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ABSTRACT  
SAS provides a myriad of methods to produce HTML output.    
Add some custom JavaScript to the mixture and one can produce 
dynamic HTML reports.  In this poster we demonstrate a web 
based tabular report that allows the user to collapse or expand 
rows of the table in order to drill into the data via a hierarchy of 
class variables.   The HTML and JavaScript are produced using 
BASE SAS®  and can be executed via a SAS/IntrNet®  
application dispatcher program or in batch to produce stored 
HTML pages.   The JavaScript that interacts with the user makes 
use of recursive functions to display or hide the child rows.  It is a 
simple way to produce interactive web pages from a SAS 
dataset.  In this poster we will explain our web report and its 
functionality.  We will then demonstrate the JavaScript functions 
that provide the user interaction.   Finally we will explain how we 
use SAS DATA steps and PROCs to produce the HTML and 
JavaScript for these interactive tables.  We also mention how we 
use cascading styles sheets to enhance the display. 

INTRODUCTION   
This poster will discuss an interactive web-based tabular report 
created to meet a client’s reporting needs.  It makes use of a 
predefined path or hierarchy of class variables that allows users 
to drill into lower levels.  The drilling is accomplished by hiding 
and showing rows of the tables using JavaScript and styles.  The 
report can be run as an application dispatcher program or as a 
batch program to produce saved HTML pages.  Either way it 
provides a way to add interactivity to a simple table report using 
only BASE SAS.  We will first explain the table and demonstrate 
it’s functionality.  Next, we will explain how the functionality is 
achieved using JavaScript. Finally, we will show how we used 
SAS to generate the HTML and JavaScript for the report.    

BACKGROUND   
Using SAS with complimenting web technologies allows 
developers to harness the power of the SAS and present 
information to any client with a web browser making use of the 
plethora of options for displaying web content.  
 
Our client had requirements to create web-based summary 
tabular reports from SAS tables similar to output from PROC 
TABULATE. There are of course many options in SAS to do this.  
The rub was that these tables needed to be interactive and allow 
the users to drill into the data.  Furthermore, for efficiency we 
wanted to allow them to do this without making an additional 
request from the server with each drill.   
 
Our clients had a preset drill path or hierarchy of class variables 
to display as the rows of the report with sub totals for each 
hierarchy level.  They also had a single class variable to display 
as the across dimension. 
 
What we came up with is a simple BASE program that creates an 
HTML document with embedded JavaScript function calls.  The 
called JavaScript  functions are simple functions that show or 
hide certain rows of the table giving the illusion of expanding or 
collapsing the drill paths of the table.     
 

SAMPLE REPORT 
To illustrate the report we make use of the 
SASHELP.PRDSALES data supplied with SAS.  We will be 
interested in the total sales ( variable name ACTUAL ) as our 

analysis variable.  For the across classification we chose the 
MONTH column.   The rows of the table will use the following 
path of class variables: COUNTRY -> REGION -> DIVISION.  A 
sample PROC TABULATE using ODS HTML would look like 
Figure 1:    
 
Figure 1: PROC TABULATE with ODS HTML  
 

 
 
 
For our requirements we needed to initially display only the 
subtotals by COUNTRY as in Figure 2.  We would allow users to 
expand each level of COUNTRY to examine the subtotals by 
REGION.   
 
Figure 2:  Initial Report Display( right side of report has been 
truncated ) 

 
 
 
   
 
After clicking on plus sign to expand  the row,  the report displays 
as in Figure 3. 
 
Figure 3:  Table Expanded to Show Subtotals by Region 

 
 
 
This shows the subtotals by REGION that make up the U.S.A. 
total.   Likewise, clicking on the   next to the WEST total 
expands the row even further as in Figure 4.  

User clicks on   to expand 
row 
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Figure 4:  Table Expanded to Show Subtotals by Division 

 
 
 
 
 
Here the subtotals by DIVISION are displayed.  Notice that the 
images next to the row labels change to indicate the state of the 
row.  Expanded rows can likewise be collapsed again. For 
example clicking on the  next to the Total U.S.A label causes 
the table to collapse back to its origination state as in Figure 5: 
 
Figure 5:  Table Collapsed to Original State 

 
 

EXPLANANTION OF HTML REPORT CODE 

 
THE HTML PAGE  
In this section we will describe the HTML and JavaScript that 
work to achieve the effect described above.  In a later section we 
will describe the SAS code used to create this HTML and 
JavaScript.     
 
The table displayed in the report is simply an HTML <TABLE> 
with table row (<TR>) and table cell tags (<TD>).  Each <TR> tag 
uses the ID attribute to uniquely identify that row of the table as 
an object inside the browser window using the Document Object 
Model.  The ID is based on the data used to generate the table.   
It is derived from the drill hierarchy requirements. For the above 
report an exert from the HTML for the table would be as follows:       
 
<TABLE> 
…other rows of the tables…. 
 
<!- - The USA Total Row - - >  
<TR id="R_3"  noChildren=2 status="collapsed"  
      style="visibility:visible” 
      …other attributes…. > 
     <TD> Total U.S.A. 
        <! - - The little plus  or minus image  - - > 
        <IMG src="/SUGI28/images/plus.gif" ID = "I_3"   
          onClick="toggle('R_3')" > 
    </TD> 
    <TD>&nbsp;</TD>  
    <TD>&nbsp;</TD> 
    <TD  >  $116,296</TD> 
    ……other <TD> tags for the table cells……. 

 </TR> 
 
 <!- - The EAST Subtotal Row for USA - - > 
 <TR id="R_3_1" noChildren=2  status="collapsed"  
      style="visibility:hidden” 
      …other attributes…. > 
 
     <TD>&nbsp;</TD> 
     <TD> Total EAST   
         <! - - The little plus  or minus image  - - > 
        <IMG src="/SUGI28/images/plus.gif" ID = "I_3_1" 
         onClick="toggle('R_3_1')" > 
     </TD> 
     <TD>&nbsp;</TD> 
     <TD >  $58,002</TD> 
……other <TD> tags for the table cells……. 
</TR> 
  
<!- - The CONSUMER Subtotal Row for USA/EAST - - > 
<TR id="R_3_1_1" noChildren=0 "  
   style="visibility:hidden” 
 
    …other attributes…. > 
 
    <TD>&nbsp;</TD> 
    <TD>&nbsp;</TD> 
    <TD>CONSUMER </TD> 
    <TD> ($2,750) </TD> 
 ……other <TD> tags for the table cells……. 
</TR> 
 
…other rows of the tables…. 
</TABLE> 
 
 Notice the USA row has the ID = R_3 – USA is the third value ( 
after CANADA and GERMANY ) for the first class value in the 
hierarchy ( COUNTRY ).  Under USA the EAST region subtotal 
row has the ID or R_3_1 – it is the first value of REGION for  
USA.  We say that row R_3_1 is a child row of the parent row 
R_1.   Similarly,  row R_3_1_1 , the subtotal for 
DIVISION=CONSUMER, is a child row of R_3_1.  
 
 Notice also that we have added a couple custom attributes for 
the row. Namely the noChildren attribute that indicates how many 
children the row has.  Also we have added a status indicator that 
contains the current state of the row – ‘expanded’ or ‘collapsed’.   
 
 The rows of the table are displayed or hidden using styles. The 
style attribute of the <TR> tag indicates the initial display.  For 
example, row R_3_1 is initially hidden and has 
style=”visibility:hidden”.   Changing the style attribute for a 
specific row can hide and unhide the row in the browser.     
 
One final item to note is the image tag <IMG> that is used in the 
same cell as the row label.  This is the little   or  image that 
appears next to the row label.  This image calls a JavaScript 
function when it is clicked on.  This is specified in the onClick 
event for the image.   
 

THE JAVASCRIPT FUNCTIONS  
The toggle function called by the onClick event of the image in 
each parent row is the main function that does the expanding and 
collapsing of the table.  The JavaScript code for that function is 
as follows: 
 
function toggle(thisID){ 
// Shows a given rows children or hides 
// a row's children and grandchildren 

User clicks on   to collapse 
row. 
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  // Get the reference to the Object  
  var objectID = document.getElementById(thisID) ;   
 
   // Get its current status  
  var status   = objectID.status ;                  
 
  // If the row is current expanded then collapse it by  
  // hiding the children .    
 
  if ( status == "expanded" ) {     
       hideChildren ( thisID ) ; 
      } 
 
  // likewise we will expand a collapsed row by  
  // showing its children 
 
  else if ( status == "collapsed" ) { 
       showChildren ( thisID ) ; 
       } 
} // toggle function 
 
 
Depending on the current status of the row the toggle function 
either calls the showChildren or hideChildren functions.   These 
functions change the style visibility attribute for  all the child rows.  
For example the showChildren function is as follows: 
 
 
function showChildren ( rowID ) { 
// Displays all the children for given parent 
  
 var childName  ; 
 
  // Get the Object reference for the passed Row  
 var parentObject = document.getElementById ( rowID ) ;  
 
  // Get the number of children for the row  
 var noChildren   = parentObject.noChildren ;            
 
 // Build the name of the image associated with the row 
 var imgName = "I_" + rowID.substr( 2,rowID.length );     
 
  // Get the Object reference for the image associated with the 
row  
 var imgObject = document.getElementById( imgName ) ;   
 
  var i ; 
 
 // If there are no children then we are done 
  
 if  ( noChildren == 0 ) {    
     return 
     } 
 
 // Otherwise unhide each child row  
 else 
   { 
      // For each child... 
 
      for ( i = 1; i <= noChildren ; i++ ) 
 
       { 
 
         // Build the name of the child... 
 
         childName = rowID + "_" + i  ; 

 
         // Change the visibiltity of the child 
 
   document.getElementById(childName).style.visibility="visible"; 
 
      } 
 
      // Change the status of the parent to expanded 
      parentObject.status = "expanded"; 
 
      // Change image to indicate the row is expanded.... 
      imgObject.src = "/SUGI28/images/minus.gif"; 
 
   } 
 
}  // showChildren function 
 
 
In this function we make use of the consistent row IDs that we 
have created to build the name of the child rows.  With the 
noChildren attribute and the ID of the parent row we can build the 
name if each child row in succession and use that to change the 
style of each child row.  Note also that we change the image 
associated with the parent  row to the minus.gif image to indicate 
that row is expanded.    
 
When the user wants to collapse  the table rows, i.e., hide the 
child rows, when need a slightly different function, the 
hideChildren function.  Since a given row may grandchildren, i.e. 
its children may have children, we also have to call this function 
for the child row.  In other words, the hideChildren function may 
have to call itself.  This is the simple elegance of recursion.  The 
hideChildren function is as follows:   
 
 
function hideChildren ( rowID ) { 
// Hides all the children for given parent 
 
 var childName  ; 
 
 // Get the Object reference for the passed Row   
 var parentObject = document.getElementById ( rowID ) ;    
 
 // Build the name of the image associated with the row 
 var imgName = "I_" + rowID.substr( 2,rowID.length );    
 
 // Get the Object reference for the image associated with the row  
 var imgObject = document.getElementById( imgName ) ;     
 
 var i = 1; 
 
 // If there are no children then we are done 
 if  ( noChildren == 0 ) { 
     return 
    } 
 
 // Otherwise unhide each child row  
 
 else { 
 
    // For each child... 
 
    for ( i = 1; i <= noChildren ; i++ ) 
 
     { 
 
       // Build the name of the child... 
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       childName = rowID + "_" + i  ; 
 
       // Call the hideChildren passing the current child ID as a 
       // parnet ID.  This will hide all the children and grandchildren 
       // for the row.  
 
       hideChildren ( childName ) ; 
       
       // Hide the current row 
 
       hideObject ( document.getElementById ( childName ) ) ; 
 
      } 
 
    // Change the status of the parent to collapsed 
 
   parentObject.status = "collapsed"; 
 
   // Change image to indicate the row is expanded.... 
 
   imgObject.src = "/SUGI28/images/plus.gif"; 
 
    } 
 
}  // hideChildren function 
 
Typically these JavaScript functions are defined in a .js file that is 
stored somewhere in a sub directory of the web server and are 
referenced by a <SCRIPT> tag in the header of the HTML page ( 
see below).  
 

SO WHERE DOES SAS COME IN? 
The HTML Table that displays the data and contains the function 
call the interact with the user is generated by SAS.   Using DATA 
_NULL_  in BASE SAS the HTML code is generated from the 
source data.   The key part that SAS plays, apart from 
summarizing the data, is in creating the ID attributes for the <TR> 
tags.   Using a simple  PROC MEANS and DATASTEPs in SAS 
we are able to dynamically generate the <TR>  tags for the table 
based on the data at hand.  
 
First , we summarize the source data to the levels that we need: 
 
/************************************/ 
/* Summarize the source data and   */ 
/* output to a dataset to          */ 
/* be used in reporting.  Note     */ 
/* the use the types statement     */ 
/* to only provide the summary     */   
/* levels needed.                  */ 
/***********************************/ 
 
 
proc means data = sasdl.prdsale sum   noprint   
chartype completeypes; 
 
   class COUNTRY REGION DIVISION MONTH; 
 
   type  COUNTRY * REGION * DIVISION * MONTH  
         COUNTRY * REGION            * MONTH 
         COUNTRY                     * MONTH  
         COUNTRY * REGION * DIVISION  
         COUNTRY * REGION  
  COUNTRY  
         ;     
 
   var actual ; 
 
   output out  =  summary  
    ( Keep =   COUNTRY REGION DIVISION  

               MONTH _TYPE_ ACTUAL )  
          sum ( actual ) = actual          
   ; 
run; 

 
Within this summarization we need to count the number of child 
levels or rows for each class variable.  For example, within each 
value of COUNTRY, we need to determine how many unique  
values of REGION exist.   Also, within each value of REGION we 
need to know how many unique values of  DIVISION exist.  We 
accomplish this with another PROC MEANS to do the counts.  
 
/*****************************************/ 
/* Here we need to get the number of     */ 
/* child class variable values within    */ 
/* each parent level.For example         */ 
/* within COUNTRY = 'GERMANY' , there    */ 
/* are two REGIONS, 'EAST' and           */ 
/* 'WEST'.  Thus COUNTRY = 'GERMANY'     */ 
/* has two children.                     */ 
/*****************************************/ 
 
PROC MEANS n noprint  nway data = summary; 
    where _TYPE_ = "1100" ;  
    class COUNTRY   ; 
    output out = COUNTRY_COUNTS 
     ( keep = COUNTRY _STAT_ _FREQ_                         
       where = ( _STAT_ = "N" )  
     /* All we need are the counts */ 
    rename = ( _FREQ_ = noChildren ) ) ;  
run; 
 
 
PROC MEANS n  noprint nway data = summary; 
  where _TYPE_ = "1110" ;  
  class COUNTRY REGION  ; 
  output out = REGION_COUNTS  
  ( keep = COUNTRY REGION _STAT_ _FREQ_ 
    where = ( _STAT_ = "N" )  
   /* All we need are the counts */ 
     rename = ( _FREQ_ = noChildren ) ) ; 
  
run; 
 
/*****************************************/ 
/* Merge these child counts back into   */ 
/* data to draw the table.               */ 
/*****************************************/ 
 
 
data summary ; merge summary  country_counts 
 ( drop = _STAT_ )  ; 
 by country ; 
run; 
 
 
data summary ; merge summary  region_counts  
  ( drop = _STAT_ ) ; 
  by country region ; 
run; 
 
( Since DIVISION is at the bottom of our hierarchy it will have no 
children.)  
 
At this point we have all the information we need to create the 
report.  DATA _NULL_  processing  will create the opening HTML 
tags as well as the <HEADER> tags that reference our 
JavaScript  file using a <SCRIPT> tag.  We will also create the 
opening <BODY> tag: 
 
data _null_; 
      file _webout ; 
      put '<html>'; 
      put '<head>'; 
      put '<title>SUGI 28 </title>';   
      put '<link rel="stylesheet"  
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            href="/SUGI28/styles/SUGI28.css">'; 
 
   
/*********************************************/ 
/* Note the reference to our .JS files that  */ 
/* contains the functons definitions that    */     
/* the program.                              */ 
/*********************************************/ 
      put '<script language="javascript"         
src="/SUGI28/javascript/sastable.js"></script>'; 
       
      put '</head>'; 
      put '<body BGCOLOR="#FFFFFF" 
            LEFTMARGIN="0" TOPMARGIN="0" 
            MARGINHEIGHT="0" MARGINWIDTH="0">'; 
    
Once our opening tags for the HTML page has been output  we 
will write the opening <TABLE> tags output the column headers.   
Once this is done we use our summary dataset to create the data 
table. The general procedure is as follows: For each new class 
value in our hierarchy  we open a row of the table( <TR>) and 
output a label for the row in a table cell(<TD>).   Each record in 
the dataset corresponds to a different MONTH and these 
MONTHs will be the table columns ( <TD>).  For the last value of 
a variable in the hierarchy we will close  the table row ( <TR>). 
 
This is the code the begins to create the table and opens the 
subtotal rows for COUNTRY,  the first variable in the drill 
hierarchy: 
 
data _null_; 
 
  set summary;  
 
  by COUNTRY REGION DIVISION ;  /* Use BY in 
               order to use first. processin */ 
   
  file _webout ;   /* Output to _WEBOUT to send  
                     back to the browser or  
     another fileref to create permanent file */ 
 
  length row_id $ 40 ; 
 
  retain c_COUNTRY c_REGION c_DIVISION 0; 
   
/**********************************************/ 
/* Open the table row for the first value     */ 
/* in the first variable in the report        */ 
/* hierarchy . COUNTRY .                      */       
/**********************************************/ 
 
   if first.COUNTRY then do ;  
 
       c_COUNTRY + 1 ;  /* Increatment the 
counter keep track of the number of levels for 
COUNTRY */ 
 
       
/*********************************************/ 
/* Create the ROW_ID and IMG_ID based on the */ 
/* level number.  These will be used by the  */ 
/* Javascript to identify the                */ 
/* row and image on that row.                */         
/*********************************************/ 
 
row_ID = "R_" || trim( left ( put ( C_COUNTRY, 
                                    3. ) ) ); 
 
img_ID = "I_" || substr ( row_ID , 3 ) ; 
  
/**********************************************/
/* Output the HTML for the table row.  Note   */ 
/* that we output the number of               */ 
/* children as an attribute and well as the   */ 
/* status of the row.                         */   
/**********************************************/  
    

put '<TR id="' row_id   +(-1)   
    '" noChildren=' noChildren ' 
    style="visibility:visible"  
    status="collapsed" class ="subTotalrow">'; 
        
       /**************************/ 
       /* Open the data cell for */ 
       /* the label.             */ 
       /**************************/  
 
       put "<TD> Total " COUNTRY  ; 
    
       
/**********************************************/
/* If there children we display a plus sign   */  
/* image.  The onClick event calls the toggle */ 
/* function for the row.  This will swap the  */ 
/* status of the of the current row.          */            
/**********************************************/ 
 
 if noChildren > 0 then do ; 
    put '    <IMG src="/SUGI28/images/plus.gif"   
    ID = "' img_ID  +(-1) '" 
      onClick="toggle(' "'" row_ID  +(-1) "'" '   
      ‘)" >'; 
              
  end ; 
  else do; 
   
    put ' <IMG src="/SUGI28/images/leaf.gif" >'; 
       
  end; 
 
      /***************************/ 
      /* Close the data cell     */ 
     /* and output two spacer   */ 
      /* cells .                 */ 
      /***************************/ 
 
       put "</TD>" ; 
       put "<TD>&nbsp;</TD>"  ; 
       put "<TD>&nbsp;</TD>"  ; 
 
       /***********************************/ 
 /* Reset the counter for the next  */ 
       /* Class variable in the hierachy  */ 
       /***********************************/  
 
    C_REGION = 0 ;     
 end;    
   
The steps for opening the table rows for  REGION and DIVISION 
are similar.  When  FIRST.REGION and FIRST.COUNTRY are 
true there would be a block of code similar to that above for 
FIRST.COUNTRY.   The key difference is that  the row_ID is built 
differently for these levels of the hierarchy. For example, for 
REGION the row_ID is based on the COUNTRY and REGION as 
follows: 
 
row_ID = "R_" || 
         trim( left ( put ( C_COUNTRY, 3. )))  
         || "_" ||             
         trim ( left ( put ( C_REGION, 3. )))  
   ;   
 
Likewise the row_ID for the DIVISION subtotals will be based on 
the COUNTRY, REGION and DIVISION: 
 
row_ID = "R_" || 
         trim( left ( put ( C_COUNTRY, 3. )))  
         || "_" ||             
         trim ( left ( put ( C_REGION, 3. )))  
         || "_" ||             
         trim ( left ( put ( C_DIVISION, 3. ))) 
   ;   
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After the table rows are opened we output a table cell for each 
MONTH by outputting each record in the dataset: 
 
 
/*********************************************/ 
/* Output the data cell for the table using  */ 
/* the appropriate format.                   */  
/*********************************************/  
 
   put  "<TD style='text-align:right'>"  
        actual account.   "</TD>" @ ; 
 
 
When the last value of DIVISION is read we close the table row: 
   
/**********************************************/
/* For the last level of the last variable in */ 
/* the hierarchy we close the HTML table row  */ 
/**********************************************/  
    
 
if last.DIVISION and division ne " "  then do; 
  
   put "</TR>";  
end; 
 
 
Once the table is drawn a DATA _NULL_ is used to close the 
table and the HTML page.  
  
This completes the report. The row IDs built by SAS are passed 
to the toggle function in each onClick event to do the hiding and 
showing of the rows. 

ADDITIONAL STYLES ITEMS USED 
In addition to the interactivity of the table we needed a way 
needed to display negative numbers in red in our report for quick 
reference by the users. To do this we created formats with 
embedded HTML. ( Note that  HTML 3.2 allows these 
specifications while this is deprecated in HTML 4.0 in favor of 
cascading style sheets.)  One such format we used is as follows:  
 
 
/*************************************/ 
/* ($xxx,xxx) w/ HTML                */ 
/*************************************/ 
proc format; 
  picture account 
    low - < 0    = '000,000,000) </FONT>' 
                 (prefix='<FONT COLOR=RED> ($') 
    0            = '9' 
                 ( prefix = '$' ) 
    0 < - high = '000,000,000' 
                 (prefix='$') 
             . = ' ' 
    ; 
run; 
 
Furthermore,  we make use of cascading style sheets to define 
the look and feel of the content of the HTML page. Typically, 
these cascading styles sheets exist in a .css file somewhere out 
on the web server and are referenced in the <HEAD> section of 
the HTML document.  They define certain style classes that are 
used in the HTML page. For example, we use the subtotalRow 
class that defines the look of  table rows for our subtotals.  In an 
external file we have a definition for that class as follows: 
 
.subtotalRow 
{ 
    BACKGROUND-COLOR: #ffcccc; 
    FONT-SIZE: 7pt; 
    FONT-STYLE: normal; 
    FONT-VARIANT: normal; 

    FONT-WEIGHT: bold; 
    LINE-HEIGHT: normal 
} 
 
Sometimes we need to override specific style properties using the 
STYLE= tag in the HTML as you will notice in the code above.  

FURTHER ENHANCEMENTS 
Our example, purposely made simple to illustrate the general 
techniques,  can be used to create more complicated reports.  
For example, most reports would show subtotals above the grand 
totals instead of below as in our example.  To change this 
additional data steps and a changes in the DATA _NULL_ that 
create the table would be needed.  ( The code to do this is 
available upon request from the author ).   
 
Also, in practice report tables may be too wide to fit across on a 
browser screen.  Thus, several tables, each a browser screen 
wide, stacked on top of each other on different ‘pages’, might be 
used.  Not only would the SAS code to create these table be 
different but the JavaScript to expand /collapse the rows would 
need to take this additional dimension of page.  

CONCLUSIONS 
In this paper we have illustrated just one example of how SAS 
can be used with other technologies to produce web based 
reports.  Using  JavaScript and styles the HTML output  easily 
produced in SAS can be customized to meet a wide variety of 
requirements allowing one to exploit the power of SAS for the 
web.  
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