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ABSTRACT  
When a new job starts, or a new manager takes over a project, 
the programming team is faced with a new culture.  Often, this 
means that they are asked to adhere to yet another set of 
programming standards, use style sheets, and are subject to peer 
reviews.  This process is usually short lived, because of the lack 
of a practical approach to applying standards and enforcement.  
This paper goes through a step by step process of developing 
programming standards, classifying them and entering them into 
a database.  This database can then be used to develop style 
sheets and check lists for peer review and testing. Through peer 
reviews and in preparation for them, programmers learn good 
programming practices. 

INTRODUCTION 
In researching this paper, I found a number of sources of 
programming standards, some specific to SAS and others more 
general (see References).  Everyone seems to agree that 
standards are a good thing, but rarely did I find mention of a 
practical approach to the use and enforcement of standards.  No 
one wants to police programmers; that has been compared to 
“herding cats."  Given explicit conventions to follow, programmers 
can easily review each other’s work and apply these standards.  
When the corporate culture encourages peer reviews by 
allocating time to this activity it is an opportunity for professional 
growth.  The process for developing explicit standards and 
checklists for peer reviews are detailed in this paper. 

WHY HAVE STANDARDS AND STYLE SHEETS? 
In a maintenance environment, a programmer should be able to 
make changes to a program without fully comprehending the 
entire process.  If the original programmer has followed 
standards, which always include comments, it will be easier to 
understand the code (Aster, 1999). 
 
The majority of standards fall into the category of documentation.  
These are rules that make the code easier to read on the page, 
easier to follow the logic and logical branches, and leave less 
room for interpretation.  Code that meets these requirements is 
easier to maintain. 
 
Standards are useful working in a teamwork development 
environment because they set minimum requirements, which in 
turn insure some uniformity from programmer to programmer.  
They are imperative in managing a large project, where source 
code control is also an issue. (See Whitney, 1999). 
 
Standards for the sake of having standards are a good idea as 
well.  Aster (1999) says:  “A good style is simple, clear, and 
consistent... The main point, however, is that just about any style 
that you follow consistently is better than no style.  Even a 
bizarrely idiosyncratic coding style can eventually start to make 
sense to the reader.  But if your code has no style, a 
maintenance programmer can never quite figure it out without 
reading every detail.” 

 
 

 
If you are the only one who will be reading your code, you may be 
asking yourself, “Why bother?”  As Fehd (2000) points out in his 
“Writing for Reading SAS Style Sheet”, you are coding for two 
events – the machine at execution time, and yourself (or another 
programmer) when you revisit your code a year from now and try 
to remember the purpose and function of a specific program. 

WHY HAVE PEER REVIEWS? 
Peer reviews and formal walkthroughs are a valuable exercise in 
quality control.  These processes help to ensure that code 
complies with programming standards, meets specifications, and 
is error-free.  They are critical in managing a large project to 
ensure uniformity in programming style and use of variable 
names (Whitney, 1999). 
 
Often this process breaks down as a project progresses and 
deadlines loom large.  This is precisely the situation that benefits 
the most by having a second or third pair of eyes examining your 
work.  A good Peer Review Process demands a corporate culture 
that adopts it and embraces it. 

FACILITATING PEER REVIEWS AND 
WALKTHROUGHS  
An informal walkthrough requires preparation time on the part of 
the reviewer, the programmer, and others critical to the review 
process. The “others” will vary as different corporate cultures may 
include managers, for example, while others specifically exclude 
them.  Once time is allocated, a helpful tool is to have a checklist.  
This gives the reviewer an objective set of criterion to apply 
against the program or code being reviewed.  The checklists will 
vary depending on the lifecycle stage of the programming, e.g., 
analysis, design, implementation, testing, maintenance.  

THE DILEMMA 
Despite the promises of a 
“paperless office” made in 
the ‘80’s, I have 
accumulated a variety of 
standards, style sheets, 
testing procedures, hints 
and tips.   Mostly these are 
a rag-tag bunch of paper 
documents, with something 
of value lurking in their depths.  Some were developed for a 
particular project and are therefore very specific; others are 
generic “wish lists” of programmer behavior.  The dilemma – how 
to translate all these piles of paper into “useable” standards? 
 

RULES OF DECLUTTERING 
I approached this problem using some of the tricks I have 
learning to “declutter” my living and working spaces.  The first 
rule:  get everything out in the open. The second rule: group 
similar items together.  Eliminate duplicates. The third rule:  find 
homes for everything.  And the fourth rule: throw out or give 
away anything you haven’t used in over a year.  That might be 
harder to do with standards than with old clothes, but the idea is 
the same – if you aren’t using it, it’s probably obsolete. 
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APPLYING THE RULES TO STANDARDS 
The first task was to locate copies of all the standards, rules, 
and tips I wanted to include. This meant I had to dig through files 
and piles of papers to find all the goodies I wanted to include in 

this project.  I also printed out various 
SUGI and NESUG papers appropriate to 
the subject.   The second task: put like 
objects together, i.e. Classify them.  I 
initially defined four groups of rules: 
documentation, efficiency, maintenance, 
and testing (with some overlap).  The 
third task: put them into a database.  I 
elected to use MS Access® because it 
was quick and easy and I could give the 
data entry work to someone who wasn’t 

familiar with SAS. SAS was used to develop more complex 
reports and checklists.  I also tried to operationalize the rules, 
that is, give working examples. The fourth task: I eliminated 
some rules that were vague or subjective such as “avoid 
unnecessary branches.” 
  

CORPORATE STANDARDS 
Does your company have corporate standards?  When I asked 
this question of my colleagues, the answer was no.  Did I want to 
be the one to try to create corporate standards?  No.  For this 
reason, I decided to keep most of my styles and tips pretty 
general, instead of implementing specific rules.  For example, I 
suggest that it is useful to indent code to show logical flow.  But I 
don’t specify a style, since I don’t really care what style is used as 
long as it is used consistently. 

THE TIPS DATABASE 
Working from various paper documents, I roughed out a 
database.  The fields were tip number, type, the rule, an example, 
and the rationale for the rule.  I quickly added check boxes for 
Peer Review and Testing, and a field to store the author or 
source. This allows for the generation of various checklists for 
peer reviews, testing procedures, etc. and customization by 
selecting certain subgroups.  The Appendix contains examples of 
a document to present tips and standards, checklists used for 
peer reviews and testing, and a report that can be used as a style 
sheet. 
 
The types that I defined were: 
Documentation.  Tips or standards that help document the 
purpose of the code and make it easier to read. 
Efficiency.  Tips to make the code more efficient; that is to run 
faster. 
Maintenance.  Tips to make the code easier to maintain.  These 
sometimes are contrary to the efficiency tips! 
Testing.  These tips mainly concerned testing issues, or things to 
look for when testing.  This is an area I would like to continue to 
enhance.  

FORMS  
The main form was a simple data entry form.  Here the user 
transcribes from a paper cheat sheet the key elements of the tip, 
trick, or standard. 

 
 

REPORTS 
The first report is simply a hard copy of the database, as shown 
in Programming Tips and Tricks in the Appendix.  These are 
listed by tip number, which is simply the order in which they were 
entered into the database.  I included another tip number field in 
the database, so that I could change the order of the tips at a 
future date. 
 
The Style Sheet is a list of the tips, primarily those related to 
documentation. 
 
The Peer Review checklist was produced from a query that 
selected the tips where the Peer Review check box was checked.  
It is a quick list for programmers to review when they are desk 
checking a program. 
 
The Testing checklist was produced from a query where the Test 
check box was checked.  It is a list for review when testing a 
program, which could be stress testing, parallel testing before 
putting a program into production, etc. 

ENHANCEMENTS 
The major enhancement I plan to make is to create another table 
and input form to allow programmers to interact with the Peer 
Review and Test checklists while desk checking a program.  This 
would allow them to check off that a program is in compliance or 
needs work in a particular area. 

CONCLUSION  
Organizing standards and style sheets can be an onerous task, 
but it’s a necessary requisite to implementing their use.  Putting 
them all into one place, cleaning them up, and having them 
where they are accessible to the programming staff is part of the 
process of learning good programming practices. 
 

DISCLAIMER:  The contents of this paper are the work of the 
author(s) and do not necessarily represent the opinions, 
recommendations, or practices of Westat. 
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