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ABSTRACT 
 
Delivering information to our clients is our only real goal.  
To achieve this goal, we generate data listings, create 
summaries, and report on statistical analyses.  Most of 
this information is usually presented in tabular form.  To 
accomplish this, we first design table templates in 
Microsoft Excel and then fill them with data from the SAS 
system.   This combined approach gives us the power of 
the SAS system for data manipulation and management 
and the formatting capability of Microsoft Excel for 
presentation.  For our clients it produces tables that are 
more attractive and allows them to ‘play’ with the data.  
To populate the tables, we use the dynamic data 
exchange (DDE) capabilities of the SAS language.  
Coupling DDE with macro programming, we are able to 
automate the process and readily revise tables if 
necessary.   In the following, we will describe the table 
creation process from the template design to the data 
filling.   In particular, we will detail a macro program that 
can readily be modified to fill almost any spreadsheet 
table, however convoluted. 
 
 
INTRODUCTION 
 
As a small statistical consulting firm in western New York, 
we analyze data supplied by laboratories and gathered in 
clinical studies on a variety of consumer and medical 
products.  From these efforts, our clients expect detailed 
reports.  A major part of these reports is summary tables 
and listings of the study data.    The output of PROC 
TABULATE and PROC REPORT may produce most of 
the information that we need but it does not have the 
desired visual appearance.  Furthermore, some of our 
clients occasionally want to ‘play’ with the data in the 
tables.   Both of these problems can be solved by 
creating the tables in an Excel spreadsheet.   Using the 
dynamic data exchange (DDE) abilities of the SAS 
system, we can readily transfer data from our SAS 
database into our spreadsheet tables. 
 
 
QUICK DDE TUTORIAL 
 
Dynamic data exchange (DDE) is a method of 
transferring data between Microsoft Windows programs.   
Implementation of this protocol between Excel and the 
SAS system is straightforward, being accomplished with 
FILENAME and PUT statements.  First, we write the 
FILENAME linking us to Excel: 
 
filename spread

dde ‘Excel|Sheet1! r8c1:r18c9’ notab;

 

This creates a file reference called ‘spread’ for use by a 
DATA step.   The file reference spread is linked by ‘dde’ 
(the third term on the line) to the program specified in the 
quotes.    The first term in the quotes tells us that we are 
linking to ‘Excel’ and the term between the vertical bar 
and the exclamation mark indicates that the particular 
spreadsheet that we are linking to is ‘Sheet1’ (the name 
of the tab in Excel).   The final term in the quotes is just a 
row and column specification.  In our example, we are 
linking the file reference spread to the area of the 
spreadsheet with the upper right corner at row 8, column 
1 and the lower left corner at row 18, column 9.   It should 
be noted that to establish this link, the spreadsheet must 
be open at the time of execution of the SAS program.  To 
write to this spreadsheet we would simply use a DATA 
step with PUT statements: 
 

data _null_ ;
set one;
file spread;
dlm=’09’x;
put vara dlm +(-1)

varb dlm +(-1) dlm +(-1)
varc ;

run;

The variable ‘dlm’ contains the hexadecimal code for a 
tab, and instructs the PUT statement to move the output 
to the next column.  The +(-1) is a carriage control used 
to deal with an idiosyncrasy of the SAS language: a PUT 
statement inserts a space automatically between 
variables and the +(-1) does away with this space.  This 
DATA step coupled with the FILENAME written above will 
insert the content of variable ‘vara’ into column 1, ‘varb’ 
into column2, and ‘varc’ into column 4.  This is all there is 
for writing SAS data to and Excel spreadsheet.   You can 
also use the SAS system and DDE to input the content of 
a spreadsheet and control the spreadsheet appearance, 
but that is beyond the scope of this paper.  An excellent 
tutorial for this process was previously given by 
Vyverman (2001). 
 
 
TABLE DESIGN 
 
The first step in creating a report table is to come up with 
the actual layout that is desired in the final report.  A 
mock-up of the actually table is usually created by our 
administrative staff and then sent to the client for 
approval.  Where data should appear in the table, x’s are 
inserted with the proper formatting.   Our clients are very 
pleased with this process because it gives them a view of 
the actual report before it is written, and allows them to 
make changes upfront even before the actual data may 
be available.   This report template also serves as a 
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perfect programmer guide: the data that the programmer 
needs is what fills the table! 
 
For most requests, the templates created are simple 
matrices of numbers that can easily be filled with the SAS 
system.  Only one FILENAME statement is used to refer 
to the spreadsheet area that the table data will occupy 
and a series of PUT statements in a DATA step will fill the 
table, such as the above program example illustrated.  In 
fact, this whole process can be readily automated via a 
SAS macro program.  The code for such a program 
would be nearly identical as that for dumping a SAS data 
set into a spreadsheet (Murphy, 1999).   However, every 
so often we are given a template that has no particular 
resemblance to what is normally thought of as a table.   It 
appears to be a random distribution of numbers with 
words interleaving.    For some reason the client wants 
the information this way and the client is always right.  
For example, some clients actually like a demographic 
table like that illustrated by the template spreadsheet in 
Figure 1. 
 

 
 
Figure 1.  Sample spreadsheet template for demographic 
data. 
 
 
To fill such a table template with data, you would have to 
specify a FILENAME for each cell containing information 
and write a separate DATA step to output the data there.  
On the other hand, you could automate the process with 
a SAS macro program! 
 
 
DATA SET STRUCTURE 
 
To construct an automation process, we will assume that 
we have a data set that contains two variables.   The first 
variable will be called ‘cell’ and would contain a row and 
column specification.  The second variable will be called 
‘value’ and would contain the information that we wanted 
to write to the Excel spreadsheet row and column position 
specified by ‘cell’.   A sample of such a data set could be 
constructed with a DATALINES statement in a DATA 
step: 
 

data one;

infile datalines missover;
input cell $ value ;
datalines;

r6c6 18
r6c8 59
r6c11 31.1
r6c14 51
r8c4 27
r8c10 24
r8c16 1.12
r10c3 60
r11c3 75
r12c11 110
r12c13 280

;
run;

 
Depending on our needs, this data set may be generated 
a little more automatically than using a DATALINES 
statement.  For instance, the content of the desired 
variables could be directly assigned to the variable 
‘value’.  A format could be created to link the desired 
variable name to a row and column position.  A PUT 
statement could transfer this position information into the 
variable ‘cell’. 
 
 
AUTOMATION 
 
Once we have the data set, we are ready to construct a 
macro to write our information to an Excel spreadsheet. 
 
First, we need to know how many cells we are writing.  
This is the same as the number of observations in our 
data set.  We can easily obtain this information using 
SAS Component Language (SCL) and %SYSFUNC.  
SCL is a group of SAS DATA step commands that allows 
you to access information about your data set.  
%SYSFUNC is a macro function that allows you to 
access commands that are not normally available to the 
macro processor.   To get the number of cells we write 
 

%let idData=%sysfunc(open(&data));
%let nCell=

%sysfunc(attrn(&idData,NOBS));
 
The first line uses the SCL function OPEN to open the 
data set &data and assign it an identifier number that will 
be stored in &idData.  The second line employs the SCL 
function ATTRN to determine the number of observations 
in the data set and stores that value in &nCell. 
 
Once we have the number of cells to be filled, we then 
need the cell positions and values from the data set.  We 
could obtain these variables by using a DATA _NULL_ 
step, followed by CALL SYMPUT to store the variable 
values into macro variables (Murphy, 2002).  This would 
involve the creation of two macro variables for each cell 
to be written.  Alternately, we could continue to use SCL 
and %SYSFUNC to read the variables we need directly 
from the data set into our macro. 
 
To use the latter method, we must obtain the number that 
the SAS system assigns to the data set variables ‘cell’ 
and ‘value’: 
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%let numCell=

%sysfunc(varnum(&idData,CELL));
%let numValue=

%sysfunc(varnum(&idData,VALUE));

where we employ the SCL function VARNUM to find the 
variable number.  Then we determine the variable type of 
‘value’ (i.e. Character or Numeric): 
 
%let typeValue=

%sysfunc(vartype(&idData,&numValue));

Here we employ the SCL function VARTYPE.  Next a 
macro %do loop is constructed that cycles through all of 
the cells to be filled.  The first statement in the loop uses 
the SCL function FETCHOBS to load the appropriate 
data set observation, designated by the loop index &i: 
 
%let rcObs=%sysfunc(fetchobs(&idData,&i));

Now we are ready to obtain the cell position and content 
from the variables ‘cell’ and ‘value’ and save the 
information into macro variables: 
 
%let Cell=

%sysfunc(getvarc(&idData,&numCell));
%if &typeValue=N %then

%let Value=
%sysfunc(getvarn(&idData,&numValue));

%else
%let Value=
%sysfunc(getvarc(&idData,&numValue));

 
where the first line uses the function GETVARC to read 
the value of variable number &numCell (i.e. the data set 
variable ‘cell’) and stores it in the macro variable &Cell.  
Next, using the previously determined type, &typeValue, 
we use the appropriate function, either GETVARN for 
numeric or GETVARC for character, to read the value of 
the variable number &numValue (i.e. the data set variable 
‘value’) and store it in the macro variable &Value. 
 
 
In the final section of our macro loop, the FILENAME 
statement links the SAS system to an Excel spreadsheet: 
 
filename spread dde

"excel|Template!&Cell " notab;
 
where the spreadsheet name ‘Template’ is our in-house 
standard name for the pre-designed spreadsheet tables.  
Double quotes are needed in order that the macro 
variable &Cell resolves to the proper value. 
 
Finally, we write our data to the particular cell referenced 
in the FILENAME statement: 
 

data _null_;
file spread;
put "&Value";
stop;
run;

 

where we use a DATA _NULL_ step since we do not wish 
to create an output data set.  Therefore, within the loop, 
the program writes the content of &Value to the cell in the 
spreadsheet designated by &Cell.  The next cycle of the 
loop performs the same function for the second 
observation in our data set.  This keeps repeating until 
the final cell, is filled using the information in the last 
observation of our data set. 
 
 
PUTTING IT ALL TOGETHER 
 
Once this macro program is written, we can readily fill in 
the template given in Figure 1.   We simply evoke the 
macro 
 
    %FillIt(data=one); 
 
where we employ the sample data set one that was 
previously defined.   The result is illustrated in Figure 2. 
 

 
 
Figure 2.  Spreadsheet template filled with macro 
program. 
 
A complete listing of the macro described here can be 
found in the appendix. 
 
 
CONCLUSION 
 
Table templates designed in an Excel spreadsheet give a 
clear visual representation of the report to the client even 
before the study data is available.  Once the 
programming is started, the templates provide a clear list 
of the needed numbers to the programmers.   Filling 
these templates can easily be accomplished using DDE.   
Even unusual templates that involve data inserted in 
diverse spreadsheet cells can readily be filled using a 
simple macro routine. 
 
 
APPENDIX 
 
The following is a complete listing of the macro discussed 
in this paper: 
 
%macro FillIt(data=);
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%*** Declare Macro Variables Local ***;
%local idDate nCell numCell numValue i

rcObs Cell Value;

%***** Open The Data Set *****;
%let idData=%sysfunc(open(&data));

%*** Number of Cells to be Filled ***;
%let nCell=

%sysfunc(attrn(&idData,NOBS));

%***** Get the Variable Numbers for
CELL and VALUE *****;

%let numCell=
%sysfunc(varnum(&idData,CELL));

%let numValue=
%sysfunc(varnum(&idData,VALUE));

%***** Is VALUE Numeric or Character?
*****;

%let typeValue=
%sysfunc(vartype(&idData,&numValue));

%***** Loop Over All Cells to be
Written *****;

%do i=1 %to &nCell;

%***** Load the Selected
Observation (Row) *****;

%let rcObs=
%sysfunc(fetchobs(&idData,&i));

%***** Get the Value of CELL and
VALUE from the Data Set *****;

%let Cell=
%sysfunc(getvarc(&idData,&numCell));

%if &typeValue=N %then
%let Value=

%sysfunc(getvarn(&idData,&numValue));
%else

%let Value=
%sysfunc(getvarc(&idData,&numValue));

%*** Setup DDE Link ***;
filename spread dde

"excel|Template!&Cell" notab;

%*** Output to Excel ***;
data _null_;

file spread;
put "&Value";
stop;
run;

%end;

%***** Close Data Set *****;
%let idData=%sysfunc(close(&idData));

%*** CleanUp ***;
filename spread clear;

%mend;
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