Grouping the data by the occasionally-
missing variable (we'll call it GENDER for our example) and
using the %SMSUB macro will give you the results you
would expect to get from other survey analysis packages.
Once you use %INCLUDE to include the %SMSUB macro in
your code, you can call it like this:

filename incl 1lib "path to smsub macro";
%include incl lib (smsub);

%smsub ( data=Your sample,
statistics=mean stderr,
weight=Adj Weight,
strata=REGION,
cluster=Hispid,
var=L0S,
table=GENDER ) ;

Unfortunately, the %SMSUB macro creates a large number of
temporary data sets, some of which are large. After using the
%SMSUB macro, you will want to clean up your workspace
to prevent %SMSUB from devouring your hard drive:

proc datasets library = work;
delete : ;
run;

USING PROC SURVEYREG

Just as the SURVEYMEANS procedure provides the error-
variance calculations that are needed for complex survey
designs, so the SURVEYREG procedure does regression
analyses using Taylor expansion theory to estimate the proper
variance-covariance matrix for the regression coefficients.
And, joy of joys, you still do not need to learn how Taylor
expansion theory is used in survey sampling theory. It uses a
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structure analogous to PROC REG, only adding STRATA
and CLUSTER statements. So a simple example of modeling
the hospital expenses based on patient income, given the
same sampling design as before, would look like this:

proc surveyreqg data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
model expense = income;
run;

The SURVEYREG procedure also has the CLASS,
CONTRAST, and ESTIMATE statements of PROC REG.
This allows the programmer to use techniques that have been
learned through years of working with the REG procedure.

The SURVEYREG procedure uses ODS directly, rather than
using an OUTPUT statement as is often seen in older
procedures. The parameter estimates for the above model can
be output to a data set using the following code. Note that
this does not require the usual ODS statements before and
after the procedure. All the necessary ODS structure has been
internalized.

proc surveyreg data=Your sample;

strata REGION;

cluster Hispid;

weight Adj Weight;

model expense = income;

ods output ParameterEstimates=MyParams;
run;

More output data sets can be obtained using the same
statements. Here, we also obtain the fit statistics and the
inverse of the X'X matrix.

proc surveyreg data=Your sample;
strata REGION;
cluster Hispid;
weight Adj Weight;
model expense = income / inv;
ods output
ParameterEstimates = MyParams
FitStatistics = FitForLife
InvXPX = Inverted;
run;

The INV option in the MODEL statement is needed to obtain
the inverse of the X'X matrix. All such requirements are
listed in the Online documentation, under "ODS Table
Names".

Logistic regression for sample surveys is not yet available in
a procedure, but PROC SURVEYLOGISTIC will be
available in SAS® version 9.1 .

EPILOGUE

There are many ways to properly draw a probability sample.
The SURVEYSELECT procedure gives you a large number
of ways to design sample surveys, so that you can cope with
the complexities of real-life samples. When simple random
sampling (with or without replacement) is appropriate, it can
generate your sample. And, when clustering is needed, or
stratification, or sample weights, or multi-stage sampling, the



SURVEYSELECT procedure can do that too.

Unfortunately, there are far more ways to collect a sample
which is not a probability sample. And there are often
poorly-designed survey samples which may not meet the
objectives of the study due to poor precision or bad accuracy.
Once the data have been collected, perhaps not even Buena
Girl could salvage your study.

Analysis of a well-designed probability sample is usually
straightforward with the proper tools. The SURVEYMEANS
and SURVEYREG procedures will meet those needs.

Analysis of a badly-design sample will most likely yield
numbers which can never be fully evaluated or statistically
adjusted. Unfortunately, bad analysis of a well-designed
sample survey can have equally ugly consequences.
Remember the signature move of The Flea. No one wants to
appear before a client or a boss while resembling a flaming
turkey.
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