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ABSTRACT

In this presentation, which is a sequel to our SUGI’26
paper, we demonstrate that if the goal of modeling is
prediction, with a large number of covariates and little
theoretical guidance for choosing among them, our
approach based on the combination of stepwise logistic
regression, information criteria, and best subset selection
will result in fully automated procedure (due to ODS). The
approach inherits the best features of the three components
mentioned above and helps us avoid an agonizing process
of choosing the “right” critical p-value. If we apply the
approach to Enterprise Miner, we can strengthen the
Regression node in comparison with other modeling nodes
(the Neural Network and Tree).

The intended audience: SAS users of all levels who work
with SAS/STAT and PROC LOGISTIC in particular and
Enterprise Miner.

THE EXISTING AUTOMATIC MODEL
SELECTION TECHNIQUES IN SAS

Model selection is a fundamental task in data analysis. The
process of selecting a subset of variables from a typically
large number of variables, called model building, is
particularly important in prediction. In SAS PROC
LOGISTIC, there are three automatic model selection
techniques: forward selection, backward elimination and
stepwise selection which combines the elements of the
previous two. All these procedures are intuitively
appealing: they build models in a sequential manner and
allow for examination of a collection of models which
might not otherwise have been examined. Basically this is
a matter of taste which one of the three sequential
procedures to use. According to Everitt and Der (1996),
“In the best of all worlds the final model selected by each
of these procedures would be the same. This does often
happen, but it is in no way guaranteed”. Sequential
procedures involve selection and stopping criteria.
Selection criteria are based on the likelihood ratio statistics
or their derivatives. The selection part is more or less

straightforward. Choosing a critical P-value = α which
determines a stopping rule is a real problem. A default P-
value in SAS is α = 0.05 and it has been used too often,
intentionally or not. This choice has been criticized by
many authors as absolutely inadequate for both prediction
and interpretation purposes (see, for example, Shtatland,
Cain, and Barton (2001) and references therein). By using
Monte Carlo simulations Lee and Koval (1997) show that
the best α varies between 0.05 and 0.40. At the same time,
Steyerberg et al. (2000) recommend using α = 0.50 to
include all useful variables for a better prediction.
Combining these recommendations we can conclude that
the recommended interval for α should be 0.05 ≤ α ≤ 0.50.
This is a very large interval and choosing the “right” value
is an agonizing process that requires many trials, especially
because there is no theory at all behind any choice of α.
Derksen and Keselman (1992) describe this situation as
follows: “If you torture the data for long enough, in the end
they will confess… What more brutal torture can there be
than subset selection? The data will always confess, and
the confession will usually be wrong.” To resolve this
tormenting problem by putting it on a more theoretical
basis we propose to use information criteria.

MODEL SELECTION AND INFORMATION
CRITERIA

The basic idea behind the information criteria is penalizing
the likelihood for the model complexity (the number of
explanatory variables used in the model). The most
popular in this family are the Akaike information criterion
(AIC) and Schwarz information criterion (SIC). The most
general form of information criteria is

IC(c) = - 2logL(M) + c*K            (1)

where logL(M) and logL(0) are the maximized log
likelihood for the fitted model and the “null” model
containing only an intercept term, N is the sample size, K
is the number of covariates (including the intercept) and c
is known as a penalizing parameter. The AIC and SIC can
be defined as information criteria with c = 2 and c = logN
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correspondingly. If c = 0 (no penalty), (1) is equivalent to
the classical likelihood statistic on which the “importance”
of variables is based in stepwise logistic regression
(Hosmer and Lemeshow (2000), pp 116-128). If c = 1, (1)
is equivalent to the GLIM goodness-of-fit procedure based
on plotting the deviance against degrees of freedom (see
Nelder and Wedderburn (1974) and Smith and
Spiegelhalter (1980)). See also Box and Kanemasu (1973)
whose entropy-based criterion is also equivalent to IC(1).
Smith and Spiegelhalter (1980) show that their version of
the local Bayes factors corresponds to IC(3/2). The
question of which value of the parameter c to choose is not
easy. Atkinson (1981) suggests the range between 2 and 6.
Most likely, this is the right suggestion if we build the
model for interpretation purposes. Since we are interested
in prediction, as always the case when we work with
Enterprise Miner, we should use c ≤ 2 (AIC and more
liberal criteria). It is known (Smith and Spiegelhalter
(1980)) that values of c < 1 tend to favor complex models
unduly. At the same time, if c > 1 then smaller models are
favored over complex models (Laud and Ibrahim (1995)).
Thus, a borderline c = 1 is a sensible choice, especially for
prediction problems and the interval of interest for
prediction becomes more narrow: 1 ≤  c  ≤ 2. From the
interval 1 ≤  c  ≤ 2, we recommend to use the following
landmarks: c = 1 (GLIM-value), c = 3/2 (the local Bayes
factor value) and c = 2 (AIC-value). Among these three
candidates, AIC is undoubtedly choice #1. Though we will
see below that c = 1 (and also c = 3/2) is also very useful
when we would like to keep more variables than AIC does.
AIC has some minimax properties for prediction over the
experimental region (Atkinson (1981)). Also, as shown in
Stone (1977), AIC is asymptotically equivalent to the
cross-validation criterion, which is a very important
property. And last but not least, model comparisons based
on AIC are asymptotically equivalent to those based on
Bayes factors under the assumption that the prior
information is comparable to the information in the
likelihood (i.e. in the data), see Kass and Raftery (1995).
At the same time, c = 1 is unique as a border between
favoring complex models and simple ones. As we will see
below, I(3/2) and especially IC(1) are very useful and
should be added to our model selection kit.

MODEL BUILDING, STEP 1:
CONSTRUCTING A FULL STEPWISE SEQUENCE

Whatever IC criterion we have decided to work with we
encounter a very serious problem: the process is not
automated. The method of calculating AIC = IC(2) or
IC(1) or IC(3/2) for every possible sub-model with
subsequent direct comparison is absolutely impractical

even with a moderate or moderately large number of
variables. For instance, if we have p=10 possible
explanatory variables (which is a comparatively small
number), then there are K = 210 = 1024 possible models to
compare. If p=20 (which is rather moderate), then the
number of possible models is about one million. With
p=34, we have more than 16 billion candidate models.
Finding the best model by direct comparison is an
unrealistic task. One of the possible ways, a reasonable
and cheap one, to resolve the problem is to use the
stepwise selection method with SLENTRY and SLSTAY
close to 1 (e.g., SLENTRY = 0.99 and SLSTAY = 0.995).
As a result, we will get the sequence of models starting
with the null model and ending with the full model (all the
explanatory variables included). The models in this
sequence will be ordered in the way maximizing the
increment in likelihood at every step. It is natural to call
this sequence the stepwise sequence. It is important that
we use the stepwise procedure in a way different from the
one typically used. Instead of getting a single stepwise pick
for some specific SLENTRY value (for example, 0.05, or
0.15, or 0.30,  or 0.50, etc.) we obtain the entire sequence.
In doing so, we reduce the total number of K=2P potential
candidate models to the manageable number of P models.
In one of our examples
(not the largest one) with 34 potential explanatory
variables, we reduce the number of candidate models from
234 (more than 16,000,000,000) to just 34. After this
reduction we are able to apply any information criterion.

MODEL BUILDING, STEP 2:
MINIMIZING INFORMATION CRITERIA - IC(1),
IC(3/2) AND IC(2) ON THE FULL STEPWISE
SEQUENCE

If we use PROC LOGISTIC with the following ODS
statements:

ods output ModelBuildingSummary=SUM;

ods output FitStatistics=FIT;

we get the data sets SUM and FIT that contain Summary of
Stepwise Procedure and by default the values of  -2log L
and AIC statistics for each member of the stepwise
sequence. We also obtain the values of Schwarz
information criterion (SIC), but we are not interested in
them since our sole goal is prediction. By using statistic –
2logL we can calculate any information criterion, including
IC(3/2) and IC(1). Then using PROC MEANS and the
MERGE statement, it is easy to find the minimum of AIC,
IC(3/2) and IC(1) and the corresponding AIC-, IC(3/2)-
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and IC(1)- optimal submodels. Also, it is strongly
recommended to apply PROC PLOT and visualize the
behavior of AIC, IC(3/2) and IC(1) vs. the number of
predictors in the model, i.e. the step number in stepwise
regression. In all our examples below, we can see from the
plot that AIC has a unique distinct minimum, which clearly
indicates the AIC-optimal model. The situation with
IC(3/2) is very similar. As to IC(1), this criterion has
usually a more or less large plateau with no distinctive
(clear) minimum. In this situation, it is reasonable to
address the R2 measure corresponding to IC(1)

Adj-R2
IC(1)  =  1-(2 logL(M) – k – 1) /(2logL(0) – 1)    (2)

where k is the number of  covariates without an intercept.
About this adjustment see Mittlbock and Schemper
(1996), Menard (1995), p. 22,  and  Shtatland, Kleinman
and Cain (2002) (in a similar way we can define Adj-R2

AIC

). Adj-R2
IC(1) is equivalent to IC(1): their graphs mirror

each other. Nevertheless, we prefer to work with Adj-
R2

IC(1) rather than IC(1). The reason for this is that IC(1),
like AIC, takes rather arbitrary values: from very large
positive to very large negative, and these values are hard to
interpret. At the same time adjustment (9) takes values
between 0 and 1 which are easier to interpret. This is why
we suggest to use Adj-R2

IC(1)  and Adj-R2
AIC at least as a

supplement to IC(1) and AIC (if not instead of IC(1) and
AIC). Working with Adj-R2

IC(1) it is much easier to find the
boundaries of the around-the-maximum plateau than the
boundaries of around-the-minimum IC(1) plateau
(actually, we need only the right boundary)  This procedure
can be automated by rounding the values of Adj-R2

IC(1)

e.g., up to 0.001 and finding the last maximum of the
rounded Adj-R2

IC(1).

MODEL BUILDING, STEP 3: INFORMATION
CRITERIA AND IMPLIED CRITICAL P-VALUES
FOR STEPWISE PROCEDURES: WHY WE NEED
INFORMATION CRITERIA OTHER THAN AIC 

It is of paramount interest to know the relationship
between AIC and stepwise logistic regression. It has been
shown in Hosmer and Lemeshow (1989), p.184 that if one
has to pick a unique critical P-value, one should choose it
around 0.15. This value α = 0.15 (0.157 to be exact) is
mentioned in Steyerberg et al. (2001). Also it appears in
Lee and Koval (1997) as the end of a narrow interval 0.15
≤ α ≤ 0.20 recommended to use. All these suggestions are
empirical, based either on Monte Carlo simulations or
some particular examples. Thus the “magic” number of
0.15 or 0.157 cannot be explained within the theory of
stepwise logistic regression, but it is naturally understood

within the information criteria theory. Atkinson (1980) and
Lindsey & Jones (1998) show that asymptotically AIC is
equivalent to a stepwise procedure with a critical P-value
of 0.1573.  Steyerberg et al. (2001) also associate α =
0.157 with AIC (though it is an improper association since
the authors consider only small data sets and asymptotic
considerations needed for α = 0.157 are hardly
applicable). The implied significance level α is known to
vary for AIC from 0.30 to 0.157 as the sample size
increases (Sawa, (1978)). Consequently, to cover the
combined critical P-value interval 0.05 ≤ α ≤ 0.50 we
have to involve information criteria other than AIC. It
seems that subinterval 0.05 ≤ α < 0.15 is less important
since in problems for predicting it is better to over-
parameterize the model than to under-parameterize it. To
cover subinterval 0.30 ≤ α ≤ 0.50 we suggest to use
another popular information criteria, IC(1), which is much
more liberal than AIC.

EXAMPLES

We have considered how our procedure works in 5 cases
with the same sample of 2629 and the numbers of original
variables: 30, 34, 36, 41 and 46. The implied AICMIN

critical p-values vary between 0.1142 and 0.1472, which
is reasonably close to the asymptotic value of 0.1572. It
means that sample size of 2629 is large enough for
asymptotic considerations. The implied IC(1)MIN critical p-
values vary between 0.3023 and 0.3166, which is very
close to the landmark p-value of 0.30. And the implied
critical values for IC(1)RB (the right boundary of the
around-the-minimum IC(1) plateau) vary between 0.4903
and 0.5541, which is close to another landmark of 0.50.
Thus, we see that AIC and IC(1) combined, over-cover
subinterval 0.15 ≤ α ≤ 0.50. And the most important is
that according to our methodology we are not using the
prescribed α of 0.15, or 0.30, or 0.50 in stepwise
regression, but rather we are guided by the information
criteria minimum principle and our data. It is interesting
that when we move from AICMIN model to IC(1)MIN one,
we add a number of potentially important predictors. The
same we do when moving from IC(1)MIN model to IC(1)RB

one. It is investigator’s job to determine which of the
mentioned above added variables are not only statistically,
but also substantially important.

SHOPPING AROUND IC(1)- AND AIC- OPTIMAL
MODELS BY USING BEST SUBSET SELECTION

Obviously, it would be too simplistic to recommend AIC-
or IC(1)- optimal models as the best models for prediction.
First of all, there could be a number of nearly optimal
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models in the vicinity of AIC- and IC – optimal choices.
Second, and maybe most important, we have screened the
stepwise sequence only, not all possible models. Up to
now this limitation has been considered a clear advantage
and the only practical way to use stepwise regression with
a very large number of predictors. These problems can be
resolved by using the best subset selection procedure and a
macro below.
We will apply PROC LOGISTIC with selection = SCORE
to the neighborhood of AICMIN-, IC(1)MIN-and IC(1)RB –
optimal models, with the model sizes: kAIC, kIC(1) and
kIC(1)RB correspondingly. Choosing the basic parameters
START, STOP and BEST in the best subset selection
procedure is more or less arbitrary and depends on the
situation. But it is reasonable to /expect/ select a smaller
number of models in the vicinity of AICMIN -and IC(1)RB -
optimal models, and a larger number of models in IC(1)MIN

neighborhood. It is worth noting that the output of the
ordinary best subset selection procedure provides only
score statistics and the list of predictors with no coefficient
estimates, odds ratios, AIC, IC(1), and other statistics. The
problem with using score statistics is that it is difficult to
compare models of different sizes since the score statistic
tend to increase with the number of variables in the model.
By using ODS statement

ods output BestSubsets= Best_Subsets;

and the following macro we can simultaneously run
logistic regressions for all selected model sizes of interest
(around kAIC, kIC(1) and kIC(1)RB) and for a specified value
of the BEST option:

OPTIONS MPRINT SYMBOLGEN MLOGIC;

%MACRO SCORE;

proc sql noprint;
  select (nobs -delobs) into: num
    from dictionary.tables
      where libname ='WORK'
        and memname = "BEST_SUBSETS";
   %let num=&num;
quit;

%do i=1 %to &num;

   data _null_ ;
      set Best_Subsets;
       if _N_ = &i;
      call symput('list',
VariablesInModel);
   run;

   proc logistic data=MYDATA
descending;
   model OUTCOME = &list;
   run;
  
%end;

%MEND;

%SCORE;

LOGISTIC REGRESSION vs. NEURAL
NETWORKS AND DECISION TREES

As shown in Steyerberg et al. (2001), Fedenczuk (2002),
and Lajiness (2001) a predictive model obtained with
logistic regression analysis is no black box in contrast to,
for example, a neural network or a decision tree. Also,
using logistic regression, we have a naturally interpretable
model because the regression coefficients represent odds
ratios and in addition we have a number of very useful
statistics such as Classification Table (including Sensitivity
and Specificity), Receiver Operating Characteristic
Curves, very powerful regression diagnostic statistics, etc.
Thus not only do we have a predictive model, but we can
evaluate the importance of individual predictors, and can
figure out how to improve the model. In (With) this regard
logistic regression is superior to its competitors in
Enterprise Miner. This is applicable to a conventional
stepwise logistic regression usage. Moreover it is true for
our thee-step procedure.

THE THREE-STEP PROCEDURE vs. LOGISTIC
REGRESSION BASED ON AIC

Our three-step procedure is based on the consecutive
application of the traditional stepwise logistic regression to
build a complete stepwise sequence, then finding an
optimal model in this stepwise sequence with regard to
some information criteria (for example, AIC, IC(1) or
IC(3/2)), and then constructing neighborhoods of the
optimal models by using best subset selection to have
“confidence” sets of models instead of single optimums. A
natural question arises whether we can combine the first
two steps and build a stepwise regression based
completely on AIC, for example. A basic idea is to use as a
criterion of “importance” of a variable the AIC statistic
instead of the log-likelihood one. This idea was realized in
Wang (2000). But from the discussion above it can be seen
that one has to work with the information criteria, other
than AIC. That is why we should prefer the usual stepwise
procedure, which is “neutral” with respect to AIC, IC(1)
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and I(3/2).

CONCLUSIONS 

The proposed technique can be used for predictive
purposes with SAS PROC LOGISTIC or within Enterprise
Miner in solving such problems as drug discovery,
database marketing, credit risk evaluation, fraud detection,
and other predictive modeling applications in banking,
financial services, insurance, telecommunication industry,
etc.
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