
Paper 213-28
An Interactive Table for the Web Using SAS® and JavaScript

Alan Leach, Qualex Consulting Services, Inc., Norwood, OH

ABSTRACT
SAS provides a myriad of methods to produce HTML output.
Add some custom JavaScript to the mixture and one can produce
dynamic HTML reports. In this poster we demonstrate a web
based tabular report that allows the user to collapse or expand
rows of the table in order to drill into the data via a hierarchy of
class variables. The HTML and JavaScript are produced using
BASE SAS® and can be executed via a SAS/IntrNet®
application dispatcher program or in batch to produce stored
HTML pages. The JavaScript that interacts with the user makes
use of recursive functions to display or hide the child rows. It is a
simple way to produce interactive web pages from a SAS
dataset. In this poster we will explain our web report and its
functionality. We will then demonstrate the JavaScript functions
that provide the user interaction. Finally we will explain how we
use SAS DATA steps and PROCs to produce the HTML and
JavaScript for these interactive tables. We also mention how we
use cascading styles sheets to enhance the display.

INTRODUCTION
This poster will discuss an interactive web-based tabular report
created to meet a client’s reporting needs. It makes use of a
predefined path or hierarchy of class variables that allows users
to drill into lower levels. The drilling is accomplished by hiding
and showing rows of the tables using JavaScript and styles. The
report can be run as an application dispatcher program or as a
batch program to produce saved HTML pages. Either way it
provides a way to add interactivity to a simple table report using
only BASE SAS. We will first explain the table and demonstrate
it’s functionality. Next, we will explain how the functionality is
achieved using JavaScript. Finally, we will show how we used
SAS to generate the HTML and JavaScript for the report.

BACKGROUND
Using SAS with complimenting web technologies allows
developers to harness the power of the SAS and present
information to any client with a web browser making use of the
plethora of options for displaying web content.

Our client had requirements to create web-based summary
tabular reports from SAS tables similar to output from PROC
TABULATE. There are of course many options in SAS to do this.
The rub was that these tables needed to be interactive and allow
the users to drill into the data. Furthermore, for efficiency we
wanted to allow them to do this without making an additional
request from the server with each drill.

Our clients had a preset drill path or hierarchy of class variables
to display as the rows of the report with sub totals for each
hierarchy level. They also had a single class variable to display
as the across dimension.

What we came up with is a simple BASE program that creates an
HTML document with embedded JavaScript function calls. The
called JavaScript functions are simple functions that show or
hide certain rows of the table giving the illusion of expanding or
collapsing the drill paths of the table.

SAMPLE REPORT
To illustrate the report we make use of the
SASHELP.PRDSALES data supplied with SAS. We will be
interested in the total sales (variable name ACTUAL) as our

analysis variable. For the across classification we chose the
MONTH column. The rows of the table will use the following
path of class variables: COUNTRY -> REGION -> DIVISION. A
sample PROC TABULATE using ODS HTML would look like
Figure 1:

Figure 1: PROC TABULATE with ODS HTML

For our requirements we needed to initially display only the
subtotals by COUNTRY as in Figure 2. We would allow users to
expand each level of COUNTRY to examine the subtotals by
REGION.

Figure 2: Initial Report Display(right side of report has been
truncated)

After clicking on plus sign to expand the row, the report displays
as in Figure 3.

Figure 3: Table Expanded to Show Subtotals by Region

This shows the subtotals by REGION that make up the U.S.A.
total. Likewise, clicking on the next to the WEST total
expands the row even further as in Figure 4.

User clicks on to expand
row

SUGI 28 Posters

2

Figure 4: Table Expanded to Show Subtotals by Division

Here the subtotals by DIVISION are displayed. Notice that the
images next to the row labels change to indicate the state of the
row. Expanded rows can likewise be collapsed again. For
example clicking on the next to the Total U.S.A label causes
the table to collapse back to its origination state as in Figure 5:

Figure 5: Table Collapsed to Original State

EXPLANANTION OF HTML REPORT CODE

THE HTML PAGE
In this section we will describe the HTML and JavaScript that
work to achieve the effect described above. In a later section we
will describe the SAS code used to create this HTML and
JavaScript.

The table displayed in the report is simply an HTML <TABLE>
with table row (<TR>) and table cell tags (<TD>). Each <TR> tag
uses the ID attribute to uniquely identify that row of the table as
an object inside the browser window using the Document Object
Model. The ID is based on the data used to generate the table.
It is derived from the drill hierarchy requirements. For the above
report an exert from the HTML for the table would be as follows:

<TABLE>
…other rows of the tables….

<!- - The USA Total Row - - >
<TR id="R_3" noChildren=2 status="collapsed"
 style="visibility:visible”
 …other attributes…. >
 <TD> Total U.S.A.
 <! - - The little plus or minus image - - >
 <IMG src="/SUGI28/images/plus.gif" ID = "I_3"
 onClick="toggle('R_3')" >
 </TD>
 <TD> </TD>
 <TD> </TD>
 <TD > $116,296</TD>
 ……other <TD> tags for the table cells…….

 </TR>

 <!- - The EAST Subtotal Row for USA - - >
 <TR id="R_3_1" noChildren=2 status="collapsed"
 style="visibility:hidden”
 …other attributes…. >

 <TD> </TD>
 <TD> Total EAST
 <! - - The little plus or minus image - - >
 <IMG src="/SUGI28/images/plus.gif" ID = "I_3_1"
 onClick="toggle('R_3_1')" >
 </TD>
 <TD> </TD>
 <TD > $58,002</TD>
……other <TD> tags for the table cells…….
</TR>

<!- - The CONSUMER Subtotal Row for USA/EAST - - >
<TR id="R_3_1_1" noChildren=0 "
 style="visibility:hidden”

 …other attributes…. >

 <TD> </TD>
 <TD> </TD>
 <TD>CONSUMER </TD>
 <TD> ($2,750) </TD>
 ……other <TD> tags for the table cells…….
</TR>

…other rows of the tables….
</TABLE>

 Notice the USA row has the ID = R_3 – USA is the third value (
after CANADA and GERMANY) for the first class value in the
hierarchy (COUNTRY). Under USA the EAST region subtotal
row has the ID or R_3_1 – it is the first value of REGION for
USA. We say that row R_3_1 is a child row of the parent row
R_1. Similarly, row R_3_1_1 , the subtotal for
DIVISION=CONSUMER, is a child row of R_3_1.

 Notice also that we have added a couple custom attributes for
the row. Namely the noChildren attribute that indicates how many
children the row has. Also we have added a status indicator that
contains the current state of the row – ‘expanded’ or ‘collapsed’.

 The rows of the table are displayed or hidden using styles. The
style attribute of the <TR> tag indicates the initial display. For
example, row R_3_1 is initially hidden and has
style=”visibility:hidden”. Changing the style attribute for a
specific row can hide and unhide the row in the browser.

One final item to note is the image tag that is used in the
same cell as the row label. This is the little or image that
appears next to the row label. This image calls a JavaScript
function when it is clicked on. This is specified in the onClick
event for the image.

THE JAVASCRIPT FUNCTIONS
The toggle function called by the onClick event of the image in
each parent row is the main function that does the expanding and
collapsing of the table. The JavaScript code for that function is
as follows:

function toggle(thisID){
// Shows a given rows children or hides
// a row's children and grandchildren

User clicks on to collapse
row.

SUGI 28 Posters

3

 // Get the reference to the Object
 var objectID = document.getElementById(thisID) ;

 // Get its current status
 var status = objectID.status ;

 // If the row is current expanded then collapse it by
 // hiding the children .

 if (status == "expanded") {
 hideChildren (thisID) ;
 }

 // likewise we will expand a collapsed row by
 // showing its children

 else if (status == "collapsed") {
 showChildren (thisID) ;
 }
} // toggle function

Depending on the current status of the row the toggle function
either calls the showChildren or hideChildren functions. These
functions change the style visibility attribute for all the child rows.
For example the showChildren function is as follows:

function showChildren (rowID) {
// Displays all the children for given parent

 var childName ;

 // Get the Object reference for the passed Row
 var parentObject = document.getElementById (rowID) ;

 // Get the number of children for the row
 var noChildren = parentObject.noChildren ;

 // Build the name of the image associated with the row
 var imgName = "I_" + rowID.substr(2,rowID.length);

 // Get the Object reference for the image associated with the
row
 var imgObject = document.getElementById(imgName) ;

 var i ;

 // If there are no children then we are done

 if (noChildren == 0) {
 return
 }

 // Otherwise unhide each child row
 else
 {
 // For each child...

 for (i = 1; i <= noChildren ; i++)

 {

 // Build the name of the child...

 childName = rowID + "_" + i ;

 // Change the visibiltity of the child

 document.getElementById(childName).style.visibility="visible";

 }

 // Change the status of the parent to expanded
 parentObject.status = "expanded";

 // Change image to indicate the row is expanded....
 imgObject.src = "/SUGI28/images/minus.gif";

 }

} // showChildren function

In this function we make use of the consistent row IDs that we
have created to build the name of the child rows. With the
noChildren attribute and the ID of the parent row we can build the
name if each child row in succession and use that to change the
style of each child row. Note also that we change the image
associated with the parent row to the minus.gif image to indicate
that row is expanded.

When the user wants to collapse the table rows, i.e., hide the
child rows, when need a slightly different function, the
hideChildren function. Since a given row may grandchildren, i.e.
its children may have children, we also have to call this function
for the child row. In other words, the hideChildren function may
have to call itself. This is the simple elegance of recursion. The
hideChildren function is as follows:

function hideChildren (rowID) {
// Hides all the children for given parent

 var childName ;

 // Get the Object reference for the passed Row
 var parentObject = document.getElementById (rowID) ;

 // Build the name of the image associated with the row
 var imgName = "I_" + rowID.substr(2,rowID.length);

 // Get the Object reference for the image associated with the row
 var imgObject = document.getElementById(imgName) ;

 var i = 1;

 // If there are no children then we are done
 if (noChildren == 0) {
 return
 }

 // Otherwise unhide each child row

 else {

 // For each child...

 for (i = 1; i <= noChildren ; i++)

 {

 // Build the name of the child...

SUGI 28 Posters

4

 childName = rowID + "_" + i ;

 // Call the hideChildren passing the current child ID as a
 // parnet ID. This will hide all the children and grandchildren
 // for the row.

 hideChildren (childName) ;

 // Hide the current row

 hideObject (document.getElementById (childName)) ;

 }

 // Change the status of the parent to collapsed

 parentObject.status = "collapsed";

 // Change image to indicate the row is expanded....

 imgObject.src = "/SUGI28/images/plus.gif";

 }

} // hideChildren function

Typically these JavaScript functions are defined in a .js file that is
stored somewhere in a sub directory of the web server and are
referenced by a <SCRIPT> tag in the header of the HTML page (
see below).

SO WHERE DOES SAS COME IN?
The HTML Table that displays the data and contains the function
call the interact with the user is generated by SAS. Using DATA
NULL in BASE SAS the HTML code is generated from the
source data. The key part that SAS plays, apart from
summarizing the data, is in creating the ID attributes for the <TR>
tags. Using a simple PROC MEANS and DATASTEPs in SAS
we are able to dynamically generate the <TR> tags for the table
based on the data at hand.

First , we summarize the source data to the levels that we need:

/************************************/
/* Summarize the source data and */
/* output to a dataset to */
/* be used in reporting. Note */
/* the use the types statement */
/* to only provide the summary */
/* levels needed. */
/***********************************/

proc means data = sasdl.prdsale sum noprint
chartype completeypes;

 class COUNTRY REGION DIVISION MONTH;

 type COUNTRY * REGION * DIVISION * MONTH
 COUNTRY * REGION * MONTH
 COUNTRY * MONTH
 COUNTRY * REGION * DIVISION
 COUNTRY * REGION
 COUNTRY
 ;

 var actual ;

 output out = summary
 (Keep = COUNTRY REGION DIVISION

 MONTH _TYPE_ ACTUAL)
 sum (actual) = actual
 ;
run;

Within this summarization we need to count the number of child
levels or rows for each class variable. For example, within each
value of COUNTRY, we need to determine how many unique
values of REGION exist. Also, within each value of REGION we
need to know how many unique values of DIVISION exist. We
accomplish this with another PROC MEANS to do the counts.

/***/
/* Here we need to get the number of */
/* child class variable values within */
/* each parent level.For example */
/* within COUNTRY = 'GERMANY' , there */
/* are two REGIONS, 'EAST' and */
/* 'WEST'. Thus COUNTRY = 'GERMANY' */
/* has two children. */
/***/

PROC MEANS n noprint nway data = summary;
 where _TYPE_ = "1100" ;
 class COUNTRY ;
 output out = COUNTRY_COUNTS
 (keep = COUNTRY _STAT_ _FREQ_
 where = (_STAT_ = "N")
 /* All we need are the counts */
 rename = (_FREQ_ = noChildren)) ;
run;

PROC MEANS n noprint nway data = summary;
 where _TYPE_ = "1110" ;
 class COUNTRY REGION ;
 output out = REGION_COUNTS
 (keep = COUNTRY REGION _STAT_ _FREQ_
 where = (_STAT_ = "N")
 /* All we need are the counts */
 rename = (_FREQ_ = noChildren)) ;

run;

/***/
/* Merge these child counts back into */
/* data to draw the table. */
/***/

data summary ; merge summary country_counts
 (drop = _STAT_) ;
 by country ;
run;

data summary ; merge summary region_counts
 (drop = _STAT_) ;
 by country region ;
run;

(Since DIVISION is at the bottom of our hierarchy it will have no
children.)

At this point we have all the information we need to create the
report. DATA _NULL_ processing will create the opening HTML
tags as well as the <HEADER> tags that reference our
JavaScript file using a <SCRIPT> tag. We will also create the
opening <BODY> tag:

data _null_;
 file _webout ;
 put '<html>';
 put '<head>';
 put '<title>SUGI 28 </title>';
 put '<link rel="stylesheet"

SUGI 28 Posters

5

 href="/SUGI28/styles/SUGI28.css">';

/***/
/* Note the reference to our .JS files that */
/* contains the functons definitions that */
/* the program. */
/***/
 put '<script language="javascript"
src="/SUGI28/javascript/sastable.js"></script>';

 put '</head>';
 put '<body BGCOLOR="#FFFFFF"
 LEFTMARGIN="0" TOPMARGIN="0"
 MARGINHEIGHT="0" MARGINWIDTH="0">';

Once our opening tags for the HTML page has been output we
will write the opening <TABLE> tags output the column headers.
Once this is done we use our summary dataset to create the data
table. The general procedure is as follows: For each new class
value in our hierarchy we open a row of the table(<TR>) and
output a label for the row in a table cell(<TD>). Each record in
the dataset corresponds to a different MONTH and these
MONTHs will be the table columns (<TD>). For the last value of
a variable in the hierarchy we will close the table row (<TR>).

This is the code the begins to create the table and opens the
subtotal rows for COUNTRY, the first variable in the drill
hierarchy:

data _null_;

 set summary;

 by COUNTRY REGION DIVISION ; /* Use BY in
 order to use first. processin */

 file _webout ; /* Output to _WEBOUT to send
 back to the browser or
 another fileref to create permanent file */

 length row_id $ 40 ;

 retain c_COUNTRY c_REGION c_DIVISION 0;

/**/
/* Open the table row for the first value */
/* in the first variable in the report */
/* hierarchy . COUNTRY . */
/**/

 if first.COUNTRY then do ;

 c_COUNTRY + 1 ; /* Increatment the
counter keep track of the number of levels for
COUNTRY */

/***/
/* Create the ROW_ID and IMG_ID based on the */
/* level number. These will be used by the */
/* Javascript to identify the */
/* row and image on that row. */
/***/

row_ID = "R_" || trim(left (put (C_COUNTRY,
 3.)));

img_ID = "I_" || substr (row_ID , 3) ;

/**/
/* Output the HTML for the table row. Note */
/* that we output the number of */
/* children as an attribute and well as the */
/* status of the row. */
/**/

put '<TR id="' row_id +(-1)
 '" noChildren=' noChildren '
 style="visibility:visible"
 status="collapsed" class ="subTotalrow">';

 /**************************/
 /* Open the data cell for */
 /* the label. */
 /**************************/

 put "<TD> Total " COUNTRY ;

/**/
/* If there children we display a plus sign */
/* image. The onClick event calls the toggle */
/* function for the row. This will swap the */
/* status of the of the current row. */
/**/

 if noChildren > 0 then do ;
 put ' <IMG src="/SUGI28/images/plus.gif"
 ID = "' img_ID +(-1) '"
 onClick="toggle(' "'" row_ID +(-1) "'" '
 ‘)" >';

 end ;
 else do;

 put ' ';

 end;

 /***************************/
 /* Close the data cell */
 /* and output two spacer */
 /* cells . */
 /***************************/

 put "</TD>" ;
 put "<TD> </TD>" ;
 put "<TD> </TD>" ;

 /***********************************/
 /* Reset the counter for the next */
 /* Class variable in the hierachy */
 /***********************************/

 C_REGION = 0 ;
 end;

The steps for opening the table rows for REGION and DIVISION
are similar. When FIRST.REGION and FIRST.COUNTRY are
true there would be a block of code similar to that above for
FIRST.COUNTRY. The key difference is that the row_ID is built
differently for these levels of the hierarchy. For example, for
REGION the row_ID is based on the COUNTRY and REGION as
follows:

row_ID = "R_" ||
 trim(left (put (C_COUNTRY, 3.)))
 || "_" ||
 trim (left (put (C_REGION, 3.)))
 ;

Likewise the row_ID for the DIVISION subtotals will be based on
the COUNTRY, REGION and DIVISION:

row_ID = "R_" ||
 trim(left (put (C_COUNTRY, 3.)))
 || "_" ||
 trim (left (put (C_REGION, 3.)))
 || "_" ||
 trim (left (put (C_DIVISION, 3.)))
 ;

SUGI 28 Posters

6

After the table rows are opened we output a table cell for each
MONTH by outputting each record in the dataset:

/***/
/* Output the data cell for the table using */
/* the appropriate format. */
/***/

 put "<TD style='text-align:right'>"
 actual account. "</TD>" @ ;

When the last value of DIVISION is read we close the table row:

/**/
/* For the last level of the last variable in */
/* the hierarchy we close the HTML table row */
/**/

if last.DIVISION and division ne " " then do;

 put "</TR>";
end;

Once the table is drawn a DATA _NULL_ is used to close the
table and the HTML page.

This completes the report. The row IDs built by SAS are passed
to the toggle function in each onClick event to do the hiding and
showing of the rows.

ADDITIONAL STYLES ITEMS USED
In addition to the interactivity of the table we needed a way
needed to display negative numbers in red in our report for quick
reference by the users. To do this we created formats with
embedded HTML. (Note that HTML 3.2 allows these
specifications while this is deprecated in HTML 4.0 in favor of
cascading style sheets.) One such format we used is as follows:

/*************************************/
/* ($xxx,xxx) w/ HTML */
/*************************************/
proc format;
 picture account
 low - < 0 = '000,000,000) '
 (prefix=' ($')
 0 = '9'
 (prefix = '$')
 0 < - high = '000,000,000'
 (prefix='$')
 . = ' '
 ;
run;

Furthermore, we make use of cascading style sheets to define
the look and feel of the content of the HTML page. Typically,
these cascading styles sheets exist in a .css file somewhere out
on the web server and are referenced in the <HEAD> section of
the HTML document. They define certain style classes that are
used in the HTML page. For example, we use the subtotalRow
class that defines the look of table rows for our subtotals. In an
external file we have a definition for that class as follows:

.subtotalRow
{
 BACKGROUND-COLOR: #ffcccc;
 FONT-SIZE: 7pt;
 FONT-STYLE: normal;
 FONT-VARIANT: normal;

 FONT-WEIGHT: bold;
 LINE-HEIGHT: normal
}

Sometimes we need to override specific style properties using the
STYLE= tag in the HTML as you will notice in the code above.

FURTHER ENHANCEMENTS
Our example, purposely made simple to illustrate the general
techniques, can be used to create more complicated reports.
For example, most reports would show subtotals above the grand
totals instead of below as in our example. To change this
additional data steps and a changes in the DATA _NULL_ that
create the table would be needed. (The code to do this is
available upon request from the author).

Also, in practice report tables may be too wide to fit across on a
browser screen. Thus, several tables, each a browser screen
wide, stacked on top of each other on different ‘pages’, might be
used. Not only would the SAS code to create these table be
different but the JavaScript to expand /collapse the rows would
need to take this additional dimension of page.

CONCLUSIONS
In this paper we have illustrated just one example of how SAS
can be used with other technologies to produce web based
reports. Using JavaScript and styles the HTML output easily
produced in SAS can be customized to meet a wide variety of
requirements allowing one to exploit the power of SAS for the
web.

REFERENCES
Goodman, Danny. 2001. JavaScript Bible, Gold Edition. Hungry
Minds, Inc., New York, NY.

Musciano, Chuck and Kennedy, Bill. 1998.HTML – The Definitive
Guide, Third Edition. O’Reilly and Associates, Sebastopol, CA.

Lie, Håkon, Wium and Bos, Burt. 1999 Cascading Styles Sheets
– Designing for the Web, Second Edition. Addison-Wesly,
London.

SAS Institiute Inc. “SAS/IntrNet SoftWare Documentation Index”.
<http://www.sas.com/rnd/web/intrnet/sitemap.html>

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA or other countries. ® indicatesUSA registration.

Other brand and product names are registered trademarks of
their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Also
the complete source code needed to create the reports
mentioned in the paper is available upon request from the author.
Contact the author at:

Alan Leach
Qualex Consulting Services, Inc.

 2217 Cleneay Ave
 Norwood, OH 45212
 Work: 513.731.8831
 Email: Alan.Leach@qlx.com
 Web: www.qlx.com

SUGI 28 Posters

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

