
Paper 205-28

- 1 -

Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
Paul D. Frederick, Ovation Research Group, Seattle, WA

ABSTRACT
Patient registries seek to capture data from broader-based
patient populations having a single diagnosis and may lack
clinical detail or precision whereas clinical data are drawn from
intensive discovery and are limited to select patients related to
the study. Clinical data may be used to validate information
collected in the patient registry, and patient registry data may
complement ongoing clinical studies, such as to provide essential
baseline or historical data. A simple and versatile record-linkage
is performed between mock registry and clinical datasets that
represent data collected in hospitals nationwide. The linkage
presumes the lack of common unique patient identifiers and a
multi-key approach is considered for defining matches.
Composite keys are developed based on shared attributes within
the data schemata. Various composite keys are developed
consisting of hospital, discharge and arrival dates, age, and
gender. Blocking is used to reduce number of non-matches
resulting from cartesian product match merges. Finally, exact-
and fuzzy-matching techniques are used to link records. Simple
methods to deduplicate matches are also proposed. Risks to
privacy and confidentiality of subjects are of notable concern.
SAS® BASE and SAS DATA STEP on Windows NT SAS version
6.12 are used for the match-merge process.

INTRODUCTION
There are often tradeoffs when designing data collection tools - a
process that is driven primarily by scarce resources. Where the
Registry dataset seeks to obtain many cases it does so by
relaxing the protocols that govern the process of data
management and quality and by limiting the quantity of
information collected. Where the Clinical dataset seeks to collect
a great deal of quality information under managed processes it
does so by limiting the total number of records it can populate.
Each repository of information is designed and developed
independently, each may share a common data schema, and
each has its own strengths and weaknesses. A mutually
beneficial cross sharing of information between the two
repositories can add value to the knowledge of each as well as
provide economic and scientific synergies. This paper will outline
a simple record-linkage between two mock datasets that do not
contain a common primary-key identifier.

PREPARING DATASETS
Before the match-merge process can begin, both datasets must
adhere to conventions. Integrating the representation of data is
essential for the match-merge process and naming conventions
facilitate code development.

INTEGRATION
The datasets are presumed to represent similar patient
populations characterized by a single diagnosis, and hospitals
from the Clinical and Registry datasets must have a common
source identification number. If the Clinical dataset is longitudinal
in design, the event record for which the diagnosis is reported
should be selected and subsequent visit information should be
drawn up into the event record. In this demonstration, both 60-
day and 1-year mortality fields are brought into the event record
in the Clinical dataset. In the Registry data, baseline data also
include a medication. In this example, two heterogeneous Clinical
and Registry datasets representing data collected nationwide are
presented in Appendix 1 and 2.

All field names should be unique across the Clinical and Registry
datasets. The variable types and lengths of the fields on which

the match is performed should compare identically. Formats and
informats should be removed. Field nomenclature should be the
similar. The convention is to prefix the field name with one
character that identifies the data source of all fields. Identically
suffix the field when fields are shared between the two data
sources. Fields can be labeled. In fields that are either binary or
logical, e.g., in gender or cpage (Age Check), values should be
coded as 1 or 0. Field naming conventions are shown in Figure 1.

FIELDS IN COMMON
 CLINICAL
 Dataset

 REGISTRY
 Dataset

 Field
 Labels

 CPID RPID Patient ID

 CSTATE RSTATE State

 CHOSPID RHOSPID Hospital

 CGENDER RGENDER Gender

 CADMIT_D RADMIT_D Admission

 CDISCH_D RDISCH_D Discharge

 CFIRST RFIRST First Initial

 CMIDDLE RMIDDLE Middle Initial

 CLAST RLAST Last Initial

 CDEATH RDEATH Death [In-Hospital]

 CDOB RDOB DOB

 CTHERAPY RTHERAPY Therapy

 CRANDSCO RRANDSCO Random Score

 CNOTBLNK RNOTBLNK Completeness Score

 CAGE RAGE Patient Age [Yrs]

 CHXDIAB RHXDIAB History of Diabetes

Figure 1.

FORCING TEMPORAL CONCURRENCE
Reduce the number of records that are not related in regards to
time period. Using the Clinical Dataset, the minimum admission
date and maximum discharge date are determined for each
hospital and then applied to the larger the Registry dataset. From
the Registry dataset, records are removed in which non-
overlapping discharge or admission dates occur with respect to
the Clinical Dataset (see Appendix 3 and 5).

BLOCKING AND REDUCTION
Limiting the match-merge process to geographically identical
locations can greatly reduce processing time. Blocking is used to
reduce number of non-matches resulting from cartesian product
match merges. The prepared Registry and Clinical datasets are
split into separate datasets based on the state in which the
patient was admitted. This keeps the number of cartesian product
match merges to a minimum (see Appendix 6). Any hospitals not
shared between the datasets are removed along with their
patients (see Appendix 5).

MATCH-MERGE
To match records between the Registry and Clinical datasets, an
iterative program module is used to identify up to 5-Key exact or
fuzzy matches. In order to make exact or fuzzy comparisons with
respect to common fields, one record from the first SAS dataset
is held open while it reads all the records of the second database
for possible matches to the one record in the first. This process
is accomplished by using the POINT option under the SET
statement in a datastep (see Appendix 7). When all attributes
within the key were the same between Registry and Clinical
datasets, the match was considered exact. Variance allowances
for select attributes are permitted. Variables, such as Age, can be

SUGI 28 Posters

2

permitted an allowance of up to ±1 or ±2 years. Matches on
dates can be fuzzed as well. Records with missing values in any
field represented in the 5 key-ID are removed (see Appendix 1
and 2).

MATCHED FIELDS
Hospital ID, Patient Age, Gender, Admission Date, and
Discharge Date comprise the basic composite key. The
composite key can consist of supplemental fields such as patient
initials or date of birth (DOB), if known. DOB should not be used
in the match but rather can be used to calculate an age in years
of the patient if a self-reported age is not already provided. The
same standard for age calculation should be used on each side.
The FLOOR function used in calculating age of patient best
describes a patient's self-reported age (see Appendix 1 and 2).
The composite keys can be classified into a 5-Key ID (Hospital
ID, Age, Gender, Admit Date, & Discharge) and different
variations within the 5-key such as a 4-key, 3-key, or 2-key ID
(see Appendix 7). From each composite-key match, a separate
dataset is appended to the next with each set coded for the type
of match (see Appendix 8).

DEDUPLICATION
The purpose of deduplication is to identify and remove multiple
records containing the same or similar information as defined by
the chosen composite key. It is possible that duplicate records
may exist in either the Registry or Clinical dataset before the
match-merge process begins. Although the deduplication process
must occur after the match-merge process, as it is done in this
paper (see Appendix 9), deduplication can optionally occur at the
level of each dataset and prior to the match-merge process.
Using the combined method of deduplication is particularly helpful
with large datasets or datasets that lack high standards for data
collection.

SPREADING
During the match-merge process, spreading (replication of same
record) occurs whenever more then one hit occurs in either
dataset (see Appendix 7). Hits are defined as a record in which
the composite-key ID in the first dataset is found in one or more
records base on the same composite-key ID in the second. To
identify replication, records are arbitrarily assigned a unique
record called CSYSID and RSYSID identifier based on _N_
processing at the level of the initial datastep found in Appendix 1
and 2. The unique system identifier is needed for tiebreaking. The
use of unique patient identification numbers may be problematic,
especially when the dataset contains patient IDs that are not
unique. Therefore, the patient identification number is not used
even though they are present in each dataset.

METHODS FOR TIEBREAKING
A simple method based on weighting or scoring algorithms is
used to assign preferential treatment to the match whenever a
replicate group is identified based on repeating values of CSYSID
and RSYSID. Whenever a replicate CSYSID is produced, it
means that a duplicate record exists in the Registry dataset, and
a replicate RSYSID means that a duplicate record exists in the
Clinical dataset. Logical fields that test equalities are produced
for exact and fuzzy matches. The field prefix of CP designates an
exact match, and FZ designates a fuzzy match between two
fields in opposite datasets (see Appendix 7).

When an exact match occurs at the level of the 5-Key ID or less,
tiebreakers can be used to determine the preferred record among
the replicates. In Appendix 1 and 2, a completeness score is
generated so that a record having the least amount of information
receives less preference. Replicates that record a mortality event
may be given preference over the other as well. Patient initials
may be known and preferential treatment can be given to either
partial or complete matches in patient initials. A random score
generated in each datastep (see Appendix 1 and 2) ultimately
breaks the tie if no other criteria are available.

PROC SORT is used in combination with FIRST. processing to
position and select records with higher preference in the case
where replicates (spreaders) exist (see Appendix 9).

TESTING AND ANALYSIS
The Clinical dataset can serve to validate the Registry dataset
using a field that was not part of the match but is common to both
datasets. The binary fields of HXDIAB or DEATH can be used in
PROC FREQ using the AGREE option to produce kappa
statistics (See Appendix 9). In addition, baseline covariates
collected in the Registry dataset, e.g. medications and possible
procedures, can be analyzed in SAS/STAT® PROC PHREG (not
shown here) for possible effects on 60-day and 1-year survival
data, which are provided in the matched record from the Clinical
dataset.

DISCUSSION
In Appendix 9, the processing speed is greatly enhanced by using
only the fields that are directly related to the match. The RSYSID
and the CSYSID fields can be used to merge the matched
records back into the Registry or Clinical datasets for
corroboration of the match and accessing other data that are not
directly related to the merge. An error-free "match" is not
guaranteed. Although the match-merge process is designed to
control matching error, the conclusions to be drawn from any
match should ultimately rely on the quality of each data
repository. Mutually distrusting parties will want to preserve the
integrity, privacy, and confidentiality of each data repository. A
blinded (encrypted) patient ID should be used in lieu of the actual
patient ID provided that a crosswalk file to the originally patient ID
is securely held by each party. Policies regarding the release of
the content of cross-information that occurs between parties
should be governed by policy guidelines that are put in place prior
to data sharing. The data repositories should be isolated and
protected with operating system authentication and other security
protocols and should not be shared with external parties.

CONCLUSION
Two different datasets sharing common fields and patients are
matched. A simple match-merge between two similar datasets is
demonstrated. The better the data source reliability, the more
likely the success and quality of each hit in the match-merge
process. As concern over patient confidentiality grows, date fields
such as admission date, discharge date, birth date and hospital
ID or hospital location are less likely to be available to
researchers in developing unique composite keys for data
integration.

REFERENCES
Patridge, C., "The Fuzzy Feeling SAS Provides: Electronic
Matching of Records without Common Keys", Proceedings of the
Twenty-Second Annual SAS® Users Group International
Conference, 1997; San Diego, California.

Contact Information
Your comments and questions are valued and encouraged.
Contact the author at:

Paul D. Frederick
 Ovation Research Group
 5910 Evanston Avenue N.
 Seattle, WA 98103
 Work Phone: (206) 789-4143
 Fax: (206) 789-4173
 Email: pfrederick@ovation.org

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

SUGI 28 Posters

3

APPENDIX 1 (CLINICAL DATA):
400101101M05/16/199605/29/1996U A101010/21/19460
400201101M05/16/199605/21/1996B P100107/08/19651
400301102F06/01/199606/02/1996J R100003/04/19651
400401102F08/15/199608/16/1996VSA100110/10/19561
400502201M07/02/199607/04/1996NIF010006/28/19460
400602202F06/20/199607/02/1996L I000009/06/19630
400702202M08/09/199608/11/1996QQN001007/13/19510
400803301F04/01/200204/02/2002I L110010/09/19080
400903301M07/12/199607/26/1996Q F101007/28/19600
401003302F02/06/199602/07/1996CKH100004/19/19640
401103302M06/03/199606/10/1996F N000108/09/19651
401203302M06/03/199606/10/1996F N000008/09/19651
401304401F05/15/199607/19/1996ZZA100012/23/19660
401404401F02/01/199502/10/1995IOV000101/01/19650
401504402F09/18/199609/19/1996TZP010006/18/19801
401604402F09/18/199609/19/1996TZP0.0106/18/19801
401704402M07/15/199607/24/1996MRT100003/04/19610
401805501F08/15/199608/22/1996CTL100004/05/19630
401905502M07/22/199608/05/1996M F010005/06/19680
402005502F09/11/199609/12/1996SIJ000006/07/19601
402105502F09/11/199609/12/1996SIJ000106/07/19600
402206601M11/18/199611/20/1996BGX100108/09/19820
402306601F03/15/199603/16/1996YJQ110009/09/19680
402406610M10/18/199610/19/1996MEZ100110/10/19311
402501102F06/01/199606/02/1996J R100003/04/19651
402602202F06/20/199607/02/1996L I000009/06/19630
402705502M07/22/199608/05/1996M F010005/06/19680
402806601M11/18/199611/20/1996RGX100108/09/19820

APPENDIX 2 (REGISTRY DATA):
500101101M05/15/199605/29/1996UDA010/21/1946100
500201101F05/15/199605/21/1996DTB011/01/1955100
500301101F05/16/199605/21/1996B P007/08/1965110
500401102M06/11/199606/21/1996XTP012/25/1962100
500501102F06/01/199606/02/1996J R003/04/1965110
500601102F08/15/199608/16/1996VSA010/10/1956110
500702201M02/15/199702/16/1997A Q010/15/1965101
500802201M07/02/199607/04/1996NIF106/28/1964001
500902201M05/18/199605/21/1996LEA012/04/1906101
501002202F06/20/199607/02/1996L I009/06/1963001
501102202M08/09/199608/11/1996QQN007/13/1950000
501202202F03/11/200203/12/2002HLT001/01/1910000
501303301F04/01/200204/02/2002I L110/09/1908100
501403301M10/10/199610/11/1996FSL010/11/1966010
501503301M07/12/199607/26/1996QWF007/28/1960100
501603302F11/11/199611/15/1996W F112/15/1965111
501703302F02/06/199602/07/1996CKH004/19/1964100
501803302M06/03/199606/10/1996F N008/09/1965011
501904401F05/15/199605/19/1996ZZA012/23/1966100
502004401M07/07/199607/08/1996E T002/28/1966001
502104401F02/01/199502/10/1995IOV001/01/1965001
502204402F09/18/199609/19/1996TZP106/18/1980010
502304402M10/15/199610/22/1996D R009/10/1985000
502404402M07/16/199607/23/1996MRT003/04/1961101
502505501F01/06/199701/07/1997U E101/01/1960001
502605501F08/16/199608/22/1996CTL004/05/1961100
502705501M05/18/199605/19/1996ZPG006/07/1910100
502805502M07/22/199608/05/1996M F105/06/1968000
503005502M09/11/199609/22/1996A M007/12/1916000
503106601M11/18/199611/20/1996RGX008/09/1982100
503206601F03/04/199603/15/1996YJQ009/09/1968100
503306601M10/18/199610/19/1996MEZ010/10/1931110
503406602F10/19/199610/23/1996K N010/10/1960111
503501102F06/01/199606/02/1996J R003/04/1965110
503602202F06/20/199607/02/1996L I009/06/1963001
503705501F08/16/199608/22/1996CTL004/05/1961100

APPENDIX 1 (CONTINUED):
Data CLINICAL (Drop=NB1-NB4);
Input
@1 CPID 4. @5 CSTATE $2. @7 CHOSPID 3.
@10 CGENDER $1.
@11 CADMIT_D MMDDYY10.
@21 CDISCH_D MMDDYY10.
@31 CFIRST $1. @32 CMIDDLE $1. @33 CLAST $1.
@34 CHXDIAB 1.
@35 CDEATH 1. @36 C60DEATH 1. @37 C1YRDEATH 1.
@38 CDOB MMDDYY10.
@48 CTHERAPY 1.
;
LABEL
CPID='Patient ID [C]'
CSTATE='State [C]'
CHOSPID='Hospital [C]'
CGENDER='Gender [C]'
CADMIT_D='Admission [C]'
CDISCH_D='Discharge [C]'
CFIRST='First [C]'
CMIDDLE='Middle [C]'
CLAST='Last [C]'
CHXDIAB='History of Diabetes [C]'
CDEATH='Death [In-Hospital] [C]'
C60DEATH='Death [60-Day] [C]'
C1YRDEATH='Death [1-Year] [C]'
CDOB='DOB [C]'
CTHERAPY='Therapy [C]'
CAGE='Patient [C]'
CRANDSCO='Random Score [C]'
CNOTBLNK='Completeness Score [C]'
;

FORMAT CADMIT_D CDISCH_D CDOB MMDDYY10.;
CAGE=FLOOR((CADMIT_D - CDOB)/365.25);
CRANDSCO=ranuni(5234527);

/* ---
Scoring Step to Determine Completeness of Record
--- */
If CDEATH ne . then NB1=1;
If C60DEATH ne . then NB2=1;
If C1YRDEATH ne . then NB3=1;
If CTHERAPY ne . then NB4=1;
CNOTBLNK=SUM(NB1, NB2, NB3, NB4);

/* ---
Delete Records When 5-Key ID Elements missing
--- */
IF CSTATE='' then delete;
IF CDOB=. or CAGE=. then delete;
IF CHOSPID=. then delete;
IF CGENDER='' then delete;
IF CADMIT_D=. then delete;
IF CDISCH_D=. then delete;

DATALINES;
Add CLINICAL Data Here
;
Run;
Proc Contents; Run;

APPENDIX 2 (CONTINUED):
Data REGISTRY (Drop=NB1-NB4);
Input
@1 RPID 4. @5 RSTATE $2. @7 RHOSPID 3.
@10 RGENDER $1.
@11 RADMIT_D MMDDYY10.
@21 RDISCH_D MMDDYY10.

SUGI 28 Posters

4

@31 RFIRST $1. @32 RMIDDLE $1. @33 RLAST $1.
@34 RDEATH 1.
@35 RDOB MMDDYY10.
@45 RHXDIAB 1.
@46 RTHERAPY 1.
@47 RMEDICATION 1.

;

LABEL
RPID='Patient ID [R]'
RSTATE='State [R]'
RHOSPID='Hospital [R]'
RGENDER='Gender [R]'
RADMIT_D='Admission [R]'
RDISCH_D='Discharge [R]'
RFIRST='First [R]'
RMIDDLE='Middle [R]'
RLAST='Last [R]'
RDEATH='Death [R]'
RDOB='DOB [R]'
RHXDIAB='History of Diabetes [R]'
RTHERAPY='Therapy [R]'
RMEDICATION='Medication [R]'
RAGE='Patient [R]'
RRANDSCO='Random Score [R]'
RNOTBLNK='Completeness Score [R]'
;

FORMAT RADMIT_D RDISCH_D RDOB MMDDYY10.;
RAGE=FLOOR((RADMIT_D - RDOB)/365.25);
RRANDSCO=ranuni(5234527);

/* ---
Scoring Step to Determine Completeness of Record
--- */
If RDEATH ne . then NB1=1;
If RTHERAPY ne . then NB2=1;
If RMEDICATION ne . then NB3=1;
If RHXDIAB ne . then NB4=1;
RNOTBLNK=SUM(NB1, NB2, NB3, NB4);

/* ---
Delete Records When 5-Key ID Elements missing
--- */
IF RSTATE='' then delete;
IF RDOB=. or RAGE=. then delete;
IF RHOSPID=. then delete;
IF RGENDER='' then delete;
IF RADMIT_D=. then delete;
IF RDISCH_D=. then delete;

DATALINES;
Add REGISTRY Data Here;
Run;
Proc Contents; Run;

APPENDIX 3:
%Macro MM(DFile,Pfx,ByVar,Var1,VN1,Var2,VN2);

/* -- */
/* Create Dataset */
/* - For Each Hospital */
/* - Produce Max Min Admission Date Ranges */
/* - Produce Max Min Discharge Date Ranges */
/* - Create Dataset for later merge */
/* -- */

Proc Sort Data=&DFile.; By &ByVar.; Run;
Proc Univariate Data=&DFile. NoPrint;
var &Var1. &Var2.;

Output
Out=&Pfx.MAXMIN
Max=&Pfx.MAX&VN1. &Pfx.MAX&VN2.
Min=&Pfx.MIN&VN1. &Pfx.MIN&VN2.
;
By &ByVar.;
Run;

%Mend MM;

%MM(CLINICAL,C,CHOSPID,CADMIT_D,AD,CDISCH_D,DD)
%MM(REGISTRY,R,RHOSPID,RADMIT_D,AD,RDISCH_D,DD)

APPENDIX 4:
%Macro INITIALS(DFile, Pfx, DName);

/* -- */
/* - Write to Log Any 5-Key replicates FYI */
/* - Determine Length of Patient Initials */
/* - Create System Unique Record ID */
/* -- */

Proc Sort Data=&DFile.;

By
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE;
Run;

Data &DFile.1;

Length &Pfx.NINITS2 $3.;
Length &Pfx.NINITS3 $3.;
Length &Pfx.LINITS 4;

Set &DFile.;

By
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE;

IF Not (Last.&Pfx.AGE and First.&Pfx.AGE)
then Put &Pfx.PID=
"Possible Replicate Based on
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE
";

&Pfx.SYSID=_N_;
label &Pfx.SYSID = "System &DName. ID";

If
&Pfx.FIRST Ne ' ' AND
&Pfx.MIDDLE Ne ' ' AND
&Pfx.LAST Ne ' ' Then Do;
 &Pfx.NINITS3 = Trim(&Pfx.FIRST) ||
 Trim(&Pfx.MIDDLE) ||
 Trim(&Pfx.LAST);
 &Pfx.NINITS2 = Trim(&Pfx.FIRST) ||
 Trim(&Pfx.LAST);
 &Pfx.LINITS=Length(&Pfx.NINITS3);
End;
Else
If
&Pfx.FIRST Ne ' '
AND &Pfx.LAST Ne ' ' Then Do;
 &Pfx.NINITS2 = Trim(&Pfx.FIRST) ||
 Trim(&Pfx.LAST);
 &Pfx.LINITS=Length(&Pfx.NINITS2);
End;
Label &Pfx.LINITS="Length of Initials

SUGI 28 Posters

5

[&DName.]";
Label &Pfx.NINITS3="3 Initials [&DName.]";
Label &Pfx.NINITS2="2 Initials [&DName.]";
/* -- */
/* strip formats */
/* -- */
Informat _All_; Format _All_;
Run;

%Mend INITIALS;
%INITIALS(CLINICAL,C, CLINICAL);
%INITIALS(REGISTRY,R, REGISTRY);

APPENDIX 5:
/* -- */
/* Datastep */
/* - Apply Date Ranges */
/* - From CLINICAL Dataset */
/* - To REGISTRY Dataset */
/* - Eliminate Hospitals in CLINICAL That */
/* - are Not in REGISTRY */
/* - Remove REGISTRY Patients that Fall */
/* - Outside Min/Max Arrival/Discharge Dates */
/* - 2 day allowance for Min/Min */
/* -- */

Proc Sort Data=WORK.REGISTRY1; By RHOSPID; Run;
Proc Sort Data=WORK.CMAXMIN; By CHOSPID; Run;
Data WORK.REGISTRY2
(Label='SELECTED PATIENTS & HOSPITALS');
Merge
WORK.REGISTRY1(In=A)
WORK.CMAXMIN(In=B Rename=(CHOSPID=RHOSPID));
By RHOSPID;
If A and B; /* <--REDUCTION */
IF /* <--FORCING TEMPORAL CONCURRENCE */
CMAXDD Ne . And CMINAD Ne . And
RDISCH_D Ne . And RADMIT_D Ne . Then DO;
 IF (RDISCH_D > (CMAXDD+2)) Then DELETE;
 IF (RADMIT_D < (CMINAD-2)) Then DELETE;
End;
Run;

APPENDIX 6:
%Macro State(Pfx); /* <--BLOCKING */
/* Continue states [01-50] As Needed */
 IF &Pfx.state = '01' Then OUTPUT &Pfx.01;
ELSE IF &Pfx.state = '02' Then OUTPUT &Pfx.02;
ELSE IF &Pfx.state = '03' Then OUTPUT &Pfx.03;
ELSE IF &Pfx.state = '04' Then OUTPUT &Pfx.04;
ELSE IF &Pfx.state = '05' Then OUTPUT &Pfx.05;
ELSE IF &Pfx.state = '06' Then OUTPUT &Pfx.06;
ELSE IF &Pfx.state = '07' Then OUTPUT &Pfx.07;
ELSE IF &Pfx.state = '08' Then OUTPUT &Pfx.08;
%Mend State;

/* Continue states [C01-C50] As Needed */
Data C01 C02 C03 C04 C05 C06 C07 C08;
Set WORK.CLINICAL1; %State(C);
Run;

/* Continue states [R01-R50] As Needed */
Data R01 R02 R03 R04 R05 R06 R07 R08;
Set WORK.REGISTRY2; %State(R);
Run;

APPENDIX 7:
%macro outstate(File);
Data
aMatch&File. bMatch&File. cMatch&File.
dMatch&File. eMatch&File. fMatch&File.
UnMat&File.;

Set Work.R&file (
Keep=RPID RSYSID RSTATE RHOSPID RAGE RGENDER
RADMIT_D RDISCH_D RDOB RNINITS2 RNINITS3
RLINITS RNOTBLNK RDEATH RRANDSCO RHXDIAB
);

Do i=1 To n;

Set Work.C&file. (
Keep=CPID CSYSID CHOSPID CSTATE CAGE CGENDER
CADMIT_D CDISCH_D CDOB CNINITS2 CNINITS3
CLINITS CNOTBLNK CDEATH CRANDSCO CHXDIAB
) Point=I Nobs=N;

If i gt n Then Goto Startovr;
If _Error_ = 1 Then Abort;

/* -- */
/* - Create logic/flag fields */
/* - for cross-field comparison checks [Ck] */
/* -- */
%Let Lg=%Str(Length=4 label=);
attrib CPHOSPID &Lg.'Hospital Ck';
attrib CPSTATE &Lg.'State Ck';
attrib CPAGE &Lg.'Age Ck';
attrib FZCPAGE1 &Lg.'Age Ck[FZ 1 Yrs]';
attrib FZCPAGE2 &Lg.'Age Ck[FZ 2 Yrs]';
attrib CPGENDER &Lg.'Gender Ck';
attrib CPADM &Lg.'Arr Date Ck';
attrib FZCPADM1 &Lg.'Arr Date Ck[FZ 1 Yrs]';
attrib FZCPADM2 &Lg.'Arr Date Ck[FZ 2 Yrs]';
attrib CPDIS &Lg.'Disch Date Ck';
attrib FZCPDIS1 &Lg.'Disch Date Ck[FZ 1 Yrs]';
attrib FZCPDIS2 &Lg.'Disch Date Ck[FZ 2 Yrs]';
attrib CPDOB &Lg.'Date of Birth Ck';
attrib CPINITIALS &Lg.'Patient Initials Ck';

/* -- */
/* - Produce logic/flag fields */
/* -- */

CPHOSPID=(RHOSPID=CHOSPID); /* <-EXACT */
CPSTATE=(RSTATE=CSTATE);
CPAGE=(RAGE=CAGE);
FZCPAGE1=(Abs(RAGE-CAGE) in (0 1)); /* <-FUZZ */
FZCPAGE2=(Abs(RAGE-CAGE) in (0 1 2));
CPGENDER=(CGENDER=RGENDER);
CPADM=(CADMIT_D=RADMIT_D);
FZCPADM1=(Abs(RADMIT_D-CADMIT_D) in (0 1));
FZCPADM2=(Abs(RADMIT_D-CADMIT_D) in (0 1 2));
CPDIS=(CDISCH_D=RDISCH_D);
FZCPDIS1=(Abs(RDISCH_D-CDISCH_D) in (0 1));
FZCPDIS2=(Abs(RDISCH_D-CDISCH_D) in (0 1 2));
CPDOB=((CDOB ne .) and (RDOB ne .)
and CDOB=RDOB);

CPINITIALS=0;
If RLINITS=3 and CLINITS=3
and trim(RNINITS3)=trim(CNINITS3)
then CPINITIALS=1; Else
If RLINITS=2 and CLINITS=2
and trim(RNINITS2)=trim(CNINITS2)
then CPINITIALS=1;

SUGI 28 Posters

6

/* -- */
/* 5 Match Files in decrease order preference */
/* -- */
if CPHOSPID=1 and CPAGE=1 and CPGENDER=1 and
CPADM=1 and CPDIS=1 then do;
output amatch&file.; end;
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1
and CPADM=1 and FZCPDIS1=1 then do;
output bmatch&file.; end;
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1
and FZCPADM1=1 and CPDIS=1 then do;
output cmatch&file.; end;
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1
and CPADM=1 then do;
output dmatch&file.; end;
else if CPHOSPID=1 and (FZCPADM1=1 or
FZCPDIS1=1)
and CPINITIALS=1 then do;
output ematch&file.; end;
else if CPHOSPID=1 and CPDOB=1 then do;
output fmatch&file.;
end; else output unmat&File.;

Startovr: If i Gt n Then Goto Getnext; end;
 Getnext: If i Gt n Then i=1;
 If _Error_ = 1 Then _Error_ = 0;
Run;

%mend outstate;
/* Continue states [01-50] As Needed */
%OutState(01); %OutState(02); %OutState(03);
%OutState(04); %OutState(05); %OutState(06);

APPENDIX 8:
/* -- */
/* Append State-Based in decreased preference */
/* -- */
%Macro Set(Mtype, MPrefNo);
Data &Mtype. (label="Match Priority:
&MPrefNo.");
Length MType 4;
set /* Continue states [01-50] As Needed */
&MType.01 &MType.02 &MType.03
&MType.04 &MType.05 &MType.06
;
MTYPE=&MPrefNo.;
Run;
%Mend Set;
%Set(aMatch, 1) %Set(bMatch, 2) %Set(cMatch, 3)
%Set(dMatch, 4) %Set(eMatch, 5) %Set(fMatch, 6)
/* Can Set if Wanted: %Set(UnMat, 99) */

/* set Prioritized DataSets*/
Data AllMtch1 (label='Matched Data w/
Replicates');
set
Work.aMatch Work.bMatch Work.cMatch
Work.dMatch Work.eMatch Work.fMatch
/* Can Set if Wanted: Work.UnMat */;
Label MTYPE="Priority or Preference of Match";
run;

APPENDIX 9:
/* -- */
/* rectify replicates on REGISTRY side */
/* replicate CLINICAL IDS [CSYSID] */
/* means spreaders on REGISTRY side */
/* -- */
Proc sort data=WORK.AllMtch1;
by CSYSID

descending CPHOSPID descending CPAGE
descending CPGENDER descending CPADM
descending CPDIS descending CPDOB
descending CPINITIALS descending RDEATH
descending RNOTBLNK descending RRANDSCO;
run;
Title 'Replicates in the CLINICAL Dataset';
proc print data=WORK.AllMtch1;
Var CSYSID RSYSID CPID RPID CPHOSPID CPAGE
CPGENDER CPADM CPDIS CPDOB CPINITIALS RDEATH
CDEATH RNOTBLNK CNOTBLNK RRANDSCO CRANDSCO
MTYPE; Run;

Data WORK.AllMtch2
(Label='No Replicates - REGISTRY side');
Set WORK.AllMtch1;
By CSYSID;
if first.CSYSID;
Run;

proc print data=WORK.AllMtch2;
Var CSYSID RSYSID CPID RPID CPHOSPID CPAGE
CPGENDER CPADM CPDIS CPDOB CPINITIALS RDEATH
CDEATH RNOTBLNK CNOTBLNK RRANDSCO CRANDSCO
MTYPE; Run;

/* -- */
/* rectify replicates on CLINICAL side */
/* replicate REGISTRY IDS [RSYSID] */
/* means spreaders on CLINICAL side */
/* -- */
Proc sort data=AllMtch2;
by RSYSID
descending CPHOSPID descending CPAGE
descending CPGENDER descending CPADM
descending CPDIS descending CPDOB
descending CPINITIALS descending CDEATH
descending CNOTBLNK descending CRANDSCO ;
run;
Title 'Replicates in the REGISTRY Dataset';
proc print data=AllMtch2;
Var RSYSID CSYSID RPID CPID CPHOSPID CPAGE
CPGENDER CPADM CPDIS CPDOB CPINITIALS CDEATH
CNOTBLNK RRANDSCO CRANDSCO MTYPE;
Run;

Data WORK.AllMtch3
(Label='No Replicates on REGISTRY/CLINICAL
sides');
Set AllMtch2;
By RSYSID;
if first.RSYSID;
Run;

Proc Format; Value MType
1='5Key Match' 2='5Key Fuzz Disch[1 Day] Match'
3='5Key Fuzz Arr[1 Day] Match' 4='4Key Match'
5='3Key Match' 6='2Key Match'; Run;

Title 'Matched CLINICAL/REGISTRY File';
proc print data=WORK.AllMtch3;
Var RSYSID CSYSID RPID CPID CPHOSPID CPAGE
CPGENDER CPADM CPDIS CPDOB CPINITIALS CDEATH
CNOTBLNK RRANDSCO CRANDSCO MTYPE;
Format MType Mtype.; Run;

Title 'Agreement Between Two Sources of Data';
Proc Freq Data=AllMtch3; tables CHXDIAB*RHXDIAB
CDEATH*RDEATH / Agree;
Run;
Proc Contents Data=WORK.AllMtch3; Run;

SUGI 28 Posters

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

