
- 1 -

Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology
and Healthcare Policy Researches

R. Barishev*, A. Ziv*, G. Kotler**
* Information & Computer Unit, Gertner Institute for Epidemiology and Health Policy Research

** Executive Information Systems Ltd.

ABSTRACT
 Data entry is a very important phase in the epidemiology
research process. At the Computer Division at the Israel Gertner
Institute for Health Policy, we must provide rapid, qualitative
program development. Although there are differences among the
data entry forms used in various projects, there are
common requirements for computerized data entry.
 The superiority of data entry applications that are based on
SAS® software is the result of eliminating unnecessary data
transfer, the potential for data analysis during the data entry
process, and the provision of a single, cohesive tool. We have
developed a user-friendly interface framework for the SAS
programmer, which will accelerate the development of data entry
applications using several SAS products (Base SAS, SAS/FSP®,
and SAS/AF®) in the UNIX operating environment. By
implementing our guidelines, the development and use of data
entry applications should be simplified in several areas: screen
design, sophisticated menus, dynamic format and range updates,
and control data entry via arrays, key controlling and navigation
between existing and new records.
 The paper is aimed for SAS programmers with basic knowledge
in SAS/AF® and SAS/FSP®, who is going to implement efficient
data entry systems.

INTRODUCTION
 The Gertner Institute for Epidemiology and Health Policy
Research is a national research agency for the study of
epidemiology and healthcare policy, which aims to contribute to
the development and formulation of informed health policies.
Its primary goals are to conduct studies based on objectives
defined by the Ministry of Health, to design, develop and analyze
databases in cooperation with other stakeholders in the
healthcare system and to incorporate and assess health-related
innovative processes of national significance.
 The Institute employs approximately 150 members of staff
including researchers, statisticians, computer programmers,
systems analysts and administrative staff. It operates two
divisions, which act as complementary bodies in terms of task
allocation and joint collaboration. The Institute also operates
three internal service units, aiming to provide comprehensive
support to the other Institute units.
 The Information and Computerization Unit is a lateral service
unit, whose main aim is to provide centralized computer services
to the Institute's staff. The Unit is staffed by a team of system
analysts and programmers engaged in the following primary
areas of activity: technological infrastructure, data storage & data
processing and special projects.
 The computer infrastructure in our Institute is based on
performance and price, taking into consideration the analysis of
national files (with millions of records and numerous variables),
and various users' requirements, capability and knowledge:

− PC's for every user tailored to accommodate the
requirements of his tasks, be it statistical programs,
word-processing, internet access, data handling and
storage etc;

− NT-server and exchange server to supply Internet,
Intranet, e-mail, general security, etc

− SUN server for data processing and multi-user access to
common and personal data, using SOLARIS 8 and SAS
8.2 version both for data managing and processing. X-
Windows emulator based on EXCEED X-server (Fig 1)

provides access to the SUN server from the PC.

Fig1. SAS windows using X-WINDOW emulation

 The proposed recommendations concern the following areas:

− screen design - building a user-friendly screen as simple
and as rapidly as possible;

− creation of common templates for the main screen and
menus;

− advanced data dictionary managing;
− using arrays for building shorter and more effective code;
− program driven screen navigation considering Hebrew

(right-to left) language;
− full function key control;
− navigation between forms and records;

SCREEN DESIGN
 As a rule, the data is gathered by questionnaires, so it is
preferred that the data entry form will look similar. The
questionnaire is usually prepared as a word document. When
writing the data building program we copy the questionnaire from
the word document to the SAS program and use the questions as
labels. For data entry forms building we use the procedure
FSEDIT:
PROC FSEDIT LABEL DATA = <LIBRARY>.<DATA NAME>
SCREEN = <LIBRARY>.<CATALOG>.<DATA NAME> MOD;
So the screen draft is built automatically and only enhancement
for a more esthetical view is required.

COMMON TEMPLATES FOR THE MAIN SCREEN
AND MENUS
 Instead of using SAS/AF® FRAME entries which drastically
slows down the data entry application performance and
complicates the application development, we decided to limit
ourselves to the SAS/AF® program entries. The MAIN screen is
built on the basis of a template, which is a SAS/AF® program that
contains a simple screen with a menu and a source code for the
menu handling. (Fig.2).
 The application navigation is fully menu driven. The main parts
of the menu are data entry (Fig. 3) and dictionary tables update
(Fig. 4).

SUGI 28 Posters

2

 Fig.2 Template of the main screen

Fig 3 Data entry submenu

Fig 4 Dictionary tables update submenu

 The menu template code is shown in Appendix A. Here is a
small fragment of the program:

 menu m1 ;
 item 'update' selection=a11;

 item 'print' selection=a12;
 selection a11 '11';
 selection a12 '12';

 All the menu selections aren't SAS command strings, but flags
handled by the main AF program. Actually this is its major job.
Using the WORD SCL function, the program identifies the last
issued command and selects the further processing accordingly.

 MAIN:
/* checking the first word of the issued
command which may be produced by the menu
selection */
 cmd=word(1,'u');
 select(cmd);

 when('11') do;
/* program processing of the menu selection*/
 . . .
 end;
 when('12') do;
 . . .
 end;

 This method enables using the menu in a wider and more
flexible way and executing a program fragment instead of one
command.

ADVANCED DATA DICTIONARY MANAGING
 Data dictionary update during the data entry process is a rather
complicated procedure, which requires programmer involvement
to revise the tables, formats and value ranges and delays the
data entry process. In order to increase the efficiency by saving
time of the programmer and the typist, reducing the risk of errors
and accelerating the data entry process, we suggest advanced
data dictionary managing comprising of:

− dynamic update of data dictionary tables during data
entry, followed by automatic revision of formats and
ranges ;

− wide use of different selection lists types.

DYNAMIC UPDATE OF DATA DICTIONARY TABLES,
FOLLOWED BY AUTOMATIC REVISION OF FORMATS AND
RANGES
 Dictionary tables are a very important part of data entry
processing. They are used for information, data selection, value
range control and data presentation. Since the formats are built
on the basis of the dictionary tables, we can achieve full identity
between the data presentation in the dictionary and on the
screen. The data dictionary update includes the following steps:

− choosing the required table through the menu;
− preparing the parameters for the chosen table (data set

name, formula entry name, format name and format
label);

− updating the table using formula entry, which is the
easiest way to update a table in a table view mode (Fig
5);

− revising the format using the updated table.
The entire process is performed using one subroutine.
 An example of a data dictionary element update is presented
below. When the user chooses to update the table
SPECIALIZATION (Fig.4), the menu selection is '11'(Appendix
A). In the MAIN section we capture the selection string ('11'),
prepare the parameters for the subroutine MEDIT: DB (data set
name), FL (formula entry name), FMTN (format name) and
NAMEC (format label) and submit the subroutine:

MAIN:
/* checking the first word of the issued
command */
 cmd=word(1,'u');
 select(cmd);
/*update the reference table specialization*/

 when('11') do;
 /* data set name */

 db ='<library>.specializations' ;
 /* formula */
 fl='<library>.<catalog>.specs.formula;
 /* format name */

SUGI 28 Posters

3

 fmtn='spec';
 /* format label */
 namec='specialization';
 link MEDIT;
 end;

The subroutine MEDIT calls FSVIEW program for updating the
table, builds a temporary data set FM and rebuilds the format.

MEDIT:
 /* updating the reference table */
 call fsview(db,'edit',fl);

 submit continue;
 /* assigning the record number to the
variable code */

data &db;
 set &db;
 code=_n;_
run;
/*creating input control data set for format
building */
data fm;
 set &db;
 start=_n;_
 label=&namec;
 fmtname=&fmtn;
run;
/* building formats from input control data
set fm*/
 proc format
 library=<library>
 cntlin=fm;

Fig 5 Dictionary table update using FORMULA entry

SELECTION LISTS
 Using selection lists reduces the risk of data entry errors and
assists the operator to find the required value presented in a
natural way (the format value instead of the real value). The kind
of selection depends on the dictionary table length. Usually, if the
dictionary table is not very long, a single or multiple (for repeated
values) selection is used. In long tables we search with the aid of
a substring. Single and multiple selections are trivial and don’t
necessitate special explanations. Below we show an example of
data seeking using a substring in the table of medicines. The
typist can enter '0' to open the entire table, or the leading
substring of the medicine name to choose only the medicines
with the required leading substring:

MEDICINE:
 if length(medicine)>=1 then do;
 if medicine='0' then do;
 medicine=datalistc(medicinen,'code

 name',' choose the medicine:');
 end;
 else do;
 submit continue;

/* creating a temporary data set with an
additional variable POS which shows the
position of the required substring in the
medicine name */
 data _a_;
 set emedspec.medicine;
 pos=index(name,'&medicine');

 run;
/*selecting the records with the required
substring into a temporary data set */
 data _a_;

 set _a_;
 where pos=1;
 run;

endsubmit;
dsid=open('_a_');

 obs=attrn(dsid,'ANY');
if obs>0 then do;
 call wregion(4,5,30,70);
 medicine=datalistc(dsid,'code name',' choose
 the medicine:');
end;
else do;
 medicine='';
end;
rc=close(dsid);
rc=delete(_a_);

 end;
 end;
return;

USING ARRAYS FOR BUILDING SHORTER AND
MORE EFFECTIVE CODE
 Basically we use arrays for three purposes:

− navigation between pages on pressing PgUp, PgDown;
− processing similar fields;
− screen navigation .

NAVIGATION BETWEEN PAGES
 The cursor navigation in our applications is screen sensitive. It
is affected by current field and typed data. For example, if we
have fields 'smoking', 'year smoking', 'cigarettes per day', 'next
field' and the cursor is positioned on the field 'smoking' it's
behavior after pressing any key depends on the value of the field.
If the value is 'NO', the cursor will skip the next two fields, if the
value is “YES”, the cursor will go to the next field ('year smoking').
The code fragment looks like this:
 MAIN:
 …

 if curfld()='smoke' then do;
 if smoke='YES' then cursor year_smoking;
 else cursor next_field';
 end;

 But on pressing PGDown or PgUp the cursor must be
positioned on the first field of the next (previous) page regardless
of its current position and the field value. To implement this we
perform two steps:

− define pages as character arrays, for example:
array page1{18} $ 16
 ('serialno','case_control','Q_1','Q-11,…);
array page2{18} $ 16 ('Q_2','Q-21,…);
array page3{18} $ 16 ('Q_3','Q-31,…);

SUGI 28 Posters

4

− check the last pressed function key using the function
LASTKEY() and if it was PgDown or PgUp position the
cursor on the first field of the next(previous) page
according to the page the current field is located in:

if ky=55 or ky=56 then do;
if ky=56 then do; /* PgDown */
 if curfld() in page1 then cursor Q2;
 if curfld() in page2 then cursor Q3;
 if curfld() in page3 then cursor serialno;
end;
if ky=55 then do; /* PgUp */
 if curfld() in page2 then cursor serialno;
 if curfld() in page3 then cursor Q2;
 if curfld() in page1 then cursor Q3;
end;
end;
else do;
…

 PROCESSING SIMILAR FIELDS
 When many fields have one range of values, use the same
selection list or have similar processing, it is recommended to
use arrays to shorten and simplify the code and reduce the risk
of programming errors. For example, if the questions Q4_1,
Q4_2, Q4_3, Q4_4, Q4_5, Q5_1, Q5_2, and Q5_3 use the same
selection list for reply, we process the next steps:
/* define an array */
array reason{8} q4_1 q4_2 q4_3 q4_4 q4_5 q5_1
 q5_2 q5_3;
/*open the file containing the list of reasons*/
reasonn=open('emedspec.reasons’);
/* on changing of one of the fields the next
code is executed */

Q4_1: Q4_2: Q4_3: Q4_4: Q4_5: Q5_1: Q5_2: Q5_3 :
 do i=1 to dim(reason);
 if reason(i)=0 then do ;
 call wregion(4,5,30,70);
 reason(i)=datalistn(reasonn,'code reason',
 ’choose reason’);

 end;
 else do:

… /* validity check */
 end;
end;
return;

SCREEN NAVIGATION
In many cases a part of a screen looks like a table. On Fig 6-7
you can view such a screen fragment. Here we handle two
problems:

− the navigation between fields must be conducted from
right to left (Hebrew language);

− the cursor navigation depends on the entered value. The
navigation is executing due to the flowchart presented on
Fig 8.

 To shorten the program we use the same subroutine for
processing all the fields of one column.
The column ‘Pregnancy year’ is processed by PREGNSUB
The column ‘Normal Birth’ is processed by BIRTHSUB
The column ‘Abortion’ is processed by ABORTNSUB
 Here are the program fragments that execute the flowchart:

/* declare arrays of fields) */
array pregn{6} pregny1 pregny2 pregny3

 pregny4 pregny5 pregny6;
array birth{6} birth1 birth2 birth3 birth4

 birth5 birth6;

array abort{6} abortion1 abortion2 abortion3
 abortion4 abortion5 abortion6;
array abortra{6} abortrs1 abortrs2 abortrs3
 abortrs4 abortrs5 abortrs6;
/* declare arrays of field names */
array pregnyn{6} $ 8
 ('pregny1', 'pregny2', 'pregny3’,
 ’pregny4','pregny5','pregny6');
array birthn{6} $ 8
 ('birth1', 'birth2', 'birth3',

 'birth4',''birth5', 'birth6’);
array abortn{6} $ 9
 ('abortion1','abortion2','abortion3’,
 abortion4','abortion5','abortion6’);
array abortran{6} $ 10

 ('abortrs1', 'abortrs2', 'abortrs3' ,
 'abortrs4', 'abortrs5', 'abortrs6’);
MAIN:
…
/* searching the field where the cursor is
 currently positioned and calling the
 necessary subroutine */

if curfld() in pregnyn then link pregnsub;
if curfld() in birthn then link birthsub;
if curfld() in abortn then link abortsub;

PREGNSUB:
 jmp=0;
 do i=1 to dim(pregnyn)
 if pregnyn(i)=curfld() then j=i;
 end;
 do i=1 to dim(pregn);
 if i=j then do;
 if pregn(i)>0 then do;
 rc=field('cursor',birthn{j});
 jmp=1;
 end;
 end;
 end;
 if jmp=0 then cursor children;
return;

BIRTHSUB:
 jmp=0;
 do i=1 to dim(birthn);
 if birthn(i)=curfld() then j=i;
 end;
 do i=1 to dim(birth);
 if (birth(i)=1 & i=j) then do;
 abort(j)=.;
 abortra(j)=.;
 jmp=1;
 end;
 end;
 if (jmp=1 & j=6) then jmp=2;
 select (jmp);
 when(0) rc=field('cursor',abortn{j});
 when(1) rc=field('cursor',pregnyn{j+1});
 when(2) rc=field('cursor','children’)';
 end;
 return;

SUGI 28 Posters

5

ABORTSUB:
 …

 return;

Fig 6 Table in form

Fig 7 Table form translation

FULL FUNCTION KEYS CONTROL
 To prevent additional errors on pressing a wrong function key we
provide total key control, which:

− restricts the unwanted function keys using the function
SETFKEY, for example , to restrict the function key
F3(End) :
 keyname = fkeyname(3);

 CALL SETFKEY(keyname,' ');
− checks the pressed function key with the function

LASTKEY and process only the function keys that are
permitted. Every permitted function key is handled by the
appropriate part of the program, all others are ignored.

Fig 8. The table navigation flowchart

NAVIGATION BETWEEN FORMS AND RECORDS
 The data entry operators usually make some common errors
such as pressing the key ADD several times or entering the same
serial number (or another unique identifying field) twice or more.
Instead of catching and processing SAS errors we forbid the ADD
command by converting the ‘Allow ADD/DUP command:’ property
to ‘N’, and add an additional field for the serial number enter (Fig
9). When the operator enters the serial number, the program
looks for this number in the file and if it is found - uploads the
record. If not – asks the operator for confirmation using the
MESSAGEBOX function:
 commandlist=insertc(commandlist, ‘you want to
 add serial number’||serialno||’are
 you sure?’);
 cmd=messagebox(commandlist,'!','yn','','n','‘);

The original serial number field is locked.
The project often contains more than one file with one binding
unique field (usually serial number), each with its form. To
prevent errors when navigating between screens we keep the
current serial number in an SCL list:
/* creating an scl list sn for keeping the
 serial number in the MAIN program) */

 l1=envlist('g’);
 l2=insertn(l1,-1,1,'sn’);
 k=getnITEMn(l1,'sn',1);

SUGI 28 Posters

6

/* saving the serial number */
l2=insertn(l1,serialno,1,'sn’);
/* retrieving the saved serial number */
l1=envlist('g’);
 snn=getnITEMn(l1,'sn',1);

Fig 9 Additional field for serial number entry

CONCLUSION
 The suggested method is widely used in the Institute for
construction of data entry applications. It proved its efficiency
allowing quickly construction of reliable and easy to use
applications.

APPENDIX A. FRAGMENT OF A MENU BUILDING
PROGRAM

/* the main menu */

PROC PMENU cat=emedspec.emedspec;
 MENU MAINMENU;
 ITEM 'Data Entry' MENU=quests;
 ITEM 'Dictionary Tables' MENU=tablesu;
 ITEM 'backup' MENU=backup;
 ITEM 'exit' SELECTION=fin;
 selection fin '999;'
/*data entry submenu */
 MENU quests;
 ITEM 'demographic information' selection= d;
 ITEM 'interview 1' SELECTION = v1;
 ITEM 'interview 2' SELECTION = v2;
 SELECTION d '501;'
 SELECTION v1 '502;'
 SELECTION v2 '503;'
/* dictionary tables update submenu */
MENU tablesu;
 ITEM 'specialization kind(question 2)'
MENU=m1;
 ITEM '(reasons for specialization
 choice(questions 4-5)' MENU=m2;
 ITEM 'fellowship (question 6)' MENU=m3;
 ITEM 'reasons for fellowship choice(question
 7)' MENU=m4;

 ITEM 'impressions(question 12)' MENU=m5;
 ITEM 'stimulus(question 15)' MENU=m6;
 ITEM 'advantages(question 17)' MENU=m7;
 ITEM 'disadvantages(question 18)' MENU=m8;
 ITEM 'hospitals' MENU=m9;

 MENU m1;
 ITEM 'update' SELECTION=a11;
 ITEM 'print' SELECTION=a12;
 SELECTION a11 '11;'
 SELECTION a12 '12;'
 .
 .
 .
 MENU m9;
 ITEM 'update' SELECTION=a91;
 ITEM 'print' SELECTION=a92;
 SELECTION a91 '91;'
 SELECTION a92 '92;'

 MENU backup;
 ITEM 'backup' SELECTION=b1;
 SELECTION b1 '1000;'
quit;
run;

REFERENCES
1. SAS® Language reference: Dictionary, Version 8
2. SAS® .Procedure Guide, Version 8
3. SAS® Component Language: Reference, Version 8

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:
 Raya Barishev
 Gertner Institute for Health Policy
 Ministry of Health
 Sheba Medical Center
 Tel Hashomer 52621, ISRAEL
 Work Phone: 972 3 530 3282
 Fax: 972 3 635 4389
 Email: rayab@gertner.health.gov.il

TRADE MARKS
 SAS and all other SAS Institute Inc. product or service names
are registered trade marks.

Other brands or products names are trademarks of their
respective vendors

SUGI 28 Posters

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	pnum202-28: Paper 202-28

