
1

Paper 195-28

SAS with Style: Creating your own ODS Style Template

Lauren Haworth, Genentech, Inc., South San Francisco, CA

 ABSTRACT

Once you’ve started using the Output Delivery System,
you’ll quickly discover that your taste in output design
probably doesn’t coincide with the built in ODS styles
shipped with SAS software. To create output with more
panache, you need to create your own style template. This
workshop will take you step by step through the process
of creating a custom style for your output.

You’ll learn how to make minor modifications, and how
to give your output a complete makeover. If you’d like all
of your SAS output to be in hot pink on an acid green
background with a gigantic script font, this workshop will
show you how! Or, if you’d just like to make the output
smaller and use colors that coordinate with your company
logo, you can do that too.

The workshop will walk through the TEMPLATE
procedure, showing how you can redefine the default
style elements and attributes to customize fonts, colors,
and borders to suit your own personal or corporate style.
You’ll be given a basic style template that you can
customize during the workshop and then take home to try
out on your ODS output.

The workshop is aimed at beginning to intermediate ODS
users, and is based on SAS version 8.

 INTRODUCTION
ODS styles are a huge topic, and there’s no way to cover
them in depth in this format. This workshop will take a
fast-track approach. We’ll cover just enough of the syntax
to get you started. Then, we’ll use a sample style template
that can be edited to modify color, fonts, spacing, rules,
and borders.

This will allow you customize most aspects of your
output. However, to truly control the look of your output,
plan on taking a much more in-depth course.

 USING THE STYLE= OPTION
You may not have realized it, but whenever you issue an
ODS command you are using a style definition. By
default, ODS uses a standard style for each output
destination. When you issue an ODS statement like:

ods html body=’body.html’;

You’re really issuing the following:

ods html body=’body.html’
 style=Default;

So if you wish to switch to another style, all you have to
do is add a STYLE= option and specify the name of a
different style. However, the only choices you have are
the standard styles shipped with your SAS software.

 PROC TEMPLATE
To truly change the look of your output, you need to
create your own style. This is done by using the
TEMPLATE procedure. This new procedure has
statements that allow you to define every aspect of a style.

However, if we had to specify every aspect of every new
style, we’d spend all of our time typing PROC
TEMPLATE code. A complete style definition could run
to hundreds of lines of code.

To make our life easier, we have the PARENT statement.
It allows a new style to be based on an existing style.
Then you can add lines of code for only those things you
want to change.

 THE EXAMPLE PROGRAM
Rather than try to explain all of the statements and syntax
available for PROC TEMPLATE, let’s just look at our
example program (Appendix A). This program creates a
new custom style.

The first section of code sets up the name of the style
(Custom) and indicates that it will be based on the Default
style.

proc template;
 define style Styles.Custom;
 parent = Styles.Default;

The next section of code sets up a list of font names and
assigns them characteristics. This list is used later in the
program as a shorthand way to specify fonts.

style fonts from fonts /
 'TitleFont'=("Arial,Helvetica,Helv",14pt,Bold Italic)
 'TitleFont2'=("Arial,Helvetica,Helv",12pt,Bold Italic)
 'StrongFont'=("Arial, Helvetica, Helv",12pt,Bold)
 'EmphasisFont'=("Arial,Helvetica,Helv",10pt,Italic)
 'headingFont'=("Arial, Helvetica, Helv",12pt,Bold)
 'docFont'=("Arial, Helvetica, Helv",11pt)
 'footFont'=("Arial, Helvetica, Helv",8pt);

This style statement is used to supply attributes to the
style element called “fonts”. By using the “from fonts”
syntax, we are overwriting and adding attributes to an
existing style element. In this case, we are setting up
seven font names and their characteristics. See Appendix

SUGI 28 Hands-on Workshops

2

B for a reference on how and where each font name is
used.

Each attribute includes three characteristics in
parentheses. Commas separate each characteristic. The
first thing we specify is the typeface. In this example, you
will see that each font name has a list of three typefaces.
This is done to take advantage of one of the features of
HTML output. Our first choice font is listed first; the
other two are alternates in case the person browsing our
web page does not have the first choice font.

The next section of code is very similar to the font style
element. Instead of a list of font names, this one is a list of
font colors. In this case a replace statement is used since
we’re going to replace the entire list.

replace color_list /
 'fgB2' = blue /* links */
 'fgB1' = darkmagenta /* visited links */
 'fgA1' = black /* table cell foreground */
 'bgA3' = lightgrey /* table cell background */
 'bgA1' = lightgrey /* table background */
 'fgR' = darkblue /* row header foreground */
 'bgR' = darkgray /* row header background */
 'fgA2' = darkblue /* column header foreground */
 'bgA2' = darkgray /* column header background /
 'fgA' = navy /* foreground: other */
 'bgA' = white /* background: other */
 ‘bgP’ = white /* page background */;

The cryptic color names like ‘fgA1’ and ‘bgP’ are used by
the style definition to apply these colors to various parts
of the output.

The next section of code sets up the style element that
controls rules, borders, and spacing for all tables. Since
virtually all ODS output is in the form of tables, this is an
important style element.

replace Output from Container /
 frame = void /* outside borders */
 rules = none /* internal borders */
 borderwidth = 1pt /* width of borders and rules */
 bordercolor = color_list('fga1') /* border color */
 cellpadding = 7pt /* space around cell contents */
 cellspacing = 0pt /* space between table cells */;

Unlike the previous sections, this one is not a list of
names to be used elsewhere. This element lists the actual
style attributes and applies settings.

The next section of code will not be covered in this
workshop. It uses the colors and fonts to modify a number
of other style elements. Just ignore the style statements
for Body, Contents, Data, SystemTitle, SystemFooter,
RowHeader, and Header.

In addition to this section that modifies some style
elements, there are dozens of other style statements that
are “included” in our style. Those elements are part of the

Default style, and are included by way of the PARENT
statement at the beginning of our PROC TEMPLATE. (If
you’d like to see the full Default style, issue a PROC
TEMPLATE with a single statement: “source
styles.default;” and a RUN. This will dump the full
definition to the log. For the purposes of this workshop,
you don’t need to understand the last section of code, or
the code in the Default style. We’re just going to work
with the top parts.

At the end of the example PROC TEMPLATE are two
more lines of code. These end the style definition that
began with the DEFINE STYLE statement, and run the
procedure.

 end;
run;

After the PROC TEMPLATE, the example program
includes some code to run a sample procedure so we can
see what our style looks like. This code starts with some
options settings.

options nodate nonumber;
ods noptitle;
ods proclabel 'Frequencies';

The OPTIONS statement gets rid of dates and page
numbers. The first ODS statement turns off the standard
procedure titles (“The FREQ Procedure”) so they don’t
clutter up our output. The second ODS statement is used
to control the procedure labels in the HTML table of
contents. Instead of the default title “The FREQ
Procedure”, our table of contents will use “Frequencies”.

The remaining lines of example code are a simple PROC
FREQ, and the ODS statements needed to create HTML
output. This example produces web output for ease of
review during this workshop. This same code will work
for RTF or PDF output as well, with a simple change to
the ODS calls before and after the PROC FREQ.

ods html file='c:\body.html' style=Custom;
 title 'My Sample Title';
 footnote 'My Sample Footnote';
 proc freq data=sashelp.class;
 tables sex;
 run;
ods html close;

The only important thing to note here is the style=Custom
option on the ODS statement. This calls our newly created
style and applies it to the results.

That’s it for the sample program. It’s a very simple
example of customizing a style, but it can be very
powerful, as you’ll see later.

Before going any further, try running this sample
program. Open the output file to see how the style looks
right now.

SUGI 28 Hands-on Workshops

3

If you’ve used the Default style before, you’ll realize that
right now the Custom style doesn’t look very different
from Default. The remainder of this workshop will be
devoted to customizing the style.

 CHANGING THE TYPEFACES
The first thing we will learn how to modify is the fonts.
We’ll be working with the fonts style element. To change
the font in part of your output, all you have to do is use
PROC TEMPLATE to modify the font definition that
applies to that part of your output. Appendix B lists each
of the font names, and where they apply.

For each font name, we can modify three characteristics.
The first is the typeface. To make a change, simply
replace the typefaces listed between quotes with typefaces
of your choice. Keep in mind that the person receiving
your output will need to have the same fonts in order to
view the web page, RTF file, or PDF file1 properly. You
want to pick fonts that are commonly available. Appendix
C lists some good font combinations to try.

Using the sample program, try changing the typefaces
used in the fonts style element. Before doing this, you
may want to save the sample program using a different
name so that you can go back if you make a mistake. Try
changing a couple of the typefaces and then re-running
the program.

View the HTML file again to see how the change affected
the output. You can leave the web page open, and just use
the refresh button on the browser to see each new version
of the output.

1 As of version 8.2, SAS does not embed fonts in PDF documents.
Hopefully in the future this functionality will be added, allowing the use
of any font in PDF output.

A sample modification:

style fonts from fonts /
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica",
 14pt,Bold Italic)
 ‘TitleFont2' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold Italic)
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold)
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica",
 10pt,Italic)
 'headingFont' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold)
 'docFont' = ("Trebuchet MS, Arial, Helvetica",
 12pt)
 'footFont' = ("Arial, Helvetica, Helv",
 8pt);

The resulting output:

 CHANGING THE FONT SIZES, WEIGHTS, AND STYLES
Now that we’ve got the typefaces we want, we can turn to
the font sizes. You may have noticed that the default
HTML output from ODS uses very large fonts. Our
example style has been set up with somewhat smaller
fonts already. You can choose to keep them this size, or
make them larger or even smaller.

The Default style uses the same font specification for
titles and footnotes. Our example style uses a different
setting for each, so that you can have large titles and small
footnotes.

Try making some of the fonts bigger or smaller and see
how this affects the output.

SUGI 28 Hands-on Workshops

4

A sample modification:

style fonts from fonts /
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica",
 18pt,Bold Italic)
 'TitleFont2' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold Italic)
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold)
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica",
 10pt,Italic)
 'headingFont' = ("Comic Sans MS, Arial, Helvetica",
 11pt,Bold)
 'docFont' = ("Trebuchet MS, Arial, Helvetica",
 10pt)
 'footFont' = ("Arial, Helvetica, Helv",
 8pt);

The resulting output:

The other thing you can change about fonts is the font
weight (Medium, Bold, Light) and the font style (Italic,
Roman, Slant). You may also be able to control the font
width, though few fonts honor settings like Compressed
or Expanded. To use any of these settings, just list the
appropriate keyword(s) after the font size specification.
Generally, the only two settings that you’ll want to add
are Bold and/or Italic. If you leave this setting blank, the
fonts are set to Medium Roman.

Try changing some of these settings to see what happens.

A sample modification:

style fonts from fonts /
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica",
 18pt, Bold)
 'TitleFont2' = ("Comic Sans MS, Arial, Helvetica",
 12pt, Bold)
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica",
 12pt,Bold)
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica",
 10pt,Italic)
 'headingFont' = ("Comic Sans MS, Arial, Helvetica",
 11pt,Bold)
 'docFont' = ("Trebuchet MS, Arial, Helvetica",
 10pt)
 'footFont' = ("Arial, Helvetica, Helv",
 8pt, Italic);

The resulting output:

 CHANGING THE COLORS
Changing the fonts is a fairly subtle thing. This next
section lets you make big bold changes to your output.
This section considers the color scheme.

ODS allows you to set the foreground (text) colors and
background colors of every part of your output. These
colors are set by defining a color scheme in the colors
style element.

In the example program, each color is identified by name.
Appendix D lists the color names you can use. This gives
you a palette of 216 colors. This is a list of web-safe
colors.

You also have the option of specifying custom colors by
using their RGB values given in hexadecimal. For
example, white would be cxFFFFFF, and black would be
cx000000 (the “cx” tells SAS that the following value is a
hexadecimal color). For the purposes of this workshop,
let’s stick to the named colors.

When you modify these colors, notice that some of the
names start in “fg” and represent foreground colors.
Others start in “bg” and represent background colors.
These colors work in pairs, and you need to be sure that
you pick pairs of colors that will be readable. For
example, pink foreground text on a red background would
be a problem.

Try creating a new color scheme. See how it looks. One
warning here: if you use this style for a destination other
than HTML, there may be some minor differences in how
the colors are used. When you get your style set up for
HTML, you’ll want to test it on other destinations.

SUGI 28 Hands-on Workshops

5

A sample modification:

replace color_list /
 'fgB2' = blue
 'fgB1' = darkmagenta
 'fgA1' = orchid
 'bgA3' = lime
 'bgA1' = white
 'fgR' = lime
 'bgR' = darkorchid
 'fgA2' = lime
 'bgA2' = darkorchid
 'fgA' = deeppink
 'bgA' = white
 'bgP' = white;

The resulting output:

If you’re not very creative, there’s a web site that will
help you design an attractive color scheme. Go to
http://www.colorschemer.com/online/ and click on a color
that you like. The web site will generate a group of 16
related colors that create an attractive color scheme.2 You
can then copy down the hex codes for these colors and
use them in your style.

Another way to pick colors for your scheme is to use
colors from your corporate logo. Ask your graphics
department for the correct color codes. They should be
able to give you the RGB values (you can find an
RGB/hex converter on the web).

 CHANGING THE TABLE RULES AND BORDERS
The next thing we will modify is the table rules and
borders. The lines around the table and between rows and
columns are controlled by two attributes: rules and frame.

The frame attribute specifies whether there will be any
lines around the outside of your tables. The frame is
currently set to void, which means there will be no lines
around the table. Another setting to try is box, which puts
a line around the entire table. There are also settings that
let you have borders top and bottom, both sides, or any
individual edge.

Try changing the frame setting. Don’t worry about the
line width or color right now; we’ll get to that later.

2 Note: the site only works with Internet Explorer.

A sample modification:

replace Output from Container /
 frame = box
 rules = none
 borderwidth = 1pt
 bordercolor = color_list('fga1')
 cellpadding = 7pt
 cellspacing = 0pt;

The resulting output is below. This change is a little hard
to see, but lines have been added around the table.

The rules attribute controls the lines that appear inside
your tables. This attribute is currently set to none, so there
are no lines at all. Other settings to try are all and group.
All turns on all possible lines, creating a table grid. Group
puts a border between row and column headers and
footers and the rest of the table body. Other settings
include rows and cols, which include only row dividers or
column dividers.

Try changing the rules setting. You may also want to
experiment with combinations of frame and rules settings.

A sample modification:

replace Output from Container /
 frame = box
 rules = all
 borderwidth = 1pt
 bordercolor = color_list('fga1')
 cellpadding = 7pt
 cellspacing = 0pt;

The resulting output:

Now that you have all of the lines you want, we can look
at the width and color for those lines. These are controlled

SUGI 28 Hands-on Workshops

6

by the borderwidth and bordercolor attributes.3 Don’t
forget that neither of these settings will have any effect
unless you’ve specified some lines for your table. With
frame=void and rules=none, the border width and color
are irrelevant.

Borderwidth is simply the line width. It affects the width
of the table border, but not the rules. Use a number
followed by “pt” to set the width in points.

Bordercolor is assigned using a color from your list
above. Note the syntax here in the original program: it
uses the color_list element name, followed by the name of
one of the items in that element (in quotes and inside
parentheses). You can also just use a color name or code.
Unlike borderwidth, bordercolor applies to all lines, both
borders and rules.

Try experimenting with the border width and color. If
your custom style will not have any lines, go ahead and
turn on frame=box and rules=all so that you can at least
see how they work. You can reset frame and rules later.

A sample modification:

replace Output from Container /
 frame = box
 rules = all
 borderwidth = 2pt
 bordercolor = black
 cellpadding = 7pt
 cellspacing = 0pt;

The resulting output:

 CHANGING THE TABLE SPACING
The final thing we will modify is the table spacing. This is
the amount of space that is left between table cell contents
(your results) and the top, bottom, left, and right sides of
the cell. To make your table readable, you want a large
value. But to squeeze more information on the page, you
probably want a smaller value.

The attribute that controls this spacing is called
cellpadding. The example program uses a value of 7,
which puts a fair amount of space around each value. To

3 Warning: these settings work much better in Internet Explorer than
Netscape. Your HTML output may not look the same in the two
browsers.

save space, you could go down to about 3 without losing
any readability.

Experiment with various values to see what you like. One
thing to note here is that you have to have the same
amount of space on all sides.

A sample modification:

replace Output from Container /
 frame = box
 rules = none
 borderwidth = 2pt
 bordercolor = black
 cellpadding = 3pt
 cellspacing = 2pt;

The resulting output is shown below. If you look closely,
you can see the change from the previous output.

 SAVING YOUR STYLE
Once you’ve created your custom style, you can save the
program that created. This will allow you to regenerate it
at any time.

But you don’t need to run this PROC TEMPLATE every
time you want to use your new style. SAS has saved the
style for you in the sasuser library.

If this style is for you alone, this will work just fine. But if
you want to share your style, you will need to make a
couple of changes.

First, set up a libname for your custom style in a
commonly accessible area. Then, you’ll need to learn
about the ODS PATH statement, which you can use to
route your custom style to this libname. Other users can
set up the same ODS PATH statement in their programs
to reference this libname and access your style.

 CONCLUSIONS
This workshop has been a short cut to using some basic
style functionality. If you just need to quickly modify a
style, this may be enough.

However, this template only allows you to modify certain
aspects of your output. You may find that you want to
control other aspects. To do that, you’re going to have to
learn a lot more about PROC TEMPLATE syntax.

SUGI 28 Hands-on Workshops

7

 RESOURCES
PROC TEMPLATE documentation is in the References
chapter of:

Guide to the Output Delivery System in SAS Online
Doc, version 8, 1999, SAS Institute Inc., Cary, NC,
USA.

Preliminary documentation of new features and sample
programs can be found at:

http://www.sas.com/rnd/base/
index-ods-resources.html.

My book on ODS has a number of chapters on modifying
ODS styles:

Haworth, Lauren, Output Delivery System: The
Basics, 2001, SAS Institute Inc., Cary, NC, USA.

 ACKNOWLEDGEMENTS
SAS is a registered trademark or trademark of SAS
Institute Inc. in the USA and other countries. ® indicates
USA registration.

 CONTACTING THE AUTHOR
Please direct any questions or feedback to the author at:
info@laurenhaworth.com

SUGI 28 Hands-on Workshops

8

APPENDIX A
proc template;
 define style Styles.Custom;
 parent = Styles.Default;
 style fonts from fonts /
 'TitleFont' = ("Arial, Helvetica, Helv",14pt,Bold Italic)
 'TitleFont2' = ("Arial, Helvetica, Helv",12pt,Bold Italic)
 'StrongFont' = ("Arial, Helvetica, Helv",12pt,Bold)
 'EmphasisFont' = ("Arial, Helvetica, Helv",10pt,Italic)
 'headingFont' = ("Arial, Helvetica, Helv",12pt,Bold)
 'docFont' = ("Arial, Helvetica, Helv",11pt)
 'footFont' = ("Arial, Helvetica, Helv",8pt);
 replace color_list /
 'fgB2' = blue /* links */
 'fgB1' = darkmagenta /* visited links */
 'fgA1' = black /* table cell foreground */
 'bgA3' = lightgrey /* table cell background */
 'bgA1' = lightgrey /* table background - shows through if cellspacing>0 */
 'fgR' = darkblue /* row header foreground */
 'bgR' = darkgray /* row header background */
 'fgA2' = darkblue /* column header foreground */
 'bgA2' = darkgray /* column header background */
 'fgA' = navy /* foreground for everything else: notes, proc titles, ... */
 'bgA' = white /* background for everything else: notes, proc titles, ... */
 ‘bgP’ = white /* page background */;
 replace Output from Container /
 frame = void /* outside borders: void, box, above/below, vsides/hsides, lhs/rhs */
 rules = none /* internal borders: none, all, cols, rows, group */
 borderwidth = 1pt /* the width of the borders and rules */
 bordercolor = color_list('fga1') /* the color of the borders and rules */
 cellpadding = 7pt /* the space between table cell contents and the cell border */
 cellspacing = 0pt /* the space between table cells, allows background to show */;
 * Leave code below this line alone ;
 style Body from Body /
 background = color_list('bgP');
 style Contents from Contents /
 background = color_list('bgP');
 style Data from Data /
 font = fonts("docFont");
 style SystemTitle from SystemTitle /
 font = fonts("TitleFont");
 style SystemFooter from SystemFooter /
 font = fonts("footFont");
 style RowHeader from Header /
 font = fonts("headingFont");
 style Header from Header /
 font = fonts("headingFont");
 end;
run;

options nodate nonumber;
ods noptitle;
ods proclabel 'Frequencies';
ods html file='c:\body.html' style=Custom;
 title 'My Sample Title';
 footnote 'My Sample Footnote';
 proc freq data=sashelp.class;
 tables sex;
 run;
ods html close;

SUGI 28 Hands-on Workshops

9

APPENDIX B

Font Style Portion of Output it Controls

TitleFont Titles generated with TITLE statement

TitleFont2 Titles for procedures (“The ________ Procedure”)

StrongFont Strong (more emphasized) table headings and footers, page
numbers

EmphasisFont Titles for table of contents and table of pages, emphasized
table headings and footers

headingFont Table column and row headings and footers, by-group
headings

docFont Data in table cells

footFont Footnotes generated with FOOTNOTE statement

APPENDIX C

“Safe” fonts4,5
Times New Roman, Times
Arial, Helvetica
Arial Black, Arial, Helvetica
Book Antigua, Times New Roman, Times
Courier New, Courier

Comic Sans MS, Arial, Helvetica
Verdana, Arial, Helvetica
Impact, Arial Black, Helvetica
Georgia, Times New Roman, Times
News Gothic MT, Arial, Helvetica
Tahoma, Arial, Helvetica
Trebuchet MS, Arial, Helvetica

4 Although these fonts are fairly safe, good alternate fonts have also been listed for each item. Also, this list is based on standard Windows fonts. If you have
a lot of Mac users, you may want to list some Mac fonts like Chicago, Geneva, Helvetica, Monaco, New York, Times and Palatino as alternatives.
5 Two very unsafe fonts are SAS Monospace and SAS Monospace Bold.

SUGI 28 Hands-on Workshops

10

A P
PE

N
D

IX
 D

W
hi

te

Co
rn

sil
k

An
tiq

ue
wh

ite

Se
as

he
ll

Li
ne

n
Ivo

ry

Fl
or

alw
hi

te

Sn
ow

Az

ur
e

Mi
nt

cr
ea

m

Gh
os

tw
hi

te

Ho
ne

yd
ew

Al

ice
bl

ue

Be
ig

e
Ol

dl
ac

e
Bi

sq
ue

Mo

cc
as

in

W
he

at

Na
va

jo
wh

ite

Bl
an

ch
ed

alm
on

d
Ta

n
G

ra
y

Li
gh

tg
re

y
Da

rk
gr

ay

Di
m

gr
ay

Ga

in
sb

or
o

Si
lve

r
W

hi
te

sm
ok

e
Bl

ac
k

D
ar

ks
la

te
gr

ay

Sl
at

eg
ra

y
Li

gh
ts

lat
eg

ra
y

Le
m

on
ch

iff
on

Kh

ak
i

Da
rk

kh
ak

i
Br

ow
n

Si
en

na

Ch
oc

ol
at

e
Sa

dd
leb

ro
wn

Sa

nd
yb

ro
wn

Bu

rly
wo

od

Pe
ru

Re

d
To

m
at

o
Da

rk
re

d
In

di
an

re
d

Mi
st

yr
os

e
La

ve
nd

er
bl

us
h

Fi
re

br
ick

Cr

im
so

n
Ma

ro
on

Pe

ac
hp

uf
f

Go
ld

en
ro

d
Da

rk
go

ld
en

ro
d

Pa
leg

ol
de

nr
od

La

ve
nd

er

Or
an

ge

Da
rk

or
an

ge

Or
an

ge
re

d
Fo

re
st

gr
ee

n
Gr

ee
ny

ell
ow

Li

m
e

Li
gh

tg
ol

de
nr

od
ye

llo
w

Ye
llo

w
Li

gh
ty

ell
ow

Go

ld

Sp
rin

gg
re

en

Da
rk

ol
ive

gr
ee

n
Ol

ive

Li
m

eg
re

en

Gr
ee

n
Li

gh
tg

re
en

Da

rk
gr

ee
n

Me
di

um
se

ag
re

en
Me

di
um

sp
rin

gg
re

en
Pa

leg
re

en

Ol
ive

dr
ab

La

wn
gr

ee
n

Ch
ar

tre
us

e
Ye

llo
wg

re
en

Pa

let
ur

qu
oi

se

Da
rk

se
ag

re
en

Aq

ua
m

ar
in

e
Me

di
um

aq
ua

m
ar

in
e

Te
al

Li
gh

ts
ea

gr
ee

n
Se

ag
re

en

Da
rk

bl
ue

Me

di
um

tu
rq

uo
ise

Tu

rq
uo

ise

Da
rk

tu
rq

uo
ise

Da

rk
cy

an

Cy
an

Li

gh
tc

ya
n

Me
di

um
sla

te
bl

ue
Li

gh
ts

ky
bl

ue

Sk
yb

lu
e

De
ep

sk
yb

lu
e

Bl
ue

Li

gh
tb

lu
e

Me
di

um
bl

ue

St
ee

lb
lu

e
Da

rk
sla

te
bl

ue

Po
wd

er
bl

ue

Co
rn

flo
we

rb
lu

e
Ro

ya
lb

lu
e

Do
dg

er
bl

ue

Sl
at

eb
lu

e
Pl

um

Ca
de

tb
lu

e
Me

di
um

or
ch

id

D
ar

ko
rc

hi
d

Na
vy

Mi

dn
ig

ht
bl

ue

Li
gh

ts
te

elb
lu

e
Me

di
um

vio
let

re
d

Or
ch

id

Th
ist

le
Ro

sy
br

ow
n

Pu
rp

le

Me
di

um
pu

rp
le

In
di

go

Fu
ch

sia

Pa
lev

io
let

re
d

Ma
ge

nt
a

Da
rk

m
ag

en
ta

Vi

ol
et

Da

rk
vio

let

Bl
ue

vio
let

Sa

lm
on

De

ep
pi

nk

Co
ra

l
Li

gh
tc

or
al

Pi
nk

Li

gh
tp

in
k

Ho
tp

in
k

Li
gh

ts
alm

on

Da
rk

sa
lm

on

SUGI 28 Hands-on Workshops

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

