ABSTRACT
The %MONDRIAAN macro creates charts that visualize 3-dimensional data in a 2-dimensional way. It uses 2 classification variables, one being a subdivision of the first (the first dimension) and 2 analysis variables, one to draw area’s on the chart (the second dimension) and one to color area’s (the third dimension). The macro takes care of all steps from raw data to chart.

INTRODUCTION
Piet Mondriaan was a Dutch painter (1872-1944) famous for his paintings consisting of coloured squares. Figure 1 presents a typical Mondriaan painting.

%MONDRIAAN honours the painter by presenting 3-dimensional data in 2D: X-axis, Y-axis and colored squares.

THE LAY-OUT PRINCIPLE
The layout principle of the Mondriaan chart is given in figure 2. The chart always covers a complete page. The chart requires two classification variables, a share variable and a response variable. The X-classification values define the columns. The width of each column is based on the sum of the share variable values of that column, as a percentage of the whole chart. Similarly each column is subdivided based on the Y-classification value. The vertical space reserved for each value is calculated based on the share variable value as a percentage of the column. As a result, each combination of an X- and Y-classification value is depicted as a square on the chart. The surface of the square represents the share of the X-Y combination as percentage of the whole chart.

The squares can be colored based on the value in the response variable.

X classifications
Y classifications
Size: share variable
Color or pattern: response variable

Figure 2: The principle components of the MONDRIAAN chart.

THE MACRO
The macro takes a long list of parameters. Many of them have default values defined. Key parameters include the specification of the input data set, the X and Y classification variables, the share variable, which contains the value to construct the square and the response variable, which determines the color of the square.

The call may look as follows:
%MONDRIAAN (DATA= ..., XVAR= ..., YVAR= ..., SHARE = ..., RESPONSE= ..., other options and specifications)

Only the XVAR=, YVAR= and SHARE= parameters are required. If DATA= is left out, the well-known value _LAST_ is assumed. RESPONSE= is not required, but you loose a substantial part of the value of the chart: the coloring of the squares.

The other parameters control elements like the other categories (rest levels), font and format information for the labeling, midpoint definitions for the response variable and finally, in case of WEB-publication, information regarding drill down possibilities.

MACRO LOGIC
In the macro four steps can be distinguished. The first step is the validation of the parameters. This step will also send notes to the SAS Log, to notify the user of all default settings that have been applied. The second step is the data preparation. In this phase the small category values (below the XREST and YREST values, default: 1%) are re-labeled into the rest category. Also the horizontal and vertical shares of each XY combination are calculated. The third step builds the map data set, the response data set (used for the coloring) and the annotate data set (used for labeling the cells). If drill down information is present it will be integrated in the response data set.

The fourth and last step calls PROC GMAP to display the result. Following paragraphs describe the steps in more detail.

All temporary data sets that are created in the various steps follow the same naming convention: ADDMMYY, where A is a character or underscore, to recognize the file and DDMMYY is the SYSDATE value. For instance M20NOV02 is the map data set for a macro call on November 20, 2002.
DATA PREPARATION

The actual processing starts with the calculation of the percentage share for each X classification value. This is done in a PROC FRE. All classification values below a threshold (determined by the XREST= parameter, default 1%) are then re-coded to dummy classification value "FFX". The rest are calculated and written to the "Y-data set". Next is the calculation of the percentages in the Y direction per column. This time PROC SUMMARY is used to calculate the total share value per column, which is then used to calculate the percentage for each X and Y classification value combination. In steps similar to the steps above, the rest values are re-coded to an internal value of "FFX". In this case the results are sorted according to the YORDER= parameter and stored in the "Y-data set". This data set is indexed for random access in the next step.

CREATION OF THE MAP-, RESPONSE- AND ANNOTATE DATA SETS

PROC GMAP uses three input data sets. The MAP data set describes the complete map: all coordinates of the segments of the map. The RESPONSE data set contains the information that should be displayed at each segment. In a choropleth map, the values in the response data set determine the color of the segments. In case of drill-down facilities, the drill-down information is also included in this data set. The third data set is the ANNOTATE data set, which contains the label information. These three data sets are created in one data step. In the data step we read the X-data set sequentially. For each X value, we read repeatedly an observation from the Y-data set, for the given X value, using KEY access in the SET statement. For each X-Y combination the four corner positions of the square are calculated and written to the map data set. Next the observation for the response data set is written. This contains the X and Y classification values, the response value and possible drill-down information. Finally the X classification value is written under the column and the Y classification value is written as a label inside the cell.

PROC GMAP

The chart is basically a choropleth map, plotted by PROC GMAP. The options that are used depend on the parameters in the macro call.

WEB OUTPUT AND DRILL-DOWN

Using ODS and the GIF driver you can add drill-down capabilities and Tool Tips to PROC GMAP output. Tool Tips display a little window when you move your mouse over a cell. Drill-down happens when you click in the cell. These Tool Tips work only in Internet Explorer, not in Netscape (not even in 7.0). The drill-down information is also included in this data set. The third data set is the ANNOTATE data set, which contains the label information. These three data sets are created in one data step. In the data step we read the X-data set sequentially. For each X value, we read repeatedly an observation from the Y-data set, for the given X value, using KEY access in the SET statement. For each X-Y combination the four corner positions of the square are calculated and written to the map data set. Next the observation for the response data set is written. This contains the X and Y classification values, the response value and possible drill-down information. Finally the X classification value is written under the column and the Y classification value is written as a label inside the cell.

PROC FORMAT

The format defines the levels that are used for the coloring of the squares. The coloring is defined in the pattern statements. If the chart is to be distributed in black and white, there is also the option to define fill patterns, by changing the V parameter in the pattern statement. For this example I did not use ODS, rather I used the CGM driver that matches best with MS-Office, to create a file that can directly be imported in the word document.

The rest of the coding speaks for itself. The result is in figure 3.

To use the tool tip facility, you specify the required ODS information, you change the device driver into GIF and specify the input file with the drill down information. In our situation we had the information already included in the MONDRIAAN data set, in the HTMLVAR variable (the default name). This leads to the following changes to the coding:

```
filename gsf:\\sugi28\webfiles\';
goptions device=gif gsfname=gsf;
```

To use the tool tip facility, you specify the required ODS information, you change the device driver into GIF and specify the input file with the drill down information. In our situation we had the information already included in the MONDRIAAN data set, in the HTMLVAR variable (the default name). This leads to the following changes to the coding:

```
filename gsf:\\sugi28\webfiles\';
goptions device=gif gsfname=gsf;
```

The size of the square is based on the number of passengers from each country on the given region. The coloring is based on the index of the bookings compared to previous year.

Part of the input data is shown in table 1. It contains the relevant X and Y classification codes (the flight region and the country code), the number of passengers (which determines the surface of the square via the SHARE= parameter) and the index of the number of passengers in comparison to previous year.

The coding to create the result (figure 3) has been:

```
proc format;
value levels
low- 70 = '70'<
70- 85 = '70-85'
85-95 = '85-95'
95-105 = '95-105'
105-115 = '105-115'
115-130 = '115-130'
130-150 = '130-150'
150-high = '>150';
run;
pattern1 v=solid c=FF0000;
pattern2 v=solid c=FF6666;
pattern3 v=solid c=FFFF00;
pattern4 v=solid c=FFFFFF;
pattern5 v=solid c=FFFFCC;
pattern6 v=solid c=FFFF44;
pattern7 v=solid c=FF6666;
pattern8 v=solid c=C000FF;
title h=1 'Bookings January 2003';
filename gsf:\\sugi28\mondriaan.cgm';
goptions device=cmgo9f71 gsfname=gsf ftext=hwcmd001;
%mondriaan(data=mondriaan,
xvar=xvar,
yvar=yvar,
share=share,
response=response,
index=index,
label=index,'','Index:',
discrete=y,midptfmt=levels,
levelsize=0.6,loflow=N,
labelfont=hwcgm001);
```

In the following example airline booking information1 is shown per region and country of origin of passengers. The flights are grouped by region, e.g. Europe, North Atlantic, Asia/Pacific etc.

1 The used values are fictitious.
%mondriaan(data=mondriaan,
xvar=region,
yvar=countrycode,
share=paxcount,
response=index,
ibfmt=6.,
xrest=2, yrest=2,
xrestlbl='other',
yrestlbl='other',
legend=y, resplbl='Index:',
discrete=y, mblfmt=levels,
lblsize=0.6, loflow=N,
outdata=mondriaan);
ods html close;
ods listing;

The only changes are the specification of a directory in the
filename statement, the GIF driver assignment, the ODS
statements and the additional option DRILDATA=.

Partial input file for %MONDRIAAN 1
09:43 Wednesday, November 20, 2002

Obs region countrycode paxcount index
1 EUROPE AD 58 446.15
2 EUROPE AE 264 93.29
3 EUROPE AG 0 .
4 EUROPE AL 0 0.00
5 EUROPE AM 26 1300.00
6 EUROPE AN 48 33.80
7 EUROPE AO 14 700.00
8 EUROPE AR 169 30.56
9 EUROPE AT 2465 41.72
10 EUROPE AU 592 48.37
11 EUROPE AW 58 223.08
12 EUROPE AZ 5 .
13 EUROPE BA 4 400.00
14 EUROPE BD 18 128.57
15 EUROPE BE 7098 89.27
16 EUROPE BF 2 .
17 EUROPE BG 119 138.37
18 EUROPE BH 92 180.39
19 EUROPE BI 16 11.76
20 EUROPE BJ 0 0.00

Table 1: Partial list of the input to %MONDRIAAN. It contains the
X and Y classification variables, the number of passengers that
are booked and the index compared to previous year.

CONCLUSION
%MONDRIAAN is an easy and effective method to provide quick
graphical insight in data: two classification variables, and two
analysis variables. With the advent of ODS you can add drill-
down and tool tip features, when using the chart in a browser
environment.

REFERENCES
More information about the SAS macro language:
SAS Macro Language: Reference, Version 8
More information about PROC GMAP:
SAS/GRAPH® Software: Reference, Version 8
More information on using Tool Tips and Drill-Down capabilities
can be found on the SAS website:
http://www.sas.com/service/techtips/ta_qa/0210_maptips.html

ACKNOWLEDGMENTS
Thanks to my former colleagues at KLM Royal Dutch Airlines for
reviewing the draft of this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
Erik W. Tilanus
P.O. Box 77
3645 ZK Vinkeveen, the Netherlands:
Fone: +31 297 263936
Fax: +31 297 261712
Email: erik_tilanus@compuserve.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.