
Paper 243-28

- 1 -

SAS® High-speed Automated Reporting Queue (SHARQ)
Eric Puhlman, BlueCross BlueShield of Tennessee, Chattanooga, Tennessee

Kasi Peek, BlueCross BlueShield of Tennessee, Chattanooga, Tennessee

Abstract
Take a bite out of time with SHARQ – Completely automate
standard reports using PC SAS 8.2. BlueCross BlueShield of
Tennessee (BCBST) experienced substantial downtime when
manually processing standard SAS reports. To reduce this
downtime, all manual intervention was eliminated through the
development of an automatic SAS reporting system called SHARQ.
SHARQ extracts data from multiple sources, manipulates extracted
data, and outputs final report information in multiple formats – all
without manual intervention. Task scheduling, batch mode
processing, and macro programs developed and/or customized as
“tools” will be presented. These tools provide automated date
routines for program execution, error code processing with
automatic program termination and email notification to
developer(s), and automated final report output in multiple formats
(e.g. MS Excel/Word via DDE, HTML using ODS). Finally, SAS
environment configuration issues that help standardize program
coding will be addressed.

Introduction
SAS environment configuration, SAS reporting code, Macro
programs, and Windows NT scheduler are integrated to create
SHARQ. This paper will provide instructions, programming code,
and examples to produce SHARQ output (see Figure - 1). At the
end of this paper, a sample program that demonstrates report
automation from start to finish is provided. SHARQ is a reliable
way to automate reporting using PC SAS V8.2 in the Windows NT
environment. SHARQ code and concepts can be applied to other
operating systems (e.g., Windows 2000); however, this paper
presents automation code/examples in the Windows NT
environment.

Figure - 1 Sample Output from SHARQ

SAS Environment Configuration
Storage configuration, a group level autoexec, and a userauto
macro (along with other macro programs) are combined to develop
the production/test environment configuration. The presented
concepts can be modified and/or incorporated when customizing
the SAS environment.

Storage Configuration
The production environment requires assigned space to store
automated standard reports and related information. However,
automated standard reports must be created and tested outside

the production environment; therefore, separate space is required
to create and test SAS code. Also, space should be available for
related testing information during development.

The production environment directory should have disk space
available for documentation, SAS examples, shared macros,
datasets, formats, SAS production programs, SAS reports, and
web reports. Information stored in each of these directory folders
include:

• Documentation – user documentation for standard reports,
• SAS Examples – SAS code examples that can be used by

other developers,
• Prodmacs – stored compiled macros set to READ-ONLY,
• Datasets – permanent datasets from production jobs,
• Formats – formats for data commonly used in production jobs,
• SAS Production Programs – production standard report code

and related bat files,
• SAS Reports – archived copies of production report output,

and
• Web Reports - web output for transfer to web server (if you do

not have specific write capabilities to the Web).

The test environment directory should provide disk space for
datasets, Mymacs, SAS production programs, SAS reports, and
web reports. Information stored in each of these directory folders
include:

• Datasets – permanent datasets generated from development
jobs,

• Mymacs – user macros created and/or tested during
development,

• SAS Production Programs - testing standard report code and
related BAT files,

• SAS Reports – test emulation of production SAS report
storage, and

• Web Reports - test emulation of production web output for
transfer to web server (if you do not have specific write
capabilities to the Web).

Essentially, a mirror image of the production environment is
created for the test environment. Separate disk drives for
production/test environments are recommended; but, a single disk
drive, with separate paths differentiating the production
environment from the test environment, may be sufficient.

Group Level Autoexec

Autoexec files are processed immediately after the SAS System
initializes but before it processes any source statements1.
Therefore, the autoexec file should include filenames, libnames,
and option statements necessary to invoke an automated SAS
environment.

In the autoexec, a directory is required for use as an autocall library
for user created macros. In addition, libraries are required for
production/global macros and common formats

Local macros should be stored as name.sas and the respective
fileref should be listed in the SASAUTOS. Production/global
macros, which are stored compiled macros in a user-defined
directory, become available when MSTORED and SASMSTORE
options are specified. This library should be READ ONLY and all
users will have to exit SAS when a new production/global macro is
added. Common formats should also be stored in a user-defined

SUGI 28 Professional Development and User Support

- 2 -

library. These formats become available when the FMTSEARCH
option is specified.

The following is sample SAS code for a group autoexec:

filename mymacs ‘drive:\directory file\folder\mymacs’;

libname prodmacs ‘drive:\directory file\ folder \Shared
Macros’;

libname cmnfmts ‘drive:\directory file\ folder
\formats’;

 OPTIONS MSTORED SASMSTORE=prodmacs
 FMTSEARCH=(cmnfmts);

 OPTIONS SASAUTOS=(mymacs,
'!sasroot\connect\sasmacro',
‘!sasroot\sasapps\macros’, . . .
‘!sasroot\usage\sasmacro’);

Note: The standard group-level autoexec should be distributed to
all developers.

Userauto Macro

To customize SHARQ, the following code is added to the bottom of
the AUTOEXEC file. The following userauto macro allows
developers to switch between the test and production
environments.
%MACRO USERAUTO;

FILENAME userauto ‘!sasroot\userauto.sas’;
%IF not &sysfilrc %THEN %DO;
%INCLUDE ‘!sasroot\userauto.sas’;
%END;

%MEND;

%USERAUTO;

The userauto.sas file is located in the same directory as the
autoexec.sas - C:\Program Files\SAS Institute\Sas\V8. Issuing the
%TEST macro in the userauto.sas file sets the programming
environment to the test environment when SAS starts. The
following code invokes the test environment macro:
 %TEST(group=group_folder,
 webdir=group_web_output_directory);

• Group - parameter helps set the fileref DATA

• Webdir - parameter sets the web output directory

A reference to the fileref DATA points to datasets stored in the
datasets directory in your test environment, (e.g., Test
Drive:\Directory\datasets). If permanent datasets are not required,
then temporary datasets can be used as an alternative.

Reference to &web directs output to the directory set up for the
test environment web output (e.g., Test Drive:\
Directory\web_reports). The statement: filename htmout
"&web\report1\report1.htm" indicates that a folder has been
created for a new report being tested named Test Drive:\
Directory\web_output\report1, and web output, while testing, will be
stored in this directory.

Issuing the %PROD macro in the userauto.sas sets the
programming environment to the production environment when
SAS starts. A reference to the fileref DATA points to datasets
stored in the datasets directory in the production environment,
(e.g., Production Drive:\Directory\datasets).

Reference to &web directs output to the directory set up for the
production environment web output (e.g., Production
Drive:\Directory\web_reports). The statement: filename htmout
"&web\report1\report1.htm" indicates that a folder has been
created for a new report named Production Drive:\
Directory\web_output\report1, and web output will be stored in this
directory.

This approach allows developers to seamlessly transition test
programs to production programs, especially when modifications
and/or changes are needed in the future.

SAS Reporting Code

This section discusses automating common manual code
conversions in data extracts, data manipulation and data output.

Data Extracts

Often data are extracted from multiple data sources such as text
files, MS Excel files, MS Access databases, Sybase or DB2. Each
source must be configured and coded without the use of manual
data imports. For instance, to automatically read in a MS Access
database, PROC IMPORT or ODBC technology can be used. To
use ODBC technology the SAS/ACCESS must be available. ODBC
technology is a very dynamic option as it interacts with many types
of data sources such as Sybase, Oracle, DB2, Text, AS/400 and
many more. Other files such as MS Excel can be imported
automatically using Dynamic Data Exchange (DDE), PROC
IMPORT or PROC DBLOAD database connection statements. In
addition, SAS/ CONNECT can be used to connect SAS to any TSO
host via the TCP access method using full screen 3270 telnet
processing. When using SAS/CONNECT, scripts may require
modifications to account for local “flavors” of MVS/TSO
environments. The following are SAS code examples using
SAS/Access, DDE, and SAS/CONNECT.

SAS /ACCESS – Sample extracting data from Sybase
proc sql noprint;
connect to odbc as getdss1(dsn='SYBPDSS1' uid=XXXXXXX
pwd=XXXXXXX);
create table cmemp as
select *
from connection to getdss1(
select HCS_REF_ID as authno,
 HCS_ID as empid,
 HCS_MCTR_REAS as rsn,
 HCS_MCTR_CPLX as cplx,
 HCS_ACTIV_DT as initdt
from HCS_ACTIVITY
where HCS_MCTR_REAS in ('AP','CO','PI','PE')
 and HCS_ACTIV_DT >= &start
 and HCS_ACTIV_DT <= &end);
%put &sqlxmsg;
disconnect from getdss1;
quit;

DDE – Sample extracting data from network

OPTIONS NOXWAIT NOXSYNC;

data _null_;
call system('c:\progra~1\micros~1\office\excel.exe');
run;
DATA _NULL_; rc=SLEEP(6); RUN;
FILENAME ddecmds DDE 'excel|system';
DATA _NULL_;
 FILE ddecmds;
 PUT '[Open("Drive:\PopMgt\UM Report Data.xls")]';
run;
DATA _NULL_; rc=SLEEP(5); RUN;

filename bcemplye
 dde 'Excel|BlueCare!R2C2:R201C3';
data bcemplye;
 infile bcemplye dlm='09'x notab dsd missover;
 informat name $50. empid $8.;
 input name empid;
run;

SAS/CONNECT – Sample extracting data from IBM mainframe
%signon(MF,file); /* References mainframe signon
script*/
rsubmit;
proc sql noprint;
connect to db2(ssid=dsn);
create table ext as
select *
from connection to db2(
select a.mbr_no,
 a.admsn_cmr_cd as outcome,
 a.appl_rvw_dt_2 as rev_dt,
 b.frst_nme as fname,
 b.mid_initl_nme as mi,
 b.lst_nme as lname,
 b.rec_seq_no as seq
from da_cmr a, da_mbr b
where (a.mbr_no = b.mbr_no)
 and (a.admsn_cmr_cd <> 'VD')

SUGI 28 Professional Development and User Support

- 3 -

 and (a.appl_rvw_dt_2 between &start and &end));
%put &sqlxmsg;
quit;

Logic, requiring limiting date fields, must use automatically
calculated dates. This is done through stored and compiled
macros or creating automatic macros variables with calculated
date(s) prior to data extract(s). An example of automated date
code using automatic macro variables is provided:

data dates(keep=begday endday);
startmo = (month(today()))- 1;
if startmo = 0 then startmo = 12;
startdy = '01';
if startmo = 12 then startyr = (year(today())) - 1;
 else startyr = year(today());
begday = "'"||trim(left(startmo))||'/'||startdy||'/'||
trim(left(startyr))||"'";
endmo = month(today());
enddy = '01';
endyr = year(today());
eday = (input(trim(left(endmo))||'/'||enddy||'/'||
trim(left(endyr)),mmddyy10.) - 1);
endday = "'"||put(eday,mmddyy10.)||"'";
run;

data _null_;
 set dates;
 call symput('start',begday);
 call symput('end',endday);
run;

Note: All automated date routine macros are designed to output the
macro variables &start and &end for subsequent use in data
extraction. This is another way to ensure seamless transition
between test and production environments as well as change the
reporting period.

There are many ways to extract data; therefore a developer must
ensure all parameters of extracts are completed without any need
for manual changes. Also, ensure maintenance/ updates on
external data sources are completed prior to scheduling automated
code.

Data Manipulation

Data are manipulated to summarize, reduce, or otherwise
transform raw data into meaningful and useful information2 and
stored in a SAS dataset. For the most part, data manipulation
programming is seamless when developing automated code.
However, there are coding procedures necessary to remove
manual intervention when manipulating data.

Since data are extracted from multiple sources (e.g., MS Excel,
DB2, and Sybase) and combined to create datasets, these
datasets must have capability to be transitioned between local
hosts and remote hosts for further manipulation. For example, if
data from the DB2 subsytem (remote host) are extracted and/or
massaged to merge with other data from Sybase (local host), then
DB2 data must be transitioned to the local host or the Sybase data
must be transitioned to the remote host before these datasets can
be merged/concatenated.

The primary method to transition data between the local host and
remote host is with PROC Upload and PROC Download. PROC
Upload transitions data from the local host to the remote host while
PROC Download transitions data from the remote host to the local
host. Both procedures require SAS/Connect. The following are
SAS code examples of each procedure.

PROC Upload

%signon(MF,file);
rsubmit;

proc upload data=perm.lcldata out=work.rmtdata;
run;

PROC Download

%signon(MF,file);

rsubmit;
options db2ssid=dsn;

proc sql noprint;
connect to db2(ssid=dsn);
create table work.rmtdata as
select *
from connection to db2(
select frst_nme as fname,
 lst_nme as lname,
 mid_initl_nme as mi
from da_mbr);
%put &sqlxmsg;
quit;

proc download data=rmtdata out=perm.lcldata;
run;
endrsubmit;

After transitioning data between remote and local hosts, additional
SAS procedures/statements can be used for newly created data.
However, data processing will occur on the host to which data are
transitioned.

Other coding procedures to consider involve column formats.
When extracting data from other applications/systems, sometimes
SAS is forced to assign default formats to columns. These
columns often require modification before data can be
manipulated. For example, if a date column on a MS Excel
spreadsheet is formatted CCYYMMDD, then SAS will read this
column as numeric 8 or character 8 when using DDE (these are
the only formats available to assign). Once this column is in a SAS
dataset, it must be converted to a SAS date format.

There are data that appear incapable of manipulating automatically
even after every “work-around” has been attempted; but solutions
are often available through networking with other SAS
programmers or through SAS technical support.

Data Output

Once data are extracted and manipulated automatically, data are
ready to output for presentation. Most end users prefer output in
formats they are accustomed to using (e.g., MS Excel or HTML).
In addition, some end users prefer summary level output while
other end users prefer detail level output – often from common
data sources. This section discusses automating output to HTML,
PDF, and MS Excel.

Automating output to HTML is made easy with SAS V8.2 Output
Delivery System (ODS). ODS opens, manages, or closes the
HTML destination. If the destination is open, you can create HTML
output3. When creating an HTML file, SAS dataset(s) can be
manipulated for presentation with procedures such as PROC Print,
PROC Tabulate, PROC Report, PROC Means and many more.
SAS code, creating a HTML file using PROC tabulate, is provided
in “Create a html file using PROC Tabulate” section of the Sample
Program.

Similarly to HTML, PDF files are created automatically using ODS.
Datasets sent to HTML can be sent to PDF which provides a user
friendly printable file. SAS code, creating a PDF file using PROC
Tabulate, is provided in “Create a PDF file to link printable version
of the TABULATE procedure to the html file” section of the Sample
Program.

SAS can automatically send output to MS Excel in various ways.
When end users prefer customized report layouts, a macro4,5,
using DDE, is the primary method for creating customized MS
Excel output. MS Excel formats are programmed in SAS and
include formats such as right header/center header/left headers,
align left/center /right, bold, italic and many other formats.
Programming code for this macro is provided in Macro 3 of the
Macro Program section. Although HTML, PDF and MS Excel are
the only outputs discussed, many other output files can be
automated using ODS, PROC Export, PROC DBLoad and DDE.

SUGI 28 Professional Development and User Support

- 4 -

Macro Programs

Production macros increase a developer’s capability to standardize
processes and monitor quality of programs. Macros included in
this paper allow programmers to call the production/test
environment, export SAS data to MS Excel, ensure dataset(s) are
populated, and check for programmatic errors.

The following macros provide a base structure for automating SAS
programs. To implement automation of the sample code provided
at the end of this section, the following macros should be copied
and submitted in PC SAS v8.2.

Note: Macro code will have to be modified for your environment.

Macro 1

/*Environment Configuration Macros*/

%macro test(group=MIM,
 webdir=F:\MIM\web_output);
option nomprint nosymbolgen nomlogic nomacrogen;
libname data "F:\&group\datasets";
%global web;
%if %upcase (&group) ^= MIM and &webdir =
F:\MIM\web_output %then
%let web=F:\&GROUP\web reports;
%else %do;
 %global web;
 %let web=&webdir;
%end;
%mend;
Specify the directories for your test datasets and test web output.

%macro prod(group=MIM,

webdir=\\webserver\MIM\web_output);
options nomprint nosymbolgen nomlogic nomacrogen;
libname data "U:\Share\&group\datasets";
%if %upcase (&group) ^= MIM and &webdir
=\\webserver\MIM\web reports %then
%let web=F:;
%else %do;
 %global web;
 %let web=&webdir;
 %end;
%mend;

Specify the directories for your production datasets and production
web output. See the section 'Userauto.sas' or simply invoke one or
the other in a sas session.

Macro 2

/* Macro to Count Obs in a dataset */

%macro numobs(dsn);
%global num;
 data _null_;
 if 0 then set &dsn nobs=count;
 call symput('num',left(put(count,8.)));
 stop; run;
%mend numobs;

Macro 3

/* Macro to output data to Excel*/
/**
** EXPORT DATA TO AN EXCEL FILE **
**/
OPTIONS noMPRINT noMLOGIC noMACROGEN noSYMBOLGEN;
%macro out_xl (noparm,sasin=,savedir=f:\,xlsrpt=,
savefile=Sas2excl Report,datestmp=Y,timestmp=Y,shtname=,
colhead=LABEL,lfthdr=,ctrhdr=Report Results,rgthdr=,
lftftr=,ctrftr=Page %nrstr(&p),rgtftr=%nrstr(&d),
grid=Y,specfmt=,savecopy=,openexcl=Y,closexcl=Y);
%* Check macro parameters. *;
%if &noparm >= and &sasin= %then %do;
data _null_;
 put @2 '84'x 80*'83'x @82 '86'x;
 put @2 '82'x @07 '%OUT_XL.sas, parent example presented
at SUGI 17. ' @82'82'x;
 put @2 '82'x @07 "Send data via DDE(Dynamic Data
Exchange) from SAS to EXCEL." @82'82'x;
 put @2 '82'x @07 "This version has been modified to fit
in this paper." @82'82'x;
 put @2 '8a'x 17*'83'x @14 '8b'x 67*'83'x @82 '8c'x;

 run;
%goto exitout;
%end;
%if &shtname= %then %let SHTNAME=%upcase(&sasin);
%* Open file to contain Excel commands. *;
filename cmdexcel dde 'excel|system';
%* Start Excel *;
%* Use the system registry to open excel instead of
specifying a *;
%* specific amount of time to put SAS to sleep. More
efficient. *;
%if %upcase(&openexcl) eq Y %then %do;
options noxwait noxsync;
data _null_;
 length fid rc start stop time 8.;
 fid=fopen('cmdexcl','s');
 if (fid le 0) then
 do;
 rc=system('start excel');
 start=datetime();
 stop=start+10;
 do while (fid le 0);
 fid=fopen('cmdexcl','s');
 time=datetime();
 if (time ge stop) then fid=1;
 end;
 end;
 rc=close(fid);
run;
%end;
%* Open exsisting file or new file with 1 sheet *;
%if &xlsrpt= %then
%do;
 data _null_;
 file cmdexcel;
 %let nw=%str(%'[New(1)]%');
 put %unquote(&nw);
 run;
%end;
%else %do;
 data _null_;
 file cmdexcel;
 %let filepath=%str(%'[open("&xlsrpt")]%');
 put %unquote(&filepath);
 %let sheet=%str(%'[Workbook.insert(1)]%');
 put %unquote(&sheet);
 run;
%end;
%* Save the file to its new name. *;
%local svcopy;
%if &xlsrpt= %then
%do;
 %let h=%sysfunc(hour(%sysfunc(time())),z2.);
 %let tm=%sysfunc(time());
 %let m=%sysfunc(minute(&tm),z2.);
 %if %upcase(&datestmp)=Y and %upcase(×tmp)=N
%then
 %do;
 %let str=&SAVEDIR\%nrbquote(&savefile) &sysdate9;
 %let linkit=%nrbquote(&savefile) &sysdate9..xls;
 %if &savecopy ne %then %let svcopy=&savecopy&linkit;
 %end;
 %if %upcase(&datestmp)=N and %upcase(×tmp)=Y
%then
 %do;
 %let str=&SAVEDIR\%nrbquote(&savefile) &h.&m;
 %let linkit=%nrbquote(&savefile) &h.&m..xls;
 %if &savecopy ne %then %let svcopy=&savecopy&linkit;
 %end;
%if %upcase(&datestmp)=Y and %upcase(×tmp)=Y %then
 %do;
 %let str=&SAVEDIR\%nrbquote(&savefile) &sysdate9
&h.&m;
 %let linkit=%nrbquote(&savefile) &sysdate9
&h.&m..xls;
 %if &savecopy ne %then %let svcopy=&savecopy&linkit;
 %end;
%if %upcase(&datestmp)=N and %upcase(×tmp)=N %then
 %do;
 %let str=&SAVEDIR\%nrbquote(&savefile);
 %let linkit=%nrbquote(&savefile).xls;
 %if &savecopy ne %then %let svcopy=&savecopy&linkit;
 %end;
%end;
%else
 %do;
 %let str=&xlsrpt;
/* Specify SAVEDIR= where a savecopy will be */
/* performed. It is needed to calculate linkit */
 %let dirlen=%sysfunc(length(&SAVEDIR));
 %let rptlen=%sysfunc(length(&xlsrpt));
 %let
linkit=%sysfunc(substr(%str(&rptname),%eval(&dirlen+1),%
eval(&rptlen-&dirlen))).xls;
 %if &savecopy ne %then %let
svcopy=&savecopy&linkit;
 %end;

SUGI 28 Professional Development and User Support

- 5 -

%* Create var &rptname in case more sheets will be added
*;
%* to the same report and for html output if needed.
*;
%* Create macro variable &linkrpt to use in HTML href.
*;
%global rptname; %global linkrpt;
data _null_;
file cmdexcel;
put '[error(false)]';
put "[save.as(%bquote("&str"))]";
call symput('rptname',"&str");
call symput('linkrpt',"&linkit");
run;
%* Rename the worksheet and move it to the last position
*;
 /* Insert a Macro sheet */
 data _null_;
 file cmdexcel;
 %let sheet=%str(%'[Workbook.next()]%');
 put %unquote(&sheet);
 %let sheet=%str(%'[Workbook.insert(3)]%');
 put %unquote(&sheet);
 put '[error(false)]';
 run;
 /* Define a DDE-triplet fileref pointing to the Macro
Sheet */
 filename xlmacro dde 'excel|macro1!r1c1:r100c1'
notab lrecl=200;
 /* Write a Macro on the Macro Sheet and run it */
 data _null_;
 file xlmacro;
 %let
sheet=%str(%'=Workbook.name("Sheet1","&shtname")%');
 put %unquote(&sheet);
 %let
shtmove=%str(%'=Workbook.move("&shtname","&linkrpt")%');
 put %unquote(&shtmove);
 put '=halt(true)';
 put '!dde_flush';
 file cmdexcel;
 put '[run("macro1!r1c1:r100c1")]';
 put '[error(false)]';
 run;
 /* Select the sheet for processing */
 data _null_;
 file cmdexcel;
 %let sheet=%str(%'[Workbook.select("&shtname")]%');
 put %unquote(&sheet);
 run;
%* Info about SAS dataset. Include varnum and sort by
*;
%* varnum in order for the cols to come out in excel in
the *;
%* order they appear in the dataset. *;
proc contents data=&sasin noprint
out=conts(keep=nobs name label length varnum type);
run;
%numobs(conts); /* Calling another macro */
%if &num=%eval(0) %then
%do;
 data _null_;
 put 'Parameter error: SASIN= ' "&sasin";
 put 'DATASET missing or empty';
 run;
%* If the conts dataset is empty, there is no data. The
sheet is produced and the program ends;
 %goto cleanup;
%end;
proc sort data=conts; by varnum; run;
data conts;
set conts end=eof;
if label eq '' then
label=NAME;
call symput('col'||left(_n_),trim(NAME));
call symput('lab'||left(_n_),trim(LABEL));
call symput('lablen'||left(_n_),length(LABEL));
call symput('len'||left(_n_),length);
if NAME='PRVTIN' then type=2;
call symput('type'||left(_n_),type);
if eof then do;
call symput('columns',trim(left(_n_)));
call symput('rows',trim(left(nobs)));
end;
run;
%* Number of data rows exceeds DDE to Excel limit
*;
%if &rows > %eval(16384) %then
%do;
 filename excel1 dde "excel|&shtname!r1c1:r8c5";
 data _null_;
 file excel1 notab;
 put "Dataset is to large to transfer using SAS2EXCL
macro/DDE.";
 put "Limit is 16384 rows of data";
 file cmdexcel;
 %let ColA=%str(%'[column.width("54")]%');

 put %unquote(&ColA);
run;
 %goto cleanup;
%end;
%* Link to Excel spreadsheet *;
%if %eval(&columns) > %eval(20) %then
 %do;
 %let first=%sysfunc(int(%eval(&columns/2)));
 %let more=%eval(&first+1);
 filename excel1 dde "excel|&shtname!r1c1:r1c&first"
notab;
 filename excel2 dde
"excel|&shtname!r1c&more:r1c&columns" notab;
 %end;
%else %do;
 filename excel1 dde "excel|&shtname!r1c1:r1c&columns"
notab;
 %let more=%eval(0);
 %let first=&columns;
%end;
%* send column headings to spreadsheet *;
data _null_;
file excel1;
hextab='09'x;
%if %upcase(&colhead) eq NAME %then %do;
put %do i=1 %to &first;
"&&col&i" hextab
%end;
%end;
%else %if %upcase(&colhead) eq LABEL %then %do;
put %do i=1 %to &first;
"&&lab&i" hextab
%end;
%end;
run;
%if %eval(&more) > 0 %then
%do;
 data _null_;
 file excel2;
 hextab='09'x;
 %if %upcase(&colhead) eq NAME %then %do;
 put %do i=&more %to &columns;
 "&&col&i" hextab
 %end;
 %end;
 %else %if %upcase(&colhead) eq LABEL %then %do;
 put %do i=&more %to &columns;
 "&&lab&i" hextab
 %end;
 %end;
 run;
%end;
%* If variable type is numeric then format that column
number *;
%* If variable type is character then format that column
text *;
data _null_;
 file cmdexcel;
 %do i=1 %to &columns;
 %if &&type&i=1 %then
 %do;
 %let selcol=C&i;
 %let colpath=%str(%'[select("&selcol")]%');
 put %unquote(&colpath);
 put '[format.number("General")]';
 %end;
 %if &&type&i=2 %then
 %do;
 %let selcol=C&i;
 %let colpath=%str(%'[select("&selcol")]%');
 put %unquote(&colpath);
 put '[format.number("@")]';
 %end;
 %end;
 run;
%* Link to spreadsheet to send data beginning 2nd row *;
filename excel dde
"excel|&shtname.!r2c1:R%eval(&rows+1)C&columns." notab
lrecl=350;
%* now send data to Excel spreadsheet *;
data _null_;
set &sasin;
hextab='09'x;
file excel;
put %do i=1 %to &columns;
&&col&i hextab
%end;
run;
%* Adjust column width to variable length or label
length *;
%let calc=%eval(0);
data _null_;
 file cmdexcel;
 %do i=1 %to &columns;
 %let sel2=r1c&i:R%eval(&rows+1)C&i;
 %let path2=%str(%'[select("&sel2")]%');
 %let varlen=%eval(&&len&i+3);

SUGI 28 Professional Development and User Support

- 6 -

 %if %eval(&&lablen&i) > %eval(&varlen) %then
 %let colwide=%eval(&&lablen&i+2);
 %else %let colwide=%eval(&varlen+2);
 %if &colwide > 35 %then %let colwide=36;
 %let wide=%str(%'[column.width("&colwide")]%');
 put %unquote(&path2);
 put %unquote(&wide);
%* Calculate the total for all the columns *;
 %if %eval(&&lablen&i) > %eval(&varlen) %then
 %let calc=%eval(%eval(&&lablen&i)+%eval(&calc));
 %else %let calc=%eval(%eval(&varlen)+%eval(&calc));
 %end;
%let all=r2c1:R%eval(&rows+1)C&columns;
%let allp=%str(%'[select("&all")]%');
put %unquote(&allp);
put '[format.font("Times New
Roman",10,FALSE,FALSE,FALSE,FALSE,0,FALSE,FALSE)]';
run;
%* Format Header and Footer *;
%let head=%nrstr(&L &10) &lfthdr %nrstr(&C &B &12)
&ctrhdr %nrstr(&R &10) &rgthdr;
%let foot=%nrstr(&L &8) &lftftr %nrstr(&C &8) &ctrftr
%nrstr(&R &8) &rgtftr;
%if %eval(&calc) > 95 %then
 %let orient=2;
%else %let orient=1;
%if %eval(&calc) > 125 and < 175 %then %let scale=70;
%else %if %eval(&calc) >= 175 and < 210 %then %let
scale=55;
%else %if %eval(&calc) >= 210 %then %let scale=45;
%else %let scale=100;
%let paper=1;
%let sel3=r1c1:r1c&columns;
%let path3=%str(%'[select("&sel3")]%');
%if &grid=Y %then %let gridline=TRUE;
%else %let gridline=FALSE;
%let path4=%str(%'[page.setup("&head","&foot")]%');
%let
path5=%str(%'[page.setup(,,.25,.25,1,1,FALSE,&gridline,T
RUE,FALSE,&orient,&paper,&scale)]%');
data _null_;
 file cmdexcel;
put %unquote(&path3);
put '[format.font("Times New
Roman",10,TRUE,FALSE,FALSE,FALSE,0,FALSE,FALSE)]';
put %unquote(&path4);
put %unquote(&path5);
put '[SET.PRINT.TITLES("R1")]';
run;
%* If additional formatting needs required, the name of
the user *;
%* created macro is called with the &SPECFMT parameter.
*;
%if &specfmt ne %then
%do;
%&specfmt;
%end;
%else;
%* Close Excel *;
%CLEANUP:
/* Make the Macro sheet the first sheet. Select it,
delete it. */
/* Causes the next sheet, the first sheet on the left,
to be the active sheet. */
data _null_;
file xlmacro;
%let
shtmove2=%str(%'=Workbook.move("Macro1","&linkrpt",1)%')
;
 put %unquote(&shtmove2);
file cmdexcel;
 %let sheet2=%str(%'[Workbook.select("Macro1")]%');
 put %unquote(&sheet2);
 put '[workbook.delete("Macro1")]';
run;
proc datasets library=work; delete conts; run; quit;
%* Save copy of file to another directory if requested
*;
%if &savecopy ne %then
%do;
 data _null_;
 file cmdexcel;
 put "[save.as(%bquote("&svcopy"))]";
 run;
%end;
data _null_;
file cmdexcel;
%if %upcase(&closexcl) = Y %then %do;
 put '[error(false)]';
 put "[save.as(%bquote("&str"))]";
 put '[quit()]';
%end;
%else %do;
 put '[error(false)]';
 put "[save.as(%bquote("&str"))]";
%end;
run;

filename excel clear;
filename excel1 clear;
filename excel2 clear;
filename cmdexcel clear;
filename xlmacro clear;
%exitout:
%mend out_xl;

Macro 4
/* Error Checking*/

%macro errcheck(dsn,obs);
%if &sysparm= %then %let sysparm=Kasi Peek;
%if &dsn= %then %let dsn=&syslast;
%let db=no;
%let sql=no;
%let zero=no;
%let nods=no;
options nomprint nosymbolgen nomlogic nomacrogen;
%let contact=%scan(&sysparm,1) %scan(&sysparm,2);
filename rpt "U:\IntraDept_Shares\IM_Share\Im Health\SAS
Production Jobs\sharq_rpt_&sysjobid..sas";
/* Start Creating Email to send contact */
 data _null_;
 file rpt ;
 put %unquote(%str(%')filename errmail email
"&contact" %str(%'));
 put 'cc=("Kasi Peek")';
put %unquote(%str(%')subject="SHARQ Automated Error
Message" ; %str(%'));
 put "data _null_ ;";
 put "file errmail;";
put "put 'S.H.A.R.Q. (SAS High-Speed Automated Reporting
Queue) ';";
 put "put 'Automated Error Message' ;";
 put "put;";
 put "put '%bquote(&sysprocessname)';";
 put "put 'Run Time: &sysdate9 &systime';";
 put "put;";
 run;
/* What dataset are we checking?*/
 data _null_;
 file rpt mod ls=80 flowover ;
 put "put 'CHECKING DATASET: %trim(&dsn)';";
 put "put ;";
 run;
/* Capture DB Error Messages */
%check(sysdbrc);
%if &chkvar=yes %then
%do;
 %if %trim(&varval) ^= 0 %then %do;
 data _null_;
 file rpt mod ls=80 flowover;
 put "put 'DB Error Messages:';";
 put 'put "SYSDBRC= &sysdbrc";';
 put 'put "SYSDBMSG= &sysdbmsg";';
 put "put;";
 run;
 %let db=yes;
 %end;
%end;
/* Capture SQL Error Messages */
%check(sqlxrc);
%if &chkvar=yes %then
%do;
 %if %trim(&varval) ^= 0 %then %do;
 data _null_;
 file rpt mod ls=80 flowover;
 put "put 'SQL Error Messages:';";
 put 'put "SQLxRC= &sqlxrc";';
 put 'put "SQLxMSG= &sqlxmsg";';
 put "put;";
 run;
 %let sql=yes;
 %end;
%end;
/* Message regarding 0 obs in a dataset */
 /* check if dataset exists */
 %if %sysfunc(exist(&dsn)) % then
 %do;
 %if &obs ^= 0 %then
 %do;
/* 0 Observations is not OK */
 %numobs(&dsn)
 %if &num = 0 %then
 %do;
 data _null_;
 file rpt mod ls=80 flowover;
 put "put 'Critical Error: ';";
 put "put 'Dataset %trim(&dsn) has &num
observations.';";
 put "put 'Program execution
terminated.';";
 run;
 %let zero=yes;
 %end; %end; %else; %end;
 %else

SUGI 28 Professional Development and User Support

- 7 -

 %do;
 data _null_;
 file rpt mod ls=80 flowover;
 put "put 'Critical Error: ';";
 put "put 'Dataset %trim(&dsn) does
not exist.';";
 put "put 'Program execution
terminated.';";
 run;
 %let nods=yes;
 %end;
/* If Errors detected, send email. Delete when finished.
*/
%if &db=yes or &sql=yes or &zero=yes or &nods=yes %then
%do;
 data _null_;
 file rpt mod ls=80 flowover;
 put "run;";
 run;
%include "U:\IntraDept_Shares\IM_Share\IM Health\Sas
Production Jobs\sharq_rpt_&sysjobid..sas";
 %let filecmd=del
%str(%")U:\IntraDept_Shares\IM_Share\IM Health\Sas
Production Jobs\sharq_rpt_&sysjobid..sas%str(%");
 data _null_;
 call system("&filecmd");
 run;
 quit;
 Endsas;
%end;
/* No Errors Detected. Delete the external file that was
started to send the email. */
%let filecmd=del %str(%")U:\IntraDept_Shares\IM_Share\IM
Health\Sas Production
Jobs\sharq_rpt_&sysjobid..sas%str(%");
data _null_;
call system("&filecmd");
run; quit;
%mend;

Sample Program

If the previous macros have been modified for your environment
and submitted, the following sample program will demonstrate
automation.

/* Test Environment */
/* Create directory or use another */
%test(webdir=c:\sample);
/* Sample data for demonstration – user will need to
place the columns according to the input statement */
data sample;
input date 1-8 lname $10-20 fname $21-32 gender $34-36
diag $38-48 costs 50-56 region $58-77;
format costs dollar8.;
cards;
20011212 Klutz William M Broken Arm 900 South
20020102 Klutz Susan F Broken Leg 950 South
20020201 Klutz Billy M Broken Arm 300 South
20011130 Bowens Cathy F Hip Replace 99 North
20011023 Tenkids Patty F Broken Arm 3000 North
20011215 Little Tommy M Broken Arm 1500 North
20011201 Little Susie F Fever 99 North
20011123 Little Sally F Fever 99 North
20011013 Boff Mack M Hip Replace 3000 South
20011101 Gottago Jiffy M Fever 50 North
20011105 Wake Staya F Broken Arm 50 South
20011001 Mehard Slap M Hip Replace 50 North
20011202 Jones Bob M Fever 99 South
20011103 Jones Kasi F Hip Replace 1200 South
20011013 Peek Kimberly F Broken Arm 50 North
20011221 Stewart Jeffrey M Broken Arm 50 South
20011030 Smith Granny F Fever 999 South
;
/* Formats like this could be stored in a
catalog/location */
/* for all developers to use */
proc format;
 value $gender M='Male'
 F='Female';
run;
/* Invoke automatic date routine */
/* Contact author for date routine code or use another
*/
%*quarter(quarter=4,system=hp);
%let start=20011001; %let end=20011231;
/* Extract data needed for report */

proc sort data=sample; by date; run;
data output;
 set sample;
 where date ge &start and date le &end;
 label date='Admit Date'
 lname='Last Name'
 fname='First Name'
 gender='Gender'
 diag='Diagnosis';
format gender $gender.;
run;
/* output data to Excel */
%out_xl(sasin=output, shtname=Detail Data,
 ctrhdr=Gender Cost by Region,
 savedir=&web, savefile=Gender Cost);
ods listing close;
/* A macro variable &linkrpt is created in the %out_xl
*/
/* macro so the excel file can be linked on the html
page */
filename htmout "&web\Gender_Report.htm";
Title "<a>Gender Cost by Region";
Title3 "Download Detail Data to
Excel";
/* Create an html file using a proc tabulate */
ods html
file=htmout style=sasweb;
options nodate nonumber missing='';
proc tabulate data=output format=dollar12.;
 class region diag gender;
 table diag (all='Costs By Region/Gender'),
(region='')*(gender='')*(costs='')*sum=''
 / box={label="Printable PDF Version"
 style=[font_style=italic
 background=light yellow
 font_weight=bold
 nobreakspace=off
 url="Gender_Report.pdf"]};
 var costs; keylabel sum='';
run;
ods html close;
%*Create PDF file to link printable version of the ;
%* TABULATE procedure to the html file ;
ods pdf file="&web\Gender_Report.pdf" notoc;
Title "Gender Cost by Region";
proc tabulate data=output format=dollar12.;
 class region diag gender;
 table diag (all='Costs By Region/Gender'),
(region='')*(gender='')*(costs='')*sum=''
 / box={label="" style=[font_style=italic
background=light yellow
 font_weight=bold nobreakspace=off]};
 var costs; keylabel sum=''; run; ods pdf close; ods
listing;

Windows NT Scheduler

Create a Batch File

The final step in automating SAS programs is scheduling batch file
programs to invoke a SAS session and run the program. A batch
file is created in NOTEPAD and is scheduled to invoke in the Task
Scheduler. This file will initiate a SAS session and execute the
SAS program.

A batch file requires 4 main commands

1.) “C:\Program Files\SAS Institute\Sas\V8\SAS.EXE”
 (Starts a Sas Session),

2.) -SYSIN "Weekly\Employee Production Report.sas
(Indicates which program to run),

3.) -CONFIG “C:\Program Files\SAS Institute\Sas\V8\
SasV8.cfg (Indicates config file directory path), and

4.) -AUTOEXEC “C:\Program Files\SAS
Institute\Sas\V8\autoexec.sas” (Indicates autoexec
directory path).

The respective batch file is saved with a .bat extension (see Figure
- 2).

SUGI 28 Professional Development and User Support

- 8 -

Figure - 2 Sample .bat file and NT Scheduler

Schedule Batch Job

Windows NT Task Scheduler is used to schedule batch files. To
schedule batch files in Windows NT, open My Computer then open
Scheduled Tasks and select “Add Scheduled Task” - the
Scheduled Task Wizard will provide guidance throughout the
remainder of the process.

When the scheduled job runs, a SAS log is automatically created
and stored in the directory specified as the ‘Start in:’ directory. (To
view properties of a scheduled job, right click the job and choose
properties.)

Conclusion

Creating an automated tool like SHARQ saves substantial time
compared to manually submitting SAS programs. In addition,
programmers can maximize development opportunities, as time
resubmitting standard reports is no longer required. Furthermore,
data resources can be used during low utilization periods -
maximizing processing time.

Acknowledgements

Jeffrey C. Jones, MBA, BCBST – IM Health Informatics
Sheila D. Keith, BCBST – Medical Information Management
Kimberly E. Stewart, BCBST – IM Health Informatics
Robert E. Williams, BCBST – MCCAD

About the Authors

Eric Puhlman is currently employed as Information Project Analyst
at BCBST with six (6) years of SAS programming experience. Eric
is a team lead and is responsible for selecting appropriate clinical
reporting methods for the design and analysis of studies, projects,
and programs which focus on the impact cost and utilization of
health care services on the economic, financial, and quality
aspects of all lines of business.

Kasi Peek is currently employed as an IM Developer/Analyst at
BCBST with six (6) years of SAS programming experience. She is
responsible for the analysis, design and implementation of
reporting methods, project management and user support in the
development, enhancement, maintenance and integration of
application software systems. Kasi served as a SESUG Section
Co-Chair from 1999 through 2001.

Contact Authors

Eric Puhlman, Medical Information Management
BlueCross BlueShield, Tennessee
Work phone: 423-763-7077 e-mail: Eric_puhlman@bcbst.com

Kasi Peek, IM Health Informatics
BlueCross, BlueShield, Tennessee
Work phone: 423-763-3492 e-mail: Kasi_peek@bcbst.com

References

(1) SAS Institute Inc., SAS OnlineDoc SAS Companion for the
OpenVMS Operating Environment (Cary, NC: SAS Institute
Inc., 2000), Autoexec Files.

(2) SAS Institute Inc., SAS Fundamentals: A Programming
Approach (Cary, NC: SAS Institute Inc., 1995), 5.

(3) SAS Institute Inc., SAS OnlineDoc The ODS Statements
(Cary, NC: SAS Institute Inc., 2000), ODS HTML Statement.

(4) Koen Vyverman, "Using Dynamic Data Exchange to Export
Your SAS ® Data to MS Excel — Against All ODS,,Part I —."
Proceedings of the Twenty-Sixth Annual SAS Users Group
International Conference, paper 11 (2001).

(5) Peter Ruzza, SAS Technical Support (Cary NC: SAS Institute
Inc., 2002), Dynamic Data Exchange.

SAS, SAS/Access, and SAS/Connect are registered trademarks of
SAS Institute Inc.

SUGI 28 Professional Development and User Support

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

