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ABSTRACT 
In regression, the decision about which variables to include and in 
which form they should be included in the model can be very 
difficult. Screening variables can be very tedious; perhaps that is 
the reason why many models seen, for example, in nutrition, only 
include main effects.  However, because of its uses in screening, 
a tree can JMPstart your regression model analysis.  
 
All types of variables can be included in a tree, including variables 
with missing values and variables that are highly interrelated.  
This enables consideration of the form of the variables to be 
included.  Because of the tree methodology, cutpoints for 
variables that best optimize a function are given, so it is possible 
to consider new variables generated from the old variables. Trees 
are also useful for exploring the interaction of variables.  For 
example, if a variable appears on one side of a tree and not on 
the other, it suggests that there is indeed an effect of interaction.  
 
Using a large nutrition dataset, we will show how using regression 
alone can lead to misleading conclusions whereas the use of tree 
analysis in conjunction with logistic regression can enable building 
an appropriate model. 

INTRODUCTION  
With large datasets a statistician is often asked to build a model 
for predictive reasons or for assessing the impact of certain 
variables upon the outcome.  In both linear and logistic regression 
the decision about which variables to include and in which form 
they should be included in the model can be very difficult.  Many 
interactions in a model can make it unstable, particularly when 
dummy variables are included for categorical variables.  A linear 
relationship may not exist for continuous variables; hence a 
decision about possibly categorizing the variable should be made.  
Moreover, it is not always clear that all categories of a categorical 
variable should be retained in an analysis. This is why a tree can 
JMPstart your regression model analysis.  
 
All types of variables can be included in a tree, including variables 
with missing values and variables that are highly interrelated.  
This enables consideration of the form of the variables to be 
included.  The tree methodology results in cutpoints for variables 
that best optimize a function; so it is possible to consider new 
variables generated from the old variables. In addition, trees are 
useful for exploring the interaction of variables.  For example, if a 
variable appears on one side of a tree and not on the other, it 
suggests that there is indeed an effect of interaction.  Outlier 
groups can be detected using trees, especially when coupled with 
other methodologies as described by Friedman. (2)  Another 
advantage of tree methodology is that expert opinion can be 
easily incorporated because of the intuitive and interactive nature 
of the Partition® platform in JMP®, Version 5 software. 
 
Usually, p-values do not come from a tree by default.  Moreover, 
in general it is desirable to use some variables as continuous and 
others as not.  In logistic regression, odds ratios can be 
interpreted as risk, and in linear regression the slope parameters 
give us useful information.  In addition, regression is a more 
traditional methodology. Therefore, they work well in tandem. 
 
We show this approach using a large nutrition dataset where we 
have both continuous and dichotomous outcomes of interest.  We 
will show how regression, on its own, may lead to misleading or 
incomplete conclusions.  
 

AIMS AND OBJECTIVES 
The objective of this paper is to show the value of the recursive 
partitioning methodology in JMP software in developing models. 
Specifically, we will develop a logistic model for the large national 
nutritional NHANES 1999-2000 dataset, where obesity is the 
outcome.  Diet, demographics, income status, federal aid, and 
obesity risk factors, as well as their interactions are considered in 
building the model.  Our aims follow. 
Aim 1: To show that analyzing the data only using logistic 
modeling limits the possible variables considered.  
Aim 2: To show how screening the data with JMP recursive 
partitioning can be incorporated into building a model.   
Aim 3:  To develop the model using JMP and SAS® software, 
validate the results, and interpret the results. .  
Aim 4: To develop the model using the weights in SUDAAN and 
validate the model.  

METHODS 
 
DATA 
NHANES 1999-2000 is the eighth in a series of national 
examination studies conducted in the United States by the 
National Center for Health Statistics (NCHS) beginning in 1960.  
Beginning in 1999, NHANES became a continuous survey of a 
representative sample of the U.S. civilian, non-institutionalized, 
household population of all ages every year.  Each year, 
approximately 6000 people in 5 locations are expected to be 
examined and/or interviewed.  The sampling plan is a complex, 
stratified, multistage, probability cluster design.  The survey takes 
place both at the sample person’s home and in the Mobile 
Examination Centers (MEC) using computer assisted interviewing 
techniques.  A blood sample and other laboratory samples are 
also collected at the MEC.  We took a subset of the study, which 
included white and black adults (20 years and older) of non-
Hispanic origin with complete data only. This resulted in a dataset 
of 2177 records.  
 
Variables include the following.  
 

• Demographics such as age (20 to 84 and 85+), sex 
(Male, Female), race (Black, White), education (1=less 
than High School(HS), 2=HS or General Education 
Diploma (GED) , 3=more than HS or GED). 

 
• Poverty index ratio, PIR, is the ratio of household 

income to the corresponding poverty level income, 
which incorporates household size. The distribution of 
PIR is highly skewed and ranges from 1 – 103.  The 
average PIR for our sample was 3.8, and the median 
was 2.7. A PIR value less than 1.84 indicates eligibility 
for some government assistance. 

 
• Nutrition information is extensive in NHANES, but 

processing is necessary to derive measures of diet 
quality.  We consider the 10 component sub-scores of 
the healthy eating index (HEI).(1)  Each ranges from 0 
–10 with 10 being the best score.  The sub-scores 
measure adherance to USDA recommendations for 
food pyramid servings, sodium intakes, percentage of 
calories from saturated fat and total fat, and diet variety.  
A score of 5 on a pyramid serving sub-score indicates 
that 50% of the recommended servings were 
consumed.   
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• Risk factors include information on smoking, smoke 
(1=Current , 2=Former, and 3=Never , including those 
smoking fewer than 100 cigarettes in lifetime) and 
drinking of alcoholic beverages, drinker (yes, no).  

 
• Overweight is classified using the CDC classification 

based on the body mass index (BMI).  The BMI is the 
ratio of body mass to height (kg/m2).  Adults with a BMI 
of 25 or larger are classified as overweight.  We use 
two categories normal (0) vs. overweight/obese (1). 

 
We took a 50% random sample of the data ( n=1089), and 
reserved the remaining subset for validation purposes.  
 
SOFTWARE 
NHANES data were collected using a complex survey sample.  
Jackknife type I replicate weights are provided for variance 
estimation.  The NHANES analytic guidelines recommend using 
SUDAAN for analyses to obtain valid variance estimates.  
Variance estimates and derivative p-values from SAS and JMP 
analyses should be considered exploratory.  They are not 
considered valid and may be misleading, as Gossett et al. 
showed.(3)  For logistic regression analyses, we use the 
RLOGIST procedure in SAS callable SUDAAN. The RLOGIST 
procedure is relatively crude in that there are no model building 
capabilities (like stepwise).  It also has limited model fit 
diagnostics.   
 
Data management, including creation of derivative variables (e.g., 
HEI scores) was performed using SAS/BASE® software, Version 
8 of the SAS System for Windows.  Repetitive calculations, 
particularly the calls to SAS callable SUDAAN, were automated 
using SAS/MACRO® software 
 
NHANES Analytic Guidelines (5) highly recommend the plotting of 
data prior to analyses, and JMP is ideal for exploratory analyses.  
The Distribution® Platform of JMP software was used for 
exploratory analyses (distributions of PIR, sampling weights, other 
predictors) while the Partition platform was used to interactively 
build classification trees for overweight.  
 
In the Partition platform in JMP software, Version 5, recursive 
partitioning is used.  A tree is created using the relationship 
between the independent variables X (factor columns) and the 
independent Y values.  The tree is structured as a series of 
questions. The answers to these questions give the branches or 
path taken on the tree. The endpoint is a set of hierarchical rules 
that segment the data into groups.  The factor columns (X’s) can 
be either continuous or categorical (nominal or ordinal).  If an X is 
continuous, then a cutting value creates the splits (partitions).  
The sample is divided into values below and above this cutting 
value.  On the other hand, if the X is categorical, then the sample 
is divided into two sets.  Essentially, the questions relate to 
whether one variable is in a set or not.  The split is chosen to 
maximize the difference in the responses of Y between the two 
branches of the split.  The investigator has to decide how large a 
tree should be.  
 
Unweighted as well as simple weighted analyses (using 
measurement weights in NHANES, called wtmec2yr) were 
performed using JMP software and SAS software.  These weights 
do not account for the clustering in the NHANES sample design.  
For Sudaan, the weighted logistic regression used the jackknife 
weights (known as JACKWGTS WTMREP01-WTMREP52 in 
NHANES) that are recommended (5).  The NHANES survey 
oversampled various target populations; hence, the weights vary 
over several orders of magnitude and can play an important role 
in modeling.  
 
ANALYSIS  
As described previously, overweight is  the dependent variable in 
the models with the independent variables as defined above.  The 
odds ratios represent the risk of being overweight in individuals 

with various risk factors.  Classification trees are used in selecting 
the risk factors in the modeling process.   
 
LOGISTIC REGRESSION (AIMS 1, 3, 4) 
Logistic regression differs from linear regression in how stepwise 
regression works.  In linear regression, adding variables to a 
model will improve the fit.  This is not necessarily true in logistic 
regression.  Therefore, for logistic regression,  Hosmer and 
Lemeshow suggest a technique whereby each variable is 
modeled separately and variables for the next step are 
considered if p<0.2.  Then pairs are selected from the candidates 
and modeled with their interaction.  Again selection is based on 
p<0.2 and the need for hierarchy.  This process is continued until 
the level of interactions desired is reached.   
  
Two way interactions  

  
SAS 

weighted Sudaan 
SAS 

unweighted 
Effect p-value 

age*drinker 0.1041 0.1708 0.005
age*meat 0.0058 0.0129  
cholesterol*education 0.0576 0.1049  
cholesterol*smoke 0.0974   
drinker*smoke 0.0918 0.1268 0.0040
fat*race 0.0965 0.0546  
fat*smoke 0.0743 0.1279  
Grain*fat 0.0115 0.0467 0.1508
meat*agegroup 0.1225  0.1102
smoke*education 0.0339 0.0083 0.0294
smoke*race 0.1400 0.0313 0.0753
Variety*Cholesterol 0.1829   
Variety*grain 0.0585 0.1033  
Variety*vegetable 0.0825 0.1235  
Vegetable*cholesterol 0.1351   
Vegetable*fat 0.0452 0.0574  
Vegetable*meat 0.0320 0.0442  
 
Using SAS software for unweighted and simple weighted 
analyses and SUDAAN for complex, weighted analyses with the 
Jackknife weights, we found that there were 17 possible two-way 
interactions:  
 
Only those which coincide with the significant results for the 
weighted analyses are included; all the unweighted “significant” 
variables are not given. These included demographic interactions 
with risk factors such as age and drinker, sub-scores such as age 
and the meat score, both risk factors, smoke and drink; risk 
factors and subscales such as smoke and total fat score; and 
pairs of HEI subscales such as vegetable score and meat score.  
These last types of interactive effects on obesity are not 
surprising.  For example, a low vegetable score and high meat 
score is a risk for overweight status.  Given the fact that the 
measurement weights only partially account for the design, it is 
not surprising that differences in the “significant” variables were 
seen between the SUDAAN analysis and the weighted and 
unweighted analysis using SAS software.  
 
Because of the repetitive nature of the selection process we wrote 
a macro both for SAS software and SUDAAN to implement the 
stepwise analysis.  A sample of the code for SUDAAN is shown 
below. 
 

%macro logit1(x,n); 
proc rlogist data=work.nhanes  

design=jackknife; 
JACKWGTS WTMREP01-WTMREP52/ 
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ADJJACK=.980769;  
  subgroup &x; 
  levels  &n; 
  model overwt = &x; 
run; 
%mend logit1; 

 
We then incorporated all the significant interactions with their 
main terms in a stepwise regression and obtained the following 
results.  With Hosmer and Lemeshow’s (4)approach, we found 
that with a higher variety score the risk of obesity is lessened.  
There was a significant interaction effect between age and the 
meat score with obesity increasing with a higher age and meat 
score interaction.  When you are a never or current smoker and 
drink the risk of obesity is lower when compared to being a 
smoker and drinker.  Moreover, a higher education has a more 
positive effect with smoking.  When there are continuous effects it 
is usual to include the main effects.  Neither meat nor age, as a 
main effect, is significant.  This finding raises the question 
whether there is a subpopulation for which the meat score does 
affect overweight status.  With any general linear modeling, one of 
the questions you should always ask is whether the independent 
variables are truly being included in the correct form; that is, is the 
dependency a linear form or some other form. The interaction 
terms may truly be significant or reflect a non-linearity in the 
dependence.  In any case, they can be difficult to explain to a 
non-statistician, especially when the main effects are non-
significant.  Hosmer and Lemeshow suggest various approaches 
for investigating non-linearity. A tree approach, such as the 
recursive partitioning in the Partition platform of JMP software 
enables investigation of potential non-linearity.  
 
It is interesting to note that stepwise logistic regression gives a 
different model again.  We took all variables, where there were no 
interactions.  We first set a “loose” requirement with slstay=0.15 
and slentry=0.15 and then reduced these levels to 0.05.  The 
variables of interest for unweighted analysis would be meat score 
with the risk of being overweight increasing and variety score with 
the risk decreasing.  Also of interest is smoking status (current 
smoker versus never) and drinking status (drink versus not) 
where the risk decreases.  For weighted analysis it would be age, 
meat score, variety score and sex, with risk increasing with age, 
and meat score, decreasing with variety score and being female 
versus male  a current smoker versus never, and a drinker versus 
non-drinker. 
   
The code for the weighted analysis is given below.  
 

Title 'weighted logistic with main factors 
only'; 

proc logistic descending; 
class sex smoke edu drinker; 
model overwt = age pir Sfat_sc fat_sc  sex 
Meat_sc Dairy_sc veg_sc chol_sc fruit_sc 
grain_sc var_scor sodi_sc r_race edu smoke 
edu drinker  

/lackfit plcl selection=stepwise 
slstay=0.15 slentry=0.15; 

weight wtmec2yr / norm; 
  run; 
 
Note that you need a weight statement and that we definitely 
need to specify smoke and education as a class variable since 
they have three categories.  
 
The recurrent theme here is that smoking, age, meat score or 
variety score, and potentially education and drinking play a role in 
overweight status.  
 
 
TREE MODEL (AIMS 2, 3)   
In the tree model, we incorporated all variables described above 
including the PIR and corresponding grouped.  We did this so we 

could investigate whether there were “better” ways of grouping 
each variable to see its effect.  
 
We found that the tree had different variables used for splitting in 
different parts of the tree.  When this happens, the implication is 
that there is an interaction causing a variable to be significant only 
for a subset.  With the interactive nature of the algorithm in the 
Partition platform of JMP software, we were able to investigate 
whether a variable, which was not quite “best”, would do a good 
job nevertheless.  This meant that we could investigate whether 
the interaction indicated was real or not.  We found that in no 
case could we keep the symmetry in the tree.  
 
When we observed that the objective function of a candidate was 
close to the best candidate, we used expert knowledge and 
investigated whether there might be value in substituting a near 
best.  We found that this was the case when smoking was 
considered and we show the two results.   
  
Thus, we showed that the following interaction terms should be 
considered in a logistic model.   
  
In the unweighted tree we saw sex was the best first split.  Then 
for females, a PIR of < 3.38 was the best first split. A value of 
3.38 corresponds fairly closely to what would be deemed a good 
income.  Females with lower income had a high rate of being 
overweight (48%) versus those with a higher income (28%). The 
best first split for males was age, where those above 79 (8%), had 
less obesity than those below (28%). 
 
The tree is shown below, in parts. 
 
Males 
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Using expert knowledge, we decided to use the split on saturated 
fat with a G2 score of 10.06, although the best candidate was in 
fact smoking with a G2 score of 10.36.  
  
Continuing on with the Females: we click on the “candidates” 
button to produce a list of possible splits.  We see that females 
with Incomes greater than 3.38 times the poverty income have 
obesity of 28% versus 48.4% for those with lower incomes 
(relative to the poverty income for their family sizes).  For those  
with a lower PIR we get the following sub-tree. 
 

Note that the meat score and variety score play a role.  
 
For a PIR > 3.8 in females, age, total fa,t and dairy score play a 
role.  In all but total fat, the cutpoint chosen is around 5. In 
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nutrition papers, 5-6 has been taken as a cutpoint, with below 5 
representing inadequate scores.  
 
WEIGHTED TREE 
The weighted tree had a different profile.  Age (< 49 and >=49), 
meat score, vegetable score, and saturated fat score played a 
role.  When the vegetable score was low in those under 49(< 0.6), 
84% were obese.  In those at least 49, if the meat score was >=5, 
77% were overweight compared to 50% with a lower meat score.  

 
In both the logistic and tree modeling we found that incorporating 
weights gave different results to the unweighted analysis.  
 
LOGISTIC MODELING & TREE INFORMATION 
From both the weighted and unweighted trees, the variables 
suggested are the meat score, possibly as a categorized variable 
of two values, <5 or ≥5, a saturated fat score with cutpoint at 3, or 
total fat at 8, age cut at 50 and 80, and possibly a vegetable score 
cut at 0.6.  It should be noted that the vegetable and fruit scores 
are on average much lower than the other scores, reflecting the 
way we all eat.  
 
We used the cutpoints in investigating models.  We found that 
whether we used the cutpoints or kept the full HEI subscales we 
got essentially the same variables in the model.   
 
Using the trees, we developed models 1a and 1b. In model 1a, 
we used a cutpoint for age.  In models 1b and 1c, we used the 
cutpoints for age and for the HEI sub scores suggested by the 
trees.  In model 1b, we included information form the unweighted 
tree showing that income played a role.  
 
In model 1a we found that if you are female, variety in diet is 
protective; if you are over 50, a high meat score indicates a 
likelihood of being overweight and if you are over 80 you are 
protected from being overweight.  We had interactions without 
main effects and this is not troublesome because the interactions 
only involve one continuous variable and an indicator variable. 
This means that we have simultaneously fit several models to 
different subpopulations, described by being under 50, 50 to 80, 
or over 80 and female or male.  These models could then be 
reported separately for the 6 subgroups.  
 
In model 1b, we found that we had essentially the same model as 
model1a except we used a meat score of at least 5 instead.  Also, 
the main effects of drinking and smoking as well as their 
interactions seemed important with drinking being protective as 
well as being a current smoker vs never.    
 
In model1c, we found that a PIR≥1.85 and <3.3 or being male put 
you at risk for overweight status, as did being over 50 with a meat 
score higher than 5.  As before, drinking and being a current or 
never smoker was protective.  
 

Using the Hosmer logistic information (4) and the cutpoints, we 
obtained the easily interpretable model 2.  If you are over 80 or 
are a current or never smoker and drink, your risk of obesity is 
less.  With increased variety in diet, your risk of obesity is less, 
but if you are over 50, an increased meat score is indicative of 
obesity.  Here we have three models fit simultaneously to the 
three age groups described in model 1.  
 
SUDAAN VALIDATION 
Sudaan is designed for complex sample surveys.  It has no 
stepwise procedures and therefore does not lend itself easily to 
exploratory analysis.  We used the 4 models developed using a 
combination of the tree model and the Hosmer-Lemeshow 
method. (4)  We found all models reasonably stable with 
misclassification rates around 35%in the working dataset and 
increasing to 39% in the validation set.  
 
Model 1b gave good results. 
 

    
95% CI for 

OR 

Variables  
Odds 
Ratio Lower Upper

Intercept 2.33 1.47 3.68
SEX     

Male 1.5 1.06 2.12
Female 1 1 1

SMOKE     
Current 0.53 0.29 0.96
Former 0.67 0.41 1.09
Never 1 1 1

DRINKER     
Yes 0.47 0.29 0.76
No 1 1 1

DRINK and SMOKE     
Smoke+Drink 1.78 0.66 4.76
Former smoker, Drink 2.09 1.17 3.74
Never Smoked, Drink 1 1 1
Smoke, No Drink 1 1 1
Former Smoke, No Drink 1 1 1
Never Smoke, No Drink 1 1 1

AGE≥50, MEAT≥5     
Over 50 and Meat ≥ 5 1.75 1.03   
Over 50 and Meat < 5 0.86 0.55   
Under 50 and meat ≥ 5 0.79 0.48   

Under 50 and meat << 5 1 1   
 
CONCLUSION  
The advantages of using the tree analysis are as follows. 
 

• A suitable cutpoint for age was found.  It is not 
reasonable to expect age to affect any health in a 
continuously increasing/decreasing way.  Many health 
models use cutpoints to either categorize age or to 
create piecewise linear functions.  In this application, 
the results are  easily interpretable. Moreover, it was 
not necessary to include non-significant  main effect 
terms. 

 
• For interventions on overweight status, it is of interest to 

identify the best subpopulations to target.  Trees aid 
this process. 
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Ĝ2

0
1

Level
0.4425
0.5575

Prob

Veg_Sc>=0.5975

SUGI 28 Statistics and Data Analysis



 5

 
The limitations of the tree approach follow. 
 

• There is no capability as yet to incorporate complex 
survey weights.  

 
• Many researchers uninitiated to trees are willing to 

accept the results without a p-value. Although p-values 
can be obtained by resampling or by the use of other 
statistical procedures, the heavy reliance on p-values 
has to be overcome.  

 
In general, it should be realized that trees are an exploratory 
technique.  Some form of confirmatory analysis or validation 
procedure is mandatory with the use of this tool.  Nevertheless, 
trees are a welcome addition to our descriptive arsenal of 
summary statistics, graphs, and models.  
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