
Paper 222-28

1

Tell Them What's Important:
Communication-Effective Web- and Email-Based Software-Intelligent

Enterprise Performance Reporting

Francesca Pierri PhD, Università degli Studi di Perugia – C.A.S.I., Perugia, Italy
LeRoy Bessler PhD, Bessler Consulting & Research, Fox Point, Milwaukee, Wisconsin, USA

Abstract

The communication effectiveness and communication efficiency of your
information delivery are essential to the success of Enterprise
Performance Management. This is true regardless of the management
discipline or implementation (such as Balanced Scorecard), used for
Key Performance Indicators, Critical Success Factors, or whatever you
call your performance measurement parameters. This paper shows that
you can design and build a web based and email based Enterprise
Performance Reporting System with just Base SAS®, ODS (Output
Delivery System), and SAS/GRAPH®, an incisive system that makes best
use of the time, and seizes the attention, of its users. Its output designs
can serve the communication needs of any enterprise. Software
Intelligent construction techniques were used, so the system can adapt to
performance data of any enterprise. The application only needs to be
told the performance data set name, the names, labels, and formats of
the enterprise’s performance measurement variables, and its
performance standards (numeric values and whether a minimum or
maximum). No processing logic changes are required. Though it
delivers information via web publishing, the system can optionally have
performance exceptions automatically trigger email alerts to concerned
persons. The system was developed with SAS Version 8.2, and was
validated on Windows and Unix.

Introduction

The need for, and existence of, Enterprise Performance Reporting (EPR)
long antedates the Balanced Scorecard, EFQM, Baldrige, or Six Sigma,
and SAS Strategic Performance Management (formerly known as
Strategic Vision) and SAS/EIS. Without an elaborate “methodology”
and special extra software, this paper will show that you can create an
excellent EPR system using only Base SAS, ODS, SAS/GRAPH, and
SAS macros, on SAS Release 8.2. Its information is delivered and
retrieved via the web and (optionally) email.

This paper evolved from prior development work spanning fifteen years
(References 1-6). That work began with the software-intelligent
implementation of a communication-effective hardcopy-only
mainframe-based EPR system. The design and construction ideas were
refined and further applied. Now, recent work on communication-
effective web design and web publishing (References 7 and 8), and on
collision-resistant trend plot annotation and various ways to deliver
trend information (Reference 9), enables update here of that earlier EPR
system with modern technology.

Distinctive Communication-Effective Design Characteristics
of This EPR System

In this paper, you will see a use of color different from the popular
“Traffic Lighting” and/or “Radio Dials”, which use red vs. yellow vs.
green for Danger/Disaster/Bad vs. Caution vs. OK/Safe/Good. Since
color blindness occurs in 8-10% of American males, and the commonest
type of color blindness cannot distinguish red from green, you can be
reliably communication-effective if you substitute, say, blue for green.
A good palette for performance signaling of Bad vs. Neutral vs. Good
with color is to use red, white (or light gray—to avoid an absence of
color if you wish), and blue. Then, to expand your range with shades of
bad and good, the natural solution is to use red, pink (light red), white
(light gray), light blue, and blue. In any case, the EPRengine macro for
this system permits you to turn color-coding off or on. All the tables and

plots actually make it easy to discover bad performance without color.
The EPR system presented here uses a simple “binary” characterization
of performance: Good or Bad, signaled (optionally) by color blue or red.

Rather than the popular table grids for SAS output engendered by now-
available ODS capabilities, the authors prefer a simple table. In Figures
1-4 and 6, the macro’s option of TableFrame=box is used, to set the
table off from the rest of the web page. It is unfortunate that the
minimum thickness table frame supported by ODS is unnecessarily
heavy. For those who like grids, the macro does support provision of a
complete grid between all the table cells. With TableGrid=YES, the
macro is able to also replace the otherwise overly thick table frame with
an appropriately thin boundary.

The system’s distinctive design for trend plots is explained below in
Section “Level 3: Trend Plots and History Tables”.

There is a very simple, and easily implemented, design principle for
communication effectiveness and efficiency, which does not require
fancy software features, or any colors whatsoever—show them what’s
important, show them only what they need/want to know. Make it
easy for users of your EPR system to stop looking when they have seen
enough. For more about the authors’ communication-oriented design
principles, see, e.g., References 8-11.

User-Selectable Hierarchical Prioritized Reporting

The system produces a three-tier report. The user can pick her/his path
through the information, based on what she/he prefers to see. The
suggested, but not required, order of presentation and use puts what’s
most important first, puts what’s also, but less, important next, in a
concise and easy to digest format, and puts the system’s most detailed
information last. Web pages are drillable, but also crosslinked via
footnote hyperlinks and in a Table of Contents frame, for maximum
flexibility in viewing the available information.

Level 1: Exception Report (see Figures 6 & 1). When no goals are
missed and no dangerous thresholds are reached, i.e., all Performance
Standards are met, the Exception Report says that “There were No
Performance Exceptions” for the reporting month, and suggests that the
viewer “Go To Summary Report to see Actual Performance”. A very
busy or incurious viewer may not bother to look at the Summary when
everything is OK, but has the option.

For any performance criterion not achieved, the Exception Report lists:
Performance Measure (its text descriptor), Actual Performance (the
numeric measurement for the reporting month), Problem (“Greater
Than” or “Less Than”), Performance Standard (the numeric value that is
the maximum or minimum acceptable), and Change Since Previous
Month.

From here, the viewer can click on any Performance Measure to see the
trend plot and detail history table for the number of months specified for
the system as displayable history.
The retained history in the performance measurement database may, of
course, be far longer than the reported history. Alternatively, the viewer
can link to either the Exception History Report (all exceptions from the
displayable history), or the Summary Report of all performance
measures for the Reporting Month. See Figure 4 for the Exception
History Report.

SUGI 28 Posters

2

Level 2: Summary Report (see Figure 2). Every enterprise
performance criterion is listed with: Performance Measure (its text
descriptor), Actual Performance (the numeric measurement for the
reporting month), Performance Standard (the comparison numeric
value), Type of Standard (“Maximum” or “Minimum”), and Change
Since Previous Month. From here, the viewer can click on any
Performance Measure to see its trend plot and detail table for the
history. Alternatively, the viewer can link to either the Exception
History Report, or back to the Exception Report.

Level 3: Trend Plots and History Tables (see Figure 3). A click on the
description of a performance measure, in either the Exception Report or
the Summary Report, takes you to the composite trend plot and history
table for that measurement. The trend plots are designed to focus on
starting value, ending value, maximum value, and minimum value.
Those values are annotated, for absolute precision and easy discovery.
There are no vertical axis tick marks and values. The precise value of
every plot point is available and printable in the history table, and is also
temporarily viewable as flyover text by resting the mouse on the plot
point. Assessment of good vs. bad performance is immediate, since the
trend plot is supplemented with the Performance Standard as a reference
line. The viewer can link back to the either the Exception Report or the
Summary Report, or can link to any of the other Trend/History pages via
the Table of Contents. (The Table of Contents is also available when

looking at information at Levels 1 and 2, but the natural viewing route is
probably as described above.)

Getting Their Attention: Getting Them to Use the System
(See Figure 5)

You can implement an EPR passively—i.e., put the web pages out there,
and wait for the should-be-concerned persons to get motivated to take a
look at them. A more effective solution is active EPR—i.e., the optional
Email Alert facility can notify those persons that there indeed is a
problem, and delivers the Exception Report as an attached html file. The
attachment contains hyperlinks to the rest of the web pages for that
reporting month. Also, the email message text includes the URL for the
EPR system home page. Email Alert recipients, if interested, can go to
look at the other web pages.

The EPRengine Macro

The EPRengine macro is over 1100 lines of code. It is impractical to
publish and discuss it in full. The focus here will be on the options
supported by, and parameter assignment needs of, the macro. Below the
following table of macro parameter functions, you can find a sample
invocation of the macro, to illustrate typical assignable values for those
macro parameters.

Macro Parameter Function
MeasureLib SAS data library for the performance measurement data
MeasureData SAS data set for the performance measurement data
DefineLib SAS data library for definitions of the performance measurement data and standards
DefineData SAS data set for definitions of the performance measurement data and standards
WebPagePath Where to store the output web pages
EmailAlert =YES for automatic email notification when performance exceptions are detected for Report Month
EmailDistributionList Distribution List for the Email Alert message (mandatory when EmailAlert=YES)
EmailSubject Subject Text for the Email Alert message (mandatory when EmailAlert=YES)
EmailSignature Optional Signature Text to end the Email Alert message
WebPageTitle1Text Optional custom first title line for all the web pages (can be overridden for home page)
HomePageTitle1Text Optional custom override for the first title line for the home page
BrowserWindowTitleBarText Optional custom text that appears in the title bar at top of the browser window
Xpixels Ypixels Horizontal and vertical dimensions (in pixels) for the Trend Plot graphic area
PlotTitleFootnoteFont Font name for Trend Plot titles and footnotes
PlotTitleFootnoteSize Font size for Trend Plot titles and footnotes
AnnotateFont Font name for annotation of Trend Plot points, and for Trend Plot horizontal axis tick mark text
AnnotateSize Font size for annotation of Trend Plot points, and for Trend Plot horizontal axis tick mark text
UseColorToDescribePerf =YES to color code the cell background of Table column that contains the performance measurements
GoodPerfRGBcolor Cell background color for Table data if performance standard is met (ignored if UseColor=NO)
BadPerfRGBcolor Cell background color for Table data if performance standard is not met (ignored if UseColor=NO)
WebPageBackgroundRGBcolor Background color for all web pages
ReplaceMacroODSstyleWith Optionally use your own custom ODS style, or one supplied with ODS by SAS Institute
TableTitleFootnoteFont Font name for Table titles and footnotes
TableTitleFootnoteSize Font size for Table titles and footnotes
TableHeadingFont Font name for Table column headings
TableHeadingSize Font size for Table column headings
TableDataFont Font name for Table data
TableDataSize Font size for Table data
TableFrame Turn on (=box, the authors’ recommendation) or turn off (=void) frame around Tables
TableFrameRGBcolor Color of Table Frame (if present), or of Table Grid (if present)
TableGrid Turn off (=NO, the authors’ preference) or turn on (=YES) grid between Table data cells
TableCellPadding Space between Table data and Table cell boundaries
TOCwidthPercentOfWebPage Percent of Web Page Window allocated to Table of Contents

SUGI 28 Posters

3

How to Invoke the EPRengine Macro

The code below produces the web pages and email message in Figures
1-5, using demonstration data.

* %let RunDate = today(); /* this could be your default assignment, to
select data through the month previous to the month of today */

%let RunDate = %sysfunc(mdy(5,1,2003)); /* forces data selection
through April 2003, for as many months as specified by
NumberOfMonths= in macro below */

%EPRengine(

HomePageTitle1Text=
%str(Enterprise Performance Reporting System Demo),

WebPageTitle1Text=,

BrowserWindowTitleBarText=
%str(Enterprise Retail Performance System Demo),

NumberOfMonths = 13,

MeasureLib = c:\epr,

MeasureData = DemoData,

DefineLib = c:\epr,

DefineData = PerformanceCriteria,

WebPagePath = c:\epr\DemoWebPage,

EmailAlert = YES, /* the macro default is NO */

EmailDistList = %str(%"bessler@execpc.com%" %"frc@unipg.it%"),
/* Any number of email addresses is permissible, but each address in the
list above must be inside a pair of %" (percent sign and double quote) */

EmailSubject = %str(Enterprise Retail Performance Exceptions),

EmailSignature = %str(LeRoy Bessler),

UseColorToDescribePerf = YES,
/* if NO, then Good & Bad PerfRGB colors are ignored */

GoodPerfRGBcolor = CXCCCCFF, /* lightest Browser-Safe blue */

BadPerfRGBcolor = CXFFCCCC, /* lightest Browser-Safe red */

Xpixels=563,
Ypixels=185,

PlotTitleFootnoteFont = 'Georgia', /* used by SAS/GRAPH,
you must put font name in quotes if not a SAS software font */

PlotTitleFootnoteSize = 14 pt,
/* you can also use cells or PCT, instead */

AnnotateFont = 'Verdana', /* used by SAS/GRAPH,
you must put font name in quotes if not a SAS software font */

AnnotateSize = 1.00, /* this size is in cells, by default */

WebPageBackgroundRGBcolor = CXFFFFCC,
/* lightest Browser-Safe yellow */

ReplaceMacroODSstyleWith=,
/* You may leave this unassigned. If you assign an ODS style to
override the one built for you in the macro, then all parameters below

are ignored, BUT you must assign WebPageBackgroundRGBcolor to
same color your style uses. If you do not, then people will see
unexpected apparitions in your web pages. */

TableFrameRGBcolor = CX9999FF,
/* light (not the lightest) Browser-Safe blue */

TableGrid = NO,

TableTitleFootnoteFont = Georgia,
/* do not use quotes, must be a Windows or Unix font */

TitleFootnoteSize = 3, /* this is an html font size */

TableHeadingFont = Georgia,
/* do not use quotes, must be a Windows or Unix font */

TableHeadingSize = 1, /* this is an html font size */

TableDataFont = Verdana,
/* do not use quotes, must be a Windows or Unix font */

TableDataSize = 1, /* this is an html font size */

TOCwidthPercentOfWebPage = 26)
/* widened to prevent line breaks in Table of Contents */

run;

Usage Notes for the EPRengine Macro

The possible html font sizes are 1, 2, 3, 4, 5, 6, and 7. At the viewing
web browser, they are mapped to seven different point sizes. The web
browser has five different ensembles of seven point sizes. The viewer
selects one of the five ensembles by clicking View, then Text Size. The
choices presented are: Largest, Larger, Medium (the default), Smaller,
And Smallest.

The “lightest colors” selected above may appear washed out on the LED
screen of a laptop computer, and worse if displayed with an LED
projector. They can be darkened by changing each “C” in the CX color
code suffix to “9”, or (darker) “6”.

In all cases, Browser-Safe colors are specified above. Their use
guarantees that all web users will see the same color (within the limits of
hardware variance), and will see the color that the web page creator saw
and intended them to see. For more information about Browser-Safe
RGB colors, and RGB color sample charts, please see Reference 11.

Georgia (a serif font, well suited for big characters) and Verdana (a sans
serif font, better suited for small characters) were designed for
readability on the web. They are the authors’ recommended fonts for
developing web pages on Windows.

EPR System Requirements for Its Software-Intelligent Operation

The MeasureData SAS data set must contain each of the variables
defined with the code in the following Section, “How To Define
Performance Variables and Standards for the EPRengine Macro”. For
each performance measurement variable, you must provide:
(a) the SAS name of the performance measurement variable
(b) a text description for that variable (used as the row label when the
performance measurement value is listed in a table, and used as the title
for the trend plot of the performance measurement values);
(c) the numeric value of the performance standard for that variable;
(d) a text string to identify the standard as Maximum or Minimum
acceptable for the variable; and
(e) the SAS output format to be used to display the values of the
measurement variable and its performance standard.

SUGI 28 Posters

4

The key to each observation in MeasureData must be the variable
PerfYYYYMM, a six-character variable, with values that are the
concatenation of four-digit year and two-digit month number, where the
month number must contain a leading zero where appropriate.

At every run time, the EPRengine macro creates freshly customized
code, to serve the then-current needs of the application. This use of
Software Intelligence maintains a firewall around the always-reusable
logic of the system, ensuring reliability, but supports absolute
extendability and easy maintainability via the DefineData SAS data set.

How To Define Performance Variables and Standards for
EPRengine

Upon establishment of the MeasureData SAS data set in the MeasureLib
SAS data library, the EPR system administrator needs to run, only one
time, a simple SAS DATA Step like that shown below. Whenever there
are additions, changes, or deletions to the performance measurement
variables and their standards, the code below needs to be revised and
rerun.

libname Define 'c:\epr'; /* Or the name of your folder */

data Define.PerformanceCriteria;
label PerfDesc = 'Performance Measure'; /* Do not change */
label PerfVar = 'Performance Variable'; /* Do not change */
label PerfStd = 'Performance Standard'; /* Do not change */
label PerfStdType = 'Type of_Standard'; /* Do not change */
length PerfDesc $ 50; /* Do not change */
length PerfVar $ 50; /* Do not change */
length PerfStd 8; /* Do not change */
length PerfStdType $ 7; /* Do not change */
length PerfStdFormat $ 40; /* Do not change */

 /* Start definition of New Performance Criterion */
 /* Use UNcommented blocks of the next six statements, with similar
format and content, for as many new Performance Variables and
Standards as you need to add. */
* PerfDesc = 'Example Performance Measure That Could Be Added';
 /* Specify your PerfVar Description above */
* PerfVar = 'VarForFutureUse';
 /* Specify your PerfVar Name above */
* PerfStd = 1000;
 /* Insert value for your Performance Standard above */
* PerfStdType = 'Minimum';
 /* Is your PerfStd a Min or a Max? */
* PerfStdFormat = 'COMMA6.';
 /* Specify a numeric format above appropriate for PerfVar, adding an
extra position to its width, to allow space for a minus sign in the
Performance Change value which is computed by EPRengine and is
displayed using this same format. */
* output;
 /* End definition of New Performance Criterion */

 /* 18 statements below are for the Demo Data. For example only. You
would omit them when using your own real data. */
PerfDesc = 'Sales';
PerfVar = 'Sales';
PerfStd = 50000;
PerfStdType = 'Minimum';
PerfStdFormat = 'COMMA11.';
output;
PerfDesc = 'Sales As a Percent of Inventory';
PerfVar = 'SalesPctOf_Inventory';
PerfStd = 25.0;
PerfStdType = 'Minimum';
PerfStdFormat = '6.1';
output;
PerfDesc = 'Returns As a Percent of Sales';
PerfVar = 'Returns_PctOfSales';
PerfStd = 4.00;
PerfStdType = 'Maximum';

PerfStdFormat = '6.2';
output;
 /* 18 statements above are for the Demo Data. For example only. You
would omit them when using your own real data. */
run;

Example of the EPRengine Macro’s
Software-Intelligent Application Construction and Operation

From a run of EPRengine, below are: (a) code that builds a dynamically
customized SAS format; and (b) code used in PROC PRINT to supply
the clickable hyperlinks in the Performance Measure descriptor column
for the Exception Report. This is not the code in the macro, but instead
the MPRINT output in the SAS log. It shows the result of resolving all
the dynamic internal macro variables (symbolic variables that are not
statically specified by the macro invocation parameters).

data toformat;
length start $ 50 bodyname $ 24 label $ 89;
retain fmtname '$lnk';
start = "Sales";
bodyname = "PerfPlotAndTable1.html";
label = '' | | "Sales" | | '';
output;
start = "Sales As a Percent of Inventory";
bodyname = "PerfPlotAndTable2.html";
label = '' | |
 "Sales As a Percent of Inventory" | | '';
output;
start = "Returns As a Percent of Sales";
bodyname = "PerfPlotAndTable3.html";
label = ' ' | |
 "Returns As a Percent of Sales" | | '';
output;
run;
proc format cntlin=toformat;
run;
proc print noobs split='_'
 data=Exceptions(where=(PerfYYYYMM eq "200304"));
var PerfDesc PerfActual PerfVariance PerfStandard;
format PerfDesc $lnk.;
run;

Below is the macro source code, before being executed and resolved as
above. The value of &PerfCount is established by predecessor
processing which discovers the number of performance measurement
variables in MeasureData by analysis of DefineData, and which also
establishes, likewise by analysis of DefineData, the values of the various
&&PerfDesc&i performance measure descriptors (there are &PerfCount
of such descriptors).

data toformat;
length start $ 50 bodyname $ 24 label $ 89;
retain fmtname '$lnk';
%do i = 1 %to &PerfCount;
start = "&&PerfDesc&i";
bodyname = "PerfPlotAndTable&i..html";
label = '' | | "&&PerfDesc&i" | |
'';
output;
%end;
run;

Letting the application itself discover the &PerfCount and the
&&PerfDesc&i descriptors at run time, is an example of the Software-
Intelligent construction and operation of the EPR application. The
system administrator merely needs to define the performance measures
and standards in DefineData—which is outside the EPR system logic.
EPR system logic adapts to what it finds—any number of performance
variables, and whatever their descriptions, standards, and formats may
be. There is no “hard coding”. The reporting machinery is built in
EPRengine, once and for all, when the macro source is coded.

SUGI 28 Posters

5

Special Implementation Considerations

Unix Fonts. If using Unix fonts, instead of SAS/GRAPH software fonts,
for PlotTitleFootnoteFont and AnnotateFont, to build the web pages, it
may be necessary to execute the EPRengine macro directly on a Unix
server, or on a Unix terminal. The authors found it impossible to get text
to display for the Trend Plot in the web pages when executing the macro
on a Unix server when using a PC with a particular Unix terminal
emulator. Some other emulators may work OK. To get a list of valid
Unix System fonts for your environment, use Unix command:
 “XSLFONTS > YourChoiceOfFileName.txt”.
In the .txt file, you will find both the full names, and the short names.

Email Alert Facility. This facility was validated on a Windows PC.
The email message was successfully picked up by Microsoft Outlook,
which forwarded it to the email addresses in the distribution list. If
running the macro in an environment where you want the email message
picked up directly by an email server, there are different implementation
requirements. The Email Alert facility was not tested with Unix due to
email infrastructure constraints at the Unix test site.

Future Development Possibilities

Detail Reports to Explain/Understand Summary Measurements.
Performance measures in an EPR system are often the summary of
detail data. The system already supports drill-down to trend-plot-with-
history-table web pages from row labels of the Exception and Summary
tables. It would be possible to also implement drill-down to detail, from
a data cell in the Exceptions table or Summary table, or, to get to an
earlier reporting month, from a data cell in the history table below a
trend plot, or in the Exception History table. Such drill-down could link
to, e.g., Subsetting Ranking Reports, either tabular or graphic, such as
have been developed in Reference 5.

Summary Reports for Prior Reporting Periods. There are no
hyperlinks to Summary tables for prior reporting months. That can be
implemented by filing off the Summary web page each reporting month,
with the reporting month coded into the file name. The files could be
linked to individually, and/or as a collection of individual selections
packaged in a Table of Contents frame that is itself a selection on the
main Table of Contents.

Other Time Cycle Reporting. This edition of EPRengine is designed
for monthly data. By recoding some internals, the EPRengine macro
could be adapted to report performance measurement data that is daily,
weekly, quarterly, or yearly.

Expanded Performance Characterization. EPRengine could be
altered to support Good vs. Caution vs. Bad characterization of the
performance measures. Internal logic would change, and three-color
support would be added. The DefineData SAS data set would require
inclusion of a secondary Performance Standard, for the Caution
category.

Conclusion

A tour through web pages that can be deployed with EPRengine,
supplemented/motivated by its Email Alert option, is up to the task of
informing any concerned person, quickly and clearly, as to the status of
Enterprise Performance. EPRengine uses Base SAS, ODS, and the
macro facility—tools already available at every SAS software site. Need
for SAS/GRAPH is unlikely to be a required new acquisition for most
SAS sites, since it’s probably the second most frequently installed SAS
software component. The authors invite your suggestions, comments,
and questions.

Notices

SAS and SAS/GRAPH are trademarks or registered trademarks of SAS
Institute Inc. in the USA and other countries. ® denotes USA
registration. All other brand names are trademarks or registered
trademarks of their respective owners.

Author Contact Information

Your comments and questions are valued and encouraged.

Francesca Pierri, Ph.D.
Università degli Studi di Perugia – C.A.S.I.
Via G. Duranti 1/A, S. Lucia Canetola
06125 Perugia, Italy
Phone: frc@unipg.it
Email: 011 39 075 585 3794

LeRoy Bessler, Ph.D.
Bessler Consulting & Research
PO Box 96
Milwaukee, WI 53201-0096, USA
Phone: 1 414 351 6748
Email: bessler@execpc.com

Related Work by the Authors

1. LeR. Bessler, “Automated Hardcopy Publishing of Integrated
Graphic, Tabular, and Textual Reports”, Miller Brewing Company
Internal Presentation, October 1987.
2. LeR. Bessler, “Intelligent Production Graphic Reporting
Applications”, Proceedings of the Sixteenth Annual SAS Users Group
International Conference, SAS Institute Inc., Cary, NC, 1991.
3. LeR. Bessler, “Effective and Efficient Information Delivery for
Executive Management”, Proceedings of the Seventeenth Annual SAS
Users Group International Conference, SAS Institute Inc., Cary, NC,
1992.
4. LeR. Bessler, “Software Intelligence: Applications That Customize
Themselves”, Proceedings of the Eighteenth Annual SAS Users Group
International Conference, SAS Institute Inc., Cary, NC, 1993.
5. LeR. Bessler, “Show Them What’s Important: Solutions for a Finite
Work Day in an Era of Information Overload”, Proceedings of the
Eighteenth Annual SAS European Users Group International
Conference, Dublin, Ireland, SAS Institute Inc., 2000.
6. LeR. Bessler, “Communication-Effective and -Efficient Enterprise
Performance Reporting”, Proceedings of the 2001 VIEWS United
Kingdom Independent SAS Users Group Conference, London, England,
2001.
7. F. Pierri, “Your Graphs on the Web with SAS/GRAPH Version 8”,
Proceedings of the Twenty-Sixth Annual SAS Users Group
International Conference, SAS Institute Inc., Cary, NC, 2001.
8. F. Pierri and LeR. Bessler, “Show Your Graphs and Tables at Their
Best on the Web with ODS”, Proceedings of the Twenty-Seventh
Annual SAS Users Group International Conference, SAS Institute Inc.,
Cary, NC, 2002.
9. LeR. Bessler and F. Pierri, “%TREND: A Macro to Produce
Maximally Informative Trend Charts with SAS/GRAPH, SAS, and ODS
for the Web or Hardcopy”, Proceedings of the Twenty-Seventh Annual
SAS Users Group International Conference, SAS Institute Inc., Cary,
NC, 2002.
10. LeR. Bessler, “Web Communication Effectiveness: Design and
Methods to Get the Best Out of ODS, SAS, and SAS/GRAPH”,
elsewhere in these SUGI 28 Proceedings.
11. LeR. Bessler, “The Power of Pictures and Paint: Using Image Files
and Color with ODS, SAS, and SAS/GRAPH”, elsewhere in these SUGI
28 Proceedings.

SUGI 28 Posters

6

Figure 1. Home Page / Exception Report

Figure 2. Trend Plot and Table

SUGI 28 Posters

7

Figure 3. Summary Report

Figure 4. Exception History Report

SUGI 28 Posters

8

Figure 5. Email Alert Message

Figure 6. Home Page / Exception Report—when there are No Exceptions

SUGI 28 Posters

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

