
 1

Paper 217-28

Filling Report Templates with the SAS® System and DDE

William C. Murphy
Howard M. Proskin & Associates, Inc., Rochester, NY

ABSTRACT

Delivering information to our clients is our only real goal.
To achieve this goal, we generate data listings, create
summaries, and report on statistical analyses. Most of
this information is usually presented in tabular form. To
accomplish this, we first design table templates in
Microsoft Excel and then fill them with data from the SAS
system. This combined approach gives us the power of
the SAS system for data manipulation and management
and the formatting capability of Microsoft Excel for
presentation. For our clients it produces tables that are
more attractive and allows them to ‘play’ with the data.
To populate the tables, we use the dynamic data
exchange (DDE) capabilities of the SAS language.
Coupling DDE with macro programming, we are able to
automate the process and readily revise tables if
necessary. In the following, we will describe the table
creation process from the template design to the data
filling. In particular, we will detail a macro program that
can readily be modified to fill almost any spreadsheet
table, however convoluted.

INTRODUCTION

As a small statistical consulting firm in western New York,
we analyze data supplied by laboratories and gathered in
clinical studies on a variety of consumer and medical
products. From these efforts, our clients expect detailed
reports. A major part of these reports is summary tables
and listings of the study data. The output of PROC
TABULATE and PROC REPORT may produce most of
the information that we need but it does not have the
desired visual appearance. Furthermore, some of our
clients occasionally want to ‘play’ with the data in the
tables. Both of these problems can be solved by
creating the tables in an Excel spreadsheet. Using the
dynamic data exchange (DDE) abilities of the SAS
system, we can readily transfer data from our SAS
database into our spreadsheet tables.

QUICK DDE TUTORIAL

Dynamic data exchange (DDE) is a method of
transferring data between Microsoft Windows programs.
Implementation of this protocol between Excel and the
SAS system is straightforward, being accomplished with
FILENAME and PUT statements. First, we write the
FILENAME linking us to Excel:

filename spread

dde ‘Excel|Sheet1! r8c1:r18c9’ notab;

This creates a file reference called ‘spread’ for use by a
DATA step. The file reference spread is linked by ‘dde’
(the third term on the line) to the program specified in the
quotes. The first term in the quotes tells us that we are
linking to ‘Excel’ and the term between the vertical bar
and the exclamation mark indicates that the particular
spreadsheet that we are linking to is ‘Sheet1’ (the name
of the tab in Excel). The final term in the quotes is just a
row and column specification. In our example, we are
linking the file reference spread to the area of the
spreadsheet with the upper right corner at row 8, column
1 and the lower left corner at row 18, column 9. It should
be noted that to establish this link, the spreadsheet must
be open at the time of execution of the SAS program. To
write to this spreadsheet we would simply use a DATA
step with PUT statements:

data _null_ ;
set one;
file spread;
dlm=’09’x;
put vara dlm +(-1)

varb dlm +(-1) dlm +(-1)
varc ;

run;

The variable ‘dlm’ contains the hexadecimal code for a
tab, and instructs the PUT statement to move the output
to the next column. The +(-1) is a carriage control used
to deal with an idiosyncrasy of the SAS language: a PUT
statement inserts a space automatically between
variables and the +(-1) does away with this space. This
DATA step coupled with the FILENAME written above will
insert the content of variable ‘vara’ into column 1, ‘varb’
into column2, and ‘varc’ into column 4. This is all there is
for writing SAS data to and Excel spreadsheet. You can
also use the SAS system and DDE to input the content of
a spreadsheet and control the spreadsheet appearance,
but that is beyond the scope of this paper. An excellent
tutorial for this process was previously given by
Vyverman (2001).

TABLE DESIGN

The first step in creating a report table is to come up with
the actual layout that is desired in the final report. A
mock-up of the actually table is usually created by our
administrative staff and then sent to the client for
approval. Where data should appear in the table, x’s are
inserted with the proper formatting. Our clients are very
pleased with this process because it gives them a view of
the actual report before it is written, and allows them to
make changes upfront even before the actual data may
be available. This report template also serves as a

SUGI 28 Posters

 2

perfect programmer guide: the data that the programmer
needs is what fills the table!

For most requests, the templates created are simple
matrices of numbers that can easily be filled with the SAS
system. Only one FILENAME statement is used to refer
to the spreadsheet area that the table data will occupy
and a series of PUT statements in a DATA step will fill the
table, such as the above program example illustrated. In
fact, this whole process can be readily automated via a
SAS macro program. The code for such a program
would be nearly identical as that for dumping a SAS data
set into a spreadsheet (Murphy, 1999). However, every
so often we are given a template that has no particular
resemblance to what is normally thought of as a table. It
appears to be a random distribution of numbers with
words interleaving. For some reason the client wants
the information this way and the client is always right.
For example, some clients actually like a demographic
table like that illustrated by the template spreadsheet in
Figure 1.

Figure 1. Sample spreadsheet template for demographic
data.

To fill such a table template with data, you would have to
specify a FILENAME for each cell containing information
and write a separate DATA step to output the data there.
On the other hand, you could automate the process with
a SAS macro program!

DATA SET STRUCTURE

To construct an automation process, we will assume that
we have a data set that contains two variables. The first
variable will be called ‘cell’ and would contain a row and
column specification. The second variable will be called
‘value’ and would contain the information that we wanted
to write to the Excel spreadsheet row and column position
specified by ‘cell’. A sample of such a data set could be
constructed with a DATALINES statement in a DATA
step:

data one;

infile datalines missover;
input cell $ value ;
datalines;

r6c6 18
r6c8 59
r6c11 31.1
r6c14 51
r8c4 27
r8c10 24
r8c16 1.12
r10c3 60
r11c3 75
r12c11 110
r12c13 280

;
run;

Depending on our needs, this data set may be generated
a little more automatically than using a DATALINES
statement. For instance, the content of the desired
variables could be directly assigned to the variable
‘value’. A format could be created to link the desired
variable name to a row and column position. A PUT
statement could transfer this position information into the
variable ‘cell’.

AUTOMATION

Once we have the data set, we are ready to construct a
macro to write our information to an Excel spreadsheet.

First, we need to know how many cells we are writing.
This is the same as the number of observations in our
data set. We can easily obtain this information using
SAS Component Language (SCL) and %SYSFUNC.
SCL is a group of SAS DATA step commands that allows
you to access information about your data set.
%SYSFUNC is a macro function that allows you to
access commands that are not normally available to the
macro processor. To get the number of cells we write

%let idData=%sysfunc(open(&data));
%let nCell=

%sysfunc(attrn(&idData,NOBS));

The first line uses the SCL function OPEN to open the
data set &data and assign it an identifier number that will
be stored in &idData. The second line employs the SCL
function ATTRN to determine the number of observations
in the data set and stores that value in &nCell.

Once we have the number of cells to be filled, we then
need the cell positions and values from the data set. We
could obtain these variables by using a DATA _NULL_
step, followed by CALL SYMPUT to store the variable
values into macro variables (Murphy, 2002). This would
involve the creation of two macro variables for each cell
to be written. Alternately, we could continue to use SCL
and %SYSFUNC to read the variables we need directly
from the data set into our macro.

To use the latter method, we must obtain the number that
the SAS system assigns to the data set variables ‘cell’
and ‘value’:

SUGI 28 Posters

 3

%let numCell=

%sysfunc(varnum(&idData,CELL));
%let numValue=

%sysfunc(varnum(&idData,VALUE));

where we employ the SCL function VARNUM to find the
variable number. Then we determine the variable type of
‘value’ (i.e. Character or Numeric):

%let typeValue=

%sysfunc(vartype(&idData,&numValue));

Here we employ the SCL function VARTYPE. Next a
macro %do loop is constructed that cycles through all of
the cells to be filled. The first statement in the loop uses
the SCL function FETCHOBS to load the appropriate
data set observation, designated by the loop index &i:

%let rcObs=%sysfunc(fetchobs(&idData,&i));

Now we are ready to obtain the cell position and content
from the variables ‘cell’ and ‘value’ and save the
information into macro variables:

%let Cell=

%sysfunc(getvarc(&idData,&numCell));
%if &typeValue=N %then

%let Value=
%sysfunc(getvarn(&idData,&numValue));

%else
%let Value=
%sysfunc(getvarc(&idData,&numValue));

where the first line uses the function GETVARC to read
the value of variable number &numCell (i.e. the data set
variable ‘cell’) and stores it in the macro variable &Cell.
Next, using the previously determined type, &typeValue,
we use the appropriate function, either GETVARN for
numeric or GETVARC for character, to read the value of
the variable number &numValue (i.e. the data set variable
‘value’) and store it in the macro variable &Value.

In the final section of our macro loop, the FILENAME
statement links the SAS system to an Excel spreadsheet:

filename spread dde

"excel|Template!&Cell " notab;

where the spreadsheet name ‘Template’ is our in-house
standard name for the pre-designed spreadsheet tables.
Double quotes are needed in order that the macro
variable &Cell resolves to the proper value.

Finally, we write our data to the particular cell referenced
in the FILENAME statement:

data _null_;
file spread;
put "&Value";
stop;
run;

where we use a DATA _NULL_ step since we do not wish
to create an output data set. Therefore, within the loop,
the program writes the content of &Value to the cell in the
spreadsheet designated by &Cell. The next cycle of the
loop performs the same function for the second
observation in our data set. This keeps repeating until
the final cell, is filled using the information in the last
observation of our data set.

PUTTING IT ALL TOGETHER

Once this macro program is written, we can readily fill in
the template given in Figure 1. We simply evoke the
macro

 %FillIt(data=one);

where we employ the sample data set one that was
previously defined. The result is illustrated in Figure 2.

Figure 2. Spreadsheet template filled with macro
program.

A complete listing of the macro described here can be
found in the appendix.

CONCLUSION

Table templates designed in an Excel spreadsheet give a
clear visual representation of the report to the client even
before the study data is available. Once the
programming is started, the templates provide a clear list
of the needed numbers to the programmers. Filling
these templates can easily be accomplished using DDE.
Even unusual templates that involve data inserted in
diverse spreadsheet cells can readily be filled using a
simple macro routine.

APPENDIX

The following is a complete listing of the macro discussed
in this paper:

%macro FillIt(data=);

SUGI 28 Posters

 4

%*** Declare Macro Variables Local ***;
%local idDate nCell numCell numValue i

rcObs Cell Value;

%***** Open The Data Set *****;
%let idData=%sysfunc(open(&data));

%*** Number of Cells to be Filled ***;
%let nCell=

%sysfunc(attrn(&idData,NOBS));

%***** Get the Variable Numbers for
CELL and VALUE *****;

%let numCell=
%sysfunc(varnum(&idData,CELL));

%let numValue=
%sysfunc(varnum(&idData,VALUE));

%***** Is VALUE Numeric or Character?
*****;

%let typeValue=
%sysfunc(vartype(&idData,&numValue));

%***** Loop Over All Cells to be
Written *****;

%do i=1 %to &nCell;

%***** Load the Selected
Observation (Row) *****;

%let rcObs=
%sysfunc(fetchobs(&idData,&i));

%***** Get the Value of CELL and
VALUE from the Data Set *****;

%let Cell=
%sysfunc(getvarc(&idData,&numCell));

%if &typeValue=N %then
%let Value=

%sysfunc(getvarn(&idData,&numValue));
%else

%let Value=
%sysfunc(getvarc(&idData,&numValue));

%*** Setup DDE Link ***;
filename spread dde

"excel|Template!&Cell" notab;

%*** Output to Excel ***;
data _null_;

file spread;
put "&Value";
stop;
run;

%end;

%***** Close Data Set *****;
%let idData=%sysfunc(close(&idData));

%*** CleanUp ***;
filename spread clear;

%mend;

REFERENCES

Murphy, W. C. (2000), "Everybody Wants Reports in a
Spreadsheet: A SAS Macro for Getting There ",
Proceedings of the Twenty-Fifth Annual SAS Users
Group International Conference, 25, 1163-1165.

Murphy, W. C. (2002), "Give Your Clients What They
Want” Fill Report Tables with the SAS System and
DDE", Proceedings of the Fifteenth Annual NorthEast
SAS Users Group Conference, 15, 715-717.

Vyverman, K. (2001), " Using Dynamic Data Exchange to
Export Your SAS Data to MS Excel: Against All ODS,
Part I", Proceedings of the Twenty-Sixth Annual SAS
Users Group International Conference, 26, Paper 11-26.

ACKNOWLEDGEMENTS

The author would like to thank Edith Hogan for her ever-
inventive template designs, which keep the programmers
busy.

TRADEMARKS

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered
trademarks or trademarks of their respective companies.

CONTACT

William C. Murphy
Howard M. Proskin & Associates, Inc.
2468 E. Henrietta Rd.
Rochester, NY 14623
Phone 585-359-2420
FAX 585-359-0465
Email wmurphy@hmproskin.com or
 wcmurphy@usa.net
Web www.hmproskin.com

SUGI 28 Posters

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

