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ABSTRACT 
Patient registries seek to capture data from broader-based 
patient populations having a single diagnosis and may lack 
clinical detail or precision whereas clinical data are drawn from 
intensive discovery and are limited to select patients related to 
the study. Clinical data may be used to validate information 
collected in the patient registry, and patient registry data may 
complement ongoing clinical studies, such as to provide essential 
baseline or historical data. A simple and versatile record-linkage 
is performed between mock registry and clinical datasets that 
represent data collected in hospitals nationwide. The linkage 
presumes the lack of common unique patient identifiers and a 
multi-key approach is considered for defining matches. 
Composite keys are developed based on shared attributes within 
the data schemata. Various composite keys are developed 
consisting of hospital, discharge and arrival dates, age, and 
gender. Blocking is used to reduce number of non-matches 
resulting from cartesian product match merges. Finally, exact- 
and fuzzy-matching techniques are used to link records. Simple 
methods to deduplicate matches are also proposed. Risks to 
privacy and confidentiality of subjects are of notable concern. 
SAS® BASE and SAS DATA STEP on Windows NT SAS version 
6.12 are used for the match-merge process.  

INTRODUCTION 
There are often tradeoffs when designing data collection tools - a 
process that is driven primarily by scarce resources. Where the 
Registry dataset seeks to obtain many cases it does so by 
relaxing the protocols that govern the process of data 
management and quality and by limiting the quantity of 
information collected. Where the Clinical dataset seeks to collect 
a great deal of quality information under managed processes it 
does so by limiting the total number of records it can populate. 
Each repository of information is designed and developed 
independently, each may share a common data schema, and 
each has its own strengths and weaknesses. A mutually 
beneficial cross sharing of information between the two 
repositories can add value to the knowledge of each as well as 
provide economic and scientific synergies. This paper will outline 
a simple record-linkage between two mock datasets that do not 
contain a common primary-key identifier. 

PREPARING DATASETS 
Before the match-merge process can begin, both datasets must 
adhere to conventions. Integrating the representation of data is 
essential for the match-merge process and naming conventions 
facilitate code development. 

INTEGRATION 
The datasets are presumed to represent similar patient 
populations characterized by a single diagnosis, and hospitals 
from the Clinical and Registry datasets must have a common 
source identification number. If the Clinical dataset is longitudinal 
in design, the event record for which the diagnosis is reported 
should be selected and subsequent visit information should be 
drawn up into the event record. In this demonstration, both 60-
day and 1-year mortality fields are brought into the event record 
in the Clinical dataset. In the Registry data, baseline data also 
include a medication. In this example, two heterogeneous Clinical 
and Registry datasets representing data collected nationwide are 
presented in Appendix 1 and 2. 
 
All field names should be unique across the Clinical and Registry 
datasets. The variable types and lengths of the fields on which 

the match is performed should compare identically. Formats and 
informats should be removed. Field nomenclature should be the 
similar. The convention is to prefix the field name with one 
character that identifies the data source of all fields. Identically 
suffix the field when fields are shared between the two data 
sources. Fields can be labeled. In fields that are either binary or 
logical, e.g., in gender or cpage (Age Check), values should be 
coded as 1 or 0. Field naming conventions are shown in Figure 1. 
 

FIELDS IN COMMON 
 CLINICAL 
 Dataset 

 REGISTRY 
 Dataset 

 Field 
 Labels 

 CPID  RPID  Patient ID 

 CSTATE  RSTATE  State 

 CHOSPID  RHOSPID  Hospital 

 CGENDER  RGENDER  Gender 

 CADMIT_D  RADMIT_D  Admission 

 CDISCH_D  RDISCH_D  Discharge 

 CFIRST  RFIRST  First Initial 

 CMIDDLE  RMIDDLE  Middle Initial 

 CLAST  RLAST  Last Initial 

 CDEATH  RDEATH  Death [In-Hospital] 

 CDOB  RDOB  DOB 

 CTHERAPY  RTHERAPY  Therapy 

 CRANDSCO  RRANDSCO  Random Score 

 CNOTBLNK  RNOTBLNK  Completeness Score 

 CAGE  RAGE  Patient Age [Yrs] 

 CHXDIAB  RHXDIAB  History of Diabetes 

Figure 1. 

FORCING TEMPORAL CONCURRENCE 
Reduce the number of records that are not related in regards to 
time period. Using the Clinical Dataset, the minimum admission 
date and maximum discharge date are determined for each 
hospital and then applied to the larger the Registry dataset. From 
the Registry dataset, records are removed in which non-
overlapping discharge or admission dates occur with respect to 
the Clinical Dataset (see Appendix 3 and 5). 

BLOCKING AND REDUCTION 
Limiting the match-merge process to geographically identical 
locations can greatly reduce processing time. Blocking is used to 
reduce number of non-matches resulting from cartesian product 
match merges. The prepared Registry and Clinical datasets are 
split into separate datasets based on the state in which the 
patient was admitted. This keeps the number of cartesian product 
match merges to a minimum (see Appendix 6). Any hospitals not 
shared between the datasets are removed along with their 
patients (see Appendix 5). 

MATCH-MERGE 
To match records between the Registry and Clinical datasets, an 
iterative program module is used to identify up to 5-Key exact or 
fuzzy matches. In order to make exact or fuzzy comparisons with 
respect to common fields, one record from the first SAS dataset 
is held open while it reads all the records of the second database 
for possible matches to the one record in the first.  This process 
is accomplished by using the POINT option under the SET 
statement in a datastep (see Appendix 7). When all attributes 
within the key were the same between Registry and Clinical 
datasets, the match was considered exact. Variance allowances 
for select attributes are permitted. Variables, such as Age, can be 
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permitted an allowance of up to  ±1 or ±2 years. Matches on 
dates can be fuzzed as well. Records with missing values in any 
field represented in the 5 key-ID are removed (see Appendix 1 
and 2). 

MATCHED FIELDS 
Hospital ID, Patient Age, Gender, Admission Date, and 
Discharge Date comprise the basic composite key. The 
composite key can consist of supplemental fields such as patient 
initials or date of birth (DOB), if known. DOB should not be used 
in the match but rather can be used to calculate an age in years 
of the patient if a self-reported age is not already provided. The 
same standard for age calculation should be used on each side. 
The FLOOR function used in calculating age of patient best 
describes a patient's self-reported age (see Appendix 1 and 2). 
The composite keys can be classified into a 5-Key ID (Hospital 
ID, Age, Gender, Admit Date, & Discharge) and different 
variations within the 5-key such as a 4-key, 3-key, or 2-key ID 
(see Appendix 7). From each composite-key match, a separate 
dataset is appended to the next with each set coded for the type 
of match (see Appendix 8). 

DEDUPLICATION 
The purpose of deduplication is to identify and remove multiple 
records containing the same or similar information as defined by 
the chosen composite key. It is possible that duplicate records 
may exist in either the Registry or Clinical dataset before the 
match-merge process begins. Although the deduplication process 
must occur after the match-merge process, as it is done in this 
paper (see Appendix 9), deduplication can optionally occur at the 
level of each dataset and prior to the match-merge process.  
Using the combined method of deduplication is particularly helpful 
with large datasets or datasets that lack high standards for data 
collection. 

SPREADING 
During the match-merge process, spreading (replication of same 
record) occurs whenever more then one hit occurs in either 
dataset (see Appendix 7). Hits are defined as a record in which 
the composite-key ID in the first dataset is found in one or more 
records base on the same composite-key ID in the second. To 
identify replication, records are arbitrarily assigned a unique 
record called CSYSID and RSYSID identifier based on _N_ 
processing at the level of the initial datastep found in Appendix 1 
and 2. The unique system identifier is needed for tiebreaking. The 
use of unique patient identification numbers may be problematic, 
especially when the dataset contains patient IDs that are not 
unique. Therefore, the patient identification number is not used 
even though they are present in each dataset. 

METHODS FOR TIEBREAKING 
A simple method based on weighting or scoring algorithms is 
used to assign preferential treatment to the match whenever a 
replicate group is identified based on repeating values of CSYSID 
and RSYSID. Whenever a replicate CSYSID is produced, it 
means that a duplicate record exists in the Registry dataset, and 
a replicate RSYSID means that a duplicate record exists in the 
Clinical dataset.  Logical fields that test equalities are produced 
for exact and fuzzy matches. The field prefix of CP designates an 
exact match, and FZ designates a fuzzy match between two 
fields in opposite datasets (see Appendix 7). 
 
When an exact match occurs at the level of the 5-Key ID or less, 
tiebreakers can be used to determine the preferred record among 
the replicates. In Appendix 1 and 2, a completeness score is 
generated so that a record having the least amount of information 
receives less preference. Replicates that record a mortality event 
may be given preference over the other as well. Patient initials 
may be known and preferential treatment can be given to either 
partial or complete matches in patient initials. A random score 
generated in each datastep (see Appendix 1 and 2) ultimately 
breaks the tie if no other criteria are available. 
 

PROC SORT is used in combination with FIRST. processing to 
position and select records with higher preference in the case 
where replicates (spreaders) exist (see Appendix 9).  

TESTING AND ANALYSIS 
The Clinical dataset can serve to validate the Registry dataset 
using a field that was not part of the match but is common to both 
datasets. The binary fields of HXDIAB or DEATH can be used in 
PROC FREQ using the AGREE option to produce kappa 
statistics (See Appendix 9). In addition, baseline covariates 
collected in the Registry dataset, e.g. medications and possible 
procedures, can be analyzed in SAS/STAT® PROC PHREG (not 
shown here) for possible effects on 60-day and 1-year survival 
data, which are provided in the matched record from the Clinical 
dataset. 

DISCUSSION 
In Appendix 9, the processing speed is greatly enhanced by using 
only the fields that are directly related to the match.  The RSYSID 
and the CSYSID fields can be used to merge the matched 
records back into the Registry or Clinical datasets for 
corroboration of the match and accessing other data that are not 
directly related to the merge. An error-free "match" is not 
guaranteed. Although the match-merge process is designed to 
control matching error, the conclusions to be drawn from any 
match should ultimately rely on the quality of each data 
repository. Mutually distrusting parties will want to preserve the 
integrity, privacy, and confidentiality of each data repository. A 
blinded (encrypted) patient ID should be used in lieu of the actual 
patient ID provided that a crosswalk file to the originally patient ID 
is securely held by each party. Policies regarding the release of 
the content of cross-information that occurs between parties 
should be governed by policy guidelines that are put in place prior 
to data sharing. The data repositories should be isolated and 
protected with operating system authentication and other security 
protocols and should not be shared with external parties. 

CONCLUSION 
Two different datasets sharing common fields and patients are 
matched. A simple match-merge between two similar datasets is 
demonstrated. The better the data source reliability, the more 
likely the success and quality of each hit in the match-merge 
process. As concern over patient confidentiality grows, date fields 
such as admission date, discharge date, birth date and hospital 
ID or hospital location are less likely to be available to 
researchers in developing unique composite keys for data 
integration. 
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APPENDIX 1 (CLINICAL DATA): 
400101101M05/16/199605/29/1996U A101010/21/19460 
400201101M05/16/199605/21/1996B P100107/08/19651 
400301102F06/01/199606/02/1996J R100003/04/19651 
400401102F08/15/199608/16/1996VSA100110/10/19561 
400502201M07/02/199607/04/1996NIF010006/28/19460 
400602202F06/20/199607/02/1996L I000009/06/19630 
400702202M08/09/199608/11/1996QQN001007/13/19510 
400803301F04/01/200204/02/2002I L110010/09/19080 
400903301M07/12/199607/26/1996Q F101007/28/19600 
401003302F02/06/199602/07/1996CKH100004/19/19640 
401103302M06/03/199606/10/1996F N000108/09/19651 
401203302M06/03/199606/10/1996F N000008/09/19651 
401304401F05/15/199607/19/1996ZZA100012/23/19660 
401404401F02/01/199502/10/1995IOV000101/01/19650 
401504402F09/18/199609/19/1996TZP010006/18/19801 
401604402F09/18/199609/19/1996TZP0.0106/18/19801 
401704402M07/15/199607/24/1996MRT100003/04/19610 
401805501F08/15/199608/22/1996CTL100004/05/19630 
401905502M07/22/199608/05/1996M F010005/06/19680 
402005502F09/11/199609/12/1996SIJ000006/07/19601 
402105502F09/11/199609/12/1996SIJ000106/07/19600 
402206601M11/18/199611/20/1996BGX100108/09/19820 
402306601F03/15/199603/16/1996YJQ110009/09/19680 
402406610M10/18/199610/19/1996MEZ100110/10/19311 
402501102F06/01/199606/02/1996J R100003/04/19651 
402602202F06/20/199607/02/1996L I000009/06/19630 
402705502M07/22/199608/05/1996M F010005/06/19680 
402806601M11/18/199611/20/1996RGX100108/09/19820 

APPENDIX 2 (REGISTRY DATA): 
500101101M05/15/199605/29/1996UDA010/21/1946100 
500201101F05/15/199605/21/1996DTB011/01/1955100 
500301101F05/16/199605/21/1996B P007/08/1965110 
500401102M06/11/199606/21/1996XTP012/25/1962100 
500501102F06/01/199606/02/1996J R003/04/1965110 
500601102F08/15/199608/16/1996VSA010/10/1956110 
500702201M02/15/199702/16/1997A Q010/15/1965101 
500802201M07/02/199607/04/1996NIF106/28/1964001 
500902201M05/18/199605/21/1996LEA012/04/1906101 
501002202F06/20/199607/02/1996L I009/06/1963001 
501102202M08/09/199608/11/1996QQN007/13/1950000 
501202202F03/11/200203/12/2002HLT001/01/1910000 
501303301F04/01/200204/02/2002I L110/09/1908100 
501403301M10/10/199610/11/1996FSL010/11/1966010 
501503301M07/12/199607/26/1996QWF007/28/1960100 
501603302F11/11/199611/15/1996W F112/15/1965111 
501703302F02/06/199602/07/1996CKH004/19/1964100 
501803302M06/03/199606/10/1996F N008/09/1965011 
501904401F05/15/199605/19/1996ZZA012/23/1966100 
502004401M07/07/199607/08/1996E T002/28/1966001 
502104401F02/01/199502/10/1995IOV001/01/1965001 
502204402F09/18/199609/19/1996TZP106/18/1980010 
502304402M10/15/199610/22/1996D R009/10/1985000 
502404402M07/16/199607/23/1996MRT003/04/1961101 
502505501F01/06/199701/07/1997U E101/01/1960001 
502605501F08/16/199608/22/1996CTL004/05/1961100 
502705501M05/18/199605/19/1996ZPG006/07/1910100 
502805502M07/22/199608/05/1996M F105/06/1968000 
503005502M09/11/199609/22/1996A M007/12/1916000 
503106601M11/18/199611/20/1996RGX008/09/1982100 
503206601F03/04/199603/15/1996YJQ009/09/1968100 
503306601M10/18/199610/19/1996MEZ010/10/1931110 
503406602F10/19/199610/23/1996K N010/10/1960111 
503501102F06/01/199606/02/1996J R003/04/1965110 
503602202F06/20/199607/02/1996L I009/06/1963001 
503705501F08/16/199608/22/1996CTL004/05/1961100 

APPENDIX 1 (CONTINUED): 
Data CLINICAL (Drop=NB1-NB4); 
Input 
@1 CPID 4. @5 CSTATE $2. @7 CHOSPID 3.  
@10 CGENDER $1.  
@11 CADMIT_D MMDDYY10. 
@21 CDISCH_D MMDDYY10. 
@31 CFIRST $1. @32 CMIDDLE $1. @33 CLAST $1. 
@34 CHXDIAB 1. 
@35 CDEATH 1. @36 C60DEATH 1. @37 C1YRDEATH 1. 
@38 CDOB MMDDYY10. 
@48 CTHERAPY 1. 
; 
LABEL   
CPID='Patient ID [C]' 
CSTATE='State [C]' 
CHOSPID='Hospital [C]' 
CGENDER='Gender [C]' 
CADMIT_D='Admission [C]' 
CDISCH_D='Discharge [C]' 
CFIRST='First [C]' 
CMIDDLE='Middle [C]' 
CLAST='Last [C]' 
CHXDIAB='History of Diabetes [C]' 
CDEATH='Death [In-Hospital] [C]' 
C60DEATH='Death [60-Day] [C]' 
C1YRDEATH='Death [1-Year] [C]' 
CDOB='DOB [C]' 
CTHERAPY='Therapy [C]' 
CAGE='Patient [C]' 
CRANDSCO='Random Score [C]' 
CNOTBLNK='Completeness Score [C]' 
; 
 
FORMAT CADMIT_D CDISCH_D CDOB MMDDYY10.; 
CAGE=FLOOR((CADMIT_D - CDOB)/365.25); 
CRANDSCO=ranuni(5234527); 
 
/* ---------------------------------------------  
Scoring Step to Determine Completeness of Record 
--------------------------------------------- */ 
If CDEATH ne . then NB1=1; 
If C60DEATH ne . then NB2=1; 
If C1YRDEATH ne . then NB3=1; 
If CTHERAPY ne . then NB4=1; 
CNOTBLNK=SUM(NB1, NB2, NB3, NB4); 
 
/* -------------------------------------------  
Delete Records When 5-Key ID Elements missing   
--------------------------------------------- */ 
IF CSTATE='' then delete; 
IF CDOB=. or CAGE=. then delete; 
IF CHOSPID=. then delete; 
IF CGENDER='' then delete; 
IF CADMIT_D=. then delete; 
IF CDISCH_D=. then delete; 
 
DATALINES; 
Add CLINICAL Data Here 
; 
Run; 
Proc Contents; Run; 

APPENDIX 2 (CONTINUED): 
Data REGISTRY (Drop=NB1-NB4); 
Input 
@1 RPID 4. @5 RSTATE $2. @7 RHOSPID 3. 
@10 RGENDER $1. 
@11 RADMIT_D MMDDYY10. 
@21 RDISCH_D MMDDYY10. 
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@31 RFIRST $1. @32 RMIDDLE $1. @33 RLAST $1. 
@34 RDEATH 1. 
@35 RDOB MMDDYY10. 
@45 RHXDIAB 1. 
@46 RTHERAPY 1. 
@47 RMEDICATION 1. 
 
; 
 
LABEL   
RPID='Patient ID [R]' 
RSTATE='State [R]'  
RHOSPID='Hospital [R]' 
RGENDER='Gender [R]' 
RADMIT_D='Admission [R]' 
RDISCH_D='Discharge [R]' 
RFIRST='First [R]' 
RMIDDLE='Middle [R]' 
RLAST='Last [R]' 
RDEATH='Death [R]' 
RDOB='DOB [R]' 
RHXDIAB='History of Diabetes [R]' 
RTHERAPY='Therapy [R]' 
RMEDICATION='Medication [R]' 
RAGE='Patient [R]' 
RRANDSCO='Random Score [R]' 
RNOTBLNK='Completeness Score [R]' 
; 
 
FORMAT RADMIT_D RDISCH_D RDOB MMDDYY10.; 
RAGE=FLOOR((RADMIT_D - RDOB)/365.25); 
RRANDSCO=ranuni(5234527); 
 
/* ---------------------------------------------  
Scoring Step to Determine Completeness of Record 
--------------------------------------------- */ 
If RDEATH ne . then NB1=1; 
If RTHERAPY ne . then NB2=1; 
If RMEDICATION ne . then NB3=1; 
If RHXDIAB ne . then NB4=1; 
RNOTBLNK=SUM(NB1, NB2, NB3, NB4); 
 
/* -------------------------------------------  
Delete Records When 5-Key ID Elements missing   
--------------------------------------------- */ 
IF RSTATE='' then delete; 
IF RDOB=. or RAGE=. then delete; 
IF RHOSPID=. then delete; 
IF RGENDER='' then delete; 
IF RADMIT_D=. then delete; 
IF RDISCH_D=. then delete; 
 
DATALINES; 
Add REGISTRY Data Here; 
Run; 
Proc Contents; Run; 

APPENDIX 3: 
%Macro MM(DFile,Pfx,ByVar,Var1,VN1,Var2,VN2); 
 
/* ------------------------------------------ */  
/*  Create Dataset                            */ 
/*  - For Each Hospital                       */ 
/*  - Produce Max Min Admission Date Ranges   */ 
/*  - Produce Max Min Discharge Date Ranges   */ 
/*  - Create Dataset for later merge          */ 
/* ------------------------------------------ */ 
 
Proc Sort Data=&DFile.; By &ByVar.; Run; 
Proc Univariate Data=&DFile. NoPrint; 
var &Var1. &Var2.; 

Output  
Out=&Pfx.MAXMIN  
Max=&Pfx.MAX&VN1. &Pfx.MAX&VN2.  
Min=&Pfx.MIN&VN1. &Pfx.MIN&VN2. 
; 
By &ByVar.; 
Run; 
 
%Mend MM; 
 
%MM(CLINICAL,C,CHOSPID,CADMIT_D,AD,CDISCH_D,DD) 
%MM(REGISTRY,R,RHOSPID,RADMIT_D,AD,RDISCH_D,DD) 

APPENDIX 4: 
%Macro INITIALS(DFile, Pfx, DName); 
 
/* ------------------------------------------ */ 
/*  - Write to Log Any 5-Key replicates FYI  */ 
/*  - Determine Length of Patient Initials    */ 
/*  - Create System Unique Record ID          */ 
/* ------------------------------------------ */ 
 
Proc Sort Data=&DFile.;  
 
By  
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER  
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE;  
Run; 
 
Data &DFile.1; 
 
Length &Pfx.NINITS2 $3.; 
Length &Pfx.NINITS3 $3.; 
Length &Pfx.LINITS 4; 
 
Set  &DFile.; 
 
By  
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER  
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE;  
 
IF Not (Last.&Pfx.AGE and First.&Pfx.AGE)  
then Put &Pfx.PID= 
"Possible Replicate Based on  
&Pfx.STATE &Pfx.HOSPID &Pfx.GENDER  
&Pfx.ADMIT_D &Pfx.DISCH_D &Pfx.AGE 
"; 
 
&Pfx.SYSID=_N_;  
label &Pfx.SYSID = "System &DName. ID"; 
 
If  
&Pfx.FIRST Ne ' ' AND  
&Pfx.MIDDLE Ne ' ' AND  
&Pfx.LAST Ne ' '  Then Do; 
  &Pfx.NINITS3 = Trim(&Pfx.FIRST) ||  
                 Trim(&Pfx.MIDDLE) ||  
                 Trim(&Pfx.LAST); 
  &Pfx.NINITS2 = Trim(&Pfx.FIRST) ||  
                 Trim(&Pfx.LAST); 
  &Pfx.LINITS=Length(&Pfx.NINITS3); 
End; 
Else 
If  
&Pfx.FIRST Ne ' '  
AND &Pfx.LAST Ne ' '  Then Do;  
  &Pfx.NINITS2 = Trim(&Pfx.FIRST) ||  
                 Trim(&Pfx.LAST); 
  &Pfx.LINITS=Length(&Pfx.NINITS2); 
End; 
Label &Pfx.LINITS="Length of Initials 
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[&DName.]"; 
Label &Pfx.NINITS3="3 Initials [&DName.]"; 
Label &Pfx.NINITS2="2 Initials [&DName.]"; 
/* ------------------------------------------ */ 
/* strip formats                              */ 
/* ------------------------------------------ */ 
Informat _All_; Format  _All_; 
Run; 
 
%Mend INITIALS; 
%INITIALS(CLINICAL,C, CLINICAL); 
%INITIALS(REGISTRY,R, REGISTRY); 

APPENDIX 5: 
/* ------------------------------------------ */ 
/*  Datastep                                  */ 
/*  - Apply Date Ranges                       */ 
/*  - From CLINICAL Dataset                   */  
/*  - To REGISTRY Dataset                     */ 
/*  - Eliminate Hospitals in CLINICAL That    */ 
/*  - are Not in REGISTRY                     */ 
/*  - Remove REGISTRY Patients that Fall      */ 
/*  - Outside Min/Max Arrival/Discharge Dates */ 
/*  - 2 day allowance for Min/Min             */                
/* ------------------------------------------ */ 
 
Proc Sort Data=WORK.REGISTRY1; By RHOSPID; Run; 
Proc Sort Data=WORK.CMAXMIN; By CHOSPID; Run; 
Data WORK.REGISTRY2  
(Label='SELECTED PATIENTS & HOSPITALS'); 
Merge  
WORK.REGISTRY1(In=A)  
WORK.CMAXMIN(In=B Rename=(CHOSPID=RHOSPID)); 
By RHOSPID; 
If A and B;   /* <--REDUCTION */ 
IF    /* <--FORCING TEMPORAL CONCURRENCE */  
CMAXDD Ne . And CMINAD Ne . And  
RDISCH_D Ne . And RADMIT_D Ne . Then DO; 
   IF (RDISCH_D > (CMAXDD+2)) Then DELETE; 
   IF (RADMIT_D < (CMINAD-2)) Then DELETE; 
End; 
Run; 

APPENDIX 6: 
%Macro State(Pfx); /* <--BLOCKING */ 
/* Continue states [01-50] As Needed */ 
     IF &Pfx.state = '01' Then OUTPUT &Pfx.01; 
ELSE IF &Pfx.state = '02' Then OUTPUT &Pfx.02; 
ELSE IF &Pfx.state = '03' Then OUTPUT &Pfx.03; 
ELSE IF &Pfx.state = '04' Then OUTPUT &Pfx.04; 
ELSE IF &Pfx.state = '05' Then OUTPUT &Pfx.05; 
ELSE IF &Pfx.state = '06' Then OUTPUT &Pfx.06; 
ELSE IF &Pfx.state = '07' Then OUTPUT &Pfx.07; 
ELSE IF &Pfx.state = '08' Then OUTPUT &Pfx.08; 
%Mend State; 
 
/* Continue states [C01-C50] As Needed */ 
Data C01 C02 C03 C04 C05 C06 C07 C08; 
Set WORK.CLINICAL1; %State(C);  
Run; 
 
/* Continue states [R01-R50] As Needed */ 
Data R01 R02 R03 R04 R05 R06 R07 R08; 
Set WORK.REGISTRY2; %State(R);  
Run; 
 
 

APPENDIX 7: 
%macro outstate(File);  
Data  
aMatch&File. bMatch&File. cMatch&File.  
dMatch&File. eMatch&File. fMatch&File.  
UnMat&File.; 
 
Set Work.R&file ( 
Keep=RPID RSYSID RSTATE RHOSPID RAGE RGENDER  
RADMIT_D RDISCH_D RDOB RNINITS2 RNINITS3  
RLINITS RNOTBLNK RDEATH RRANDSCO RHXDIAB 
); 
 
Do i=1 To n; 
 
Set Work.C&file. ( 
Keep=CPID CSYSID CHOSPID CSTATE CAGE CGENDER  
CADMIT_D CDISCH_D CDOB CNINITS2 CNINITS3  
CLINITS CNOTBLNK CDEATH CRANDSCO CHXDIAB 
) Point=I Nobs=N; 
 
If i gt n Then Goto Startovr; 
If _Error_ = 1 Then Abort; 
 
/* ------------------------------------------ */ 
/* - Create logic/flag fields                 */ 
/* - for cross-field comparison checks [Ck]   */ 
/* ------------------------------------------ */ 
%Let Lg=%Str(Length=4 label=); 
attrib CPHOSPID &Lg.'Hospital Ck'; 
attrib CPSTATE &Lg.'State Ck'; 
attrib CPAGE &Lg.'Age Ck'; 
attrib FZCPAGE1 &Lg.'Age Ck[FZ 1 Yrs]'; 
attrib FZCPAGE2 &Lg.'Age Ck[FZ 2 Yrs]'; 
attrib CPGENDER &Lg.'Gender Ck'; 
attrib CPADM &Lg.'Arr Date Ck'; 
attrib FZCPADM1 &Lg.'Arr Date Ck[FZ 1 Yrs]'; 
attrib FZCPADM2 &Lg.'Arr Date Ck[FZ 2 Yrs]'; 
attrib CPDIS &Lg.'Disch Date Ck'; 
attrib FZCPDIS1 &Lg.'Disch Date Ck[FZ 1 Yrs]'; 
attrib FZCPDIS2 &Lg.'Disch Date Ck[FZ 2 Yrs]'; 
attrib CPDOB &Lg.'Date of Birth Ck'; 
attrib CPINITIALS &Lg.'Patient Initials Ck'; 
 
/* ------------------------------------------ */ 
/* - Produce logic/flag fields                */ 
/* ------------------------------------------ */ 
 
CPHOSPID=(RHOSPID=CHOSPID); /* <-EXACT */ 
CPSTATE=(RSTATE=CSTATE);     
CPAGE=(RAGE=CAGE); 
FZCPAGE1=(Abs(RAGE-CAGE) in (0 1)); /* <-FUZZ */ 
FZCPAGE2=(Abs(RAGE-CAGE) in (0 1 2));  
CPGENDER=(CGENDER=RGENDER);  
CPADM=(CADMIT_D=RADMIT_D); 
FZCPADM1=(Abs(RADMIT_D-CADMIT_D) in (0 1));  
FZCPADM2=(Abs(RADMIT_D-CADMIT_D) in (0 1 2));  
CPDIS=(CDISCH_D=RDISCH_D); 
FZCPDIS1=(Abs(RDISCH_D-CDISCH_D) in (0 1)); 
FZCPDIS2=(Abs(RDISCH_D-CDISCH_D) in (0 1 2));  
CPDOB=((CDOB ne .) and (RDOB ne .)  
and CDOB=RDOB);          
 
CPINITIALS=0; 
If RLINITS=3 and CLINITS=3  
and trim(RNINITS3)=trim(CNINITS3)  
then CPINITIALS=1; Else 
If RLINITS=2 and CLINITS=2  
and trim(RNINITS2)=trim(CNINITS2)  
then CPINITIALS=1; 
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/* ------------------------------------------ */ 
/* 5 Match Files in decrease order preference */ 
/* ------------------------------------------ */ 
if CPHOSPID=1 and CPAGE=1 and CPGENDER=1 and  
CPADM=1 and CPDIS=1 then do;  
output amatch&file.; end;  
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1  
and CPADM=1 and FZCPDIS1=1 then do; 
output bmatch&file.; end;  
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1  
and FZCPADM1=1 and CPDIS=1 then do; 
output cmatch&file.; end;  
else if CPHOSPID=1 and CPAGE=1 and CPGENDER=1  
and CPADM=1 then do; 
output dmatch&file.; end;  
else if CPHOSPID=1 and (FZCPADM1=1 or 
FZCPDIS1=1)  
and CPINITIALS=1 then do; 
output ematch&file.; end;  
else if CPHOSPID=1 and CPDOB=1 then do; 
output fmatch&file.; 
end; else output unmat&File.; 
 
Startovr: If i Gt n Then Goto Getnext; end; 
   Getnext: If i Gt n Then i=1; 
   If _Error_ = 1 Then _Error_ = 0;  
Run; 
 
%mend outstate; 
/* Continue states [01-50] As Needed */ 
%OutState(01); %OutState(02); %OutState(03);  
%OutState(04); %OutState(05); %OutState(06); 

APPENDIX 8: 
/* ------------------------------------------ */ 
/* Append State-Based in decreased preference */ 
/* ------------------------------------------ */ 
%Macro Set(Mtype, MPrefNo); 
Data &Mtype. (label="Match Priority: 
&MPrefNo.");  
Length MType 4; 
set /* Continue states [01-50] As Needed */ 
&MType.01 &MType.02 &MType.03  
&MType.04 &MType.05 &MType.06 
; 
MTYPE=&MPrefNo.; 
Run; 
%Mend Set; 
%Set(aMatch, 1) %Set(bMatch, 2) %Set(cMatch, 3)  
%Set(dMatch, 4) %Set(eMatch, 5) %Set(fMatch, 6)  
/* Can Set if Wanted: %Set(UnMat, 99)  */ 
 
/* set Prioritized DataSets*/ 
Data AllMtch1 (label='Matched Data w/ 
Replicates'); 
set  
Work.aMatch Work.bMatch Work.cMatch  
Work.dMatch Work.eMatch Work.fMatch  
/* Can Set if Wanted: Work.UnMat */; 
Label MTYPE="Priority or Preference of Match"; 
run; 

APPENDIX 9: 
/* ------------------------------------------ */ 
/* rectify replicates on REGISTRY side        */ 
/* replicate CLINICAL IDS [CSYSID]            */ 
/* means spreaders on REGISTRY side           */ 
/* ------------------------------------------ */ 
Proc sort data=WORK.AllMtch1;  
by CSYSID  

descending CPHOSPID descending CPAGE  
descending CPGENDER descending CPADM  
descending CPDIS descending CPDOB  
descending CPINITIALS descending RDEATH  
descending RNOTBLNK descending RRANDSCO;  
run; 
Title 'Replicates in the CLINICAL Dataset'; 
proc print data=WORK.AllMtch1; 
Var CSYSID RSYSID CPID RPID CPHOSPID CPAGE 
CPGENDER CPADM CPDIS CPDOB CPINITIALS RDEATH 
CDEATH RNOTBLNK CNOTBLNK RRANDSCO CRANDSCO 
MTYPE; Run; 
 
Data WORK.AllMtch2  
(Label='No Replicates - REGISTRY side'); 
Set WORK.AllMtch1; 
By CSYSID;  
if first.CSYSID; 
Run; 
 
proc print data=WORK.AllMtch2; 
Var CSYSID RSYSID CPID RPID CPHOSPID CPAGE 
CPGENDER CPADM CPDIS CPDOB CPINITIALS RDEATH 
CDEATH RNOTBLNK CNOTBLNK RRANDSCO CRANDSCO 
MTYPE; Run; 
 
/* ------------------------------------------ */ 
/* rectify replicates on CLINICAL side        */ 
/* replicate REGISTRY IDS [RSYSID]            */ 
/* means spreaders on CLINICAL side           */ 
/* ------------------------------------------ */ 
Proc sort data=AllMtch2;  
by RSYSID  
descending CPHOSPID descending CPAGE  
descending CPGENDER descending CPADM  
descending CPDIS descending CPDOB  
descending CPINITIALS descending CDEATH  
descending CNOTBLNK descending CRANDSCO ;  
run; 
Title 'Replicates in the REGISTRY Dataset'; 
proc print data=AllMtch2; 
Var RSYSID CSYSID RPID CPID CPHOSPID CPAGE 
CPGENDER CPADM CPDIS CPDOB CPINITIALS CDEATH 
CNOTBLNK RRANDSCO CRANDSCO MTYPE; 
Run; 
 
Data WORK.AllMtch3  
(Label='No Replicates on REGISTRY/CLINICAL 
sides'); 
Set AllMtch2; 
By RSYSID;  
if first.RSYSID; 
Run; 
 
Proc Format; Value MType 
1='5Key Match' 2='5Key Fuzz Disch[1 Day] Match' 
3='5Key Fuzz Arr[1 Day] Match' 4='4Key Match' 
5='3Key Match' 6='2Key Match'; Run; 
 
Title 'Matched CLINICAL/REGISTRY File'; 
proc print data=WORK.AllMtch3; 
Var RSYSID CSYSID RPID CPID CPHOSPID CPAGE 
CPGENDER CPADM CPDIS CPDOB CPINITIALS CDEATH 
CNOTBLNK RRANDSCO CRANDSCO MTYPE; 
Format MType Mtype.; Run; 
 
Title 'Agreement Between Two Sources of Data'; 
Proc Freq Data=AllMtch3; tables CHXDIAB*RHXDIAB 
CDEATH*RDEATH / Agree;  
Run; 
Proc Contents Data=WORK.AllMtch3; Run; 
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