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 ABSTRACT 

Once you’ve started using the Output Delivery System, 
you’ll quickly discover that your taste in output design 
probably doesn’t coincide with the built in ODS styles 
shipped with SAS software. To create output with more 
panache, you need to create your own style template. This 
workshop will take you step by step through the process 
of creating a custom style for your output. 

You’ll learn how to make minor modifications, and how 
to give your output a complete makeover. If you’d like all 
of your SAS output to be in hot pink on an acid green 
background with a gigantic script font, this workshop will 
show you how! Or, if you’d just like to make the output 
smaller and use colors that coordinate with your company 
logo, you can do that too.  

The workshop will walk through the TEMPLATE 
procedure, showing how you can redefine the default 
style elements and attributes to customize fonts, colors, 
and borders to suit your own personal or corporate style. 
You’ll be given a basic style template that you can 
customize during the workshop and then take home to try 
out on your ODS output. 

The workshop is aimed at beginning to intermediate ODS 
users, and is based on SAS version 8. 

 INTRODUCTION 
ODS styles are a huge topic, and there’s no way to cover 
them in depth in this format. This workshop will take a 
fast-track approach. We’ll cover just enough of the syntax 
to get you started. Then, we’ll use a sample style template 
that can be edited to modify color, fonts, spacing, rules, 
and borders. 

This will allow you customize most aspects of your 
output. However, to truly control the look of your output, 
plan on taking a much more in-depth course. 

 USING THE STYLE= OPTION 
You may not have realized it, but whenever you issue an 
ODS command you are using a style definition. By 
default, ODS uses a standard style for each output 
destination. When you issue an ODS statement like: 

ods html body=’body.html’; 

You’re really issuing the following: 

ods html body=’body.html’ 
         style=Default; 

So if you wish to switch to another style, all you have to 
do is add a STYLE= option and specify the name of a 
different style. However, the only choices you have are 
the standard styles shipped with your SAS software. 

 PROC TEMPLATE 
To truly change the look of your output, you need to 
create your own style. This is done by using the 
TEMPLATE procedure. This new procedure has 
statements that allow you to define every aspect of a style. 

However, if we had to specify every aspect of every new 
style, we’d spend all of our time typing PROC 
TEMPLATE code. A complete style definition could run 
to hundreds of lines of code. 

To make our life easier, we have the PARENT statement. 
It allows a new style to be based on an existing style. 
Then you can add lines of code for only those things you 
want to change. 

 THE EXAMPLE PROGRAM 
Rather than try to explain all of the statements and syntax 
available for PROC TEMPLATE, let’s just look at our 
example program (Appendix A). This program creates a 
new custom style. 

The first section of code sets up the name of the style 
(Custom) and indicates that it will be based on the Default 
style. 

proc template; 
 define style Styles.Custom; 
 parent = Styles.Default; 

The next section of code sets up a list of font names and 
assigns them characteristics. This list is used later in the 
program as a shorthand way to specify fonts. 

style fonts from fonts / 
 'TitleFont'=("Arial,Helvetica,Helv",14pt,Bold Italic) 
 'TitleFont2'=("Arial,Helvetica,Helv",12pt,Bold Italic) 
 'StrongFont'=("Arial, Helvetica, Helv",12pt,Bold) 
 'EmphasisFont'=("Arial,Helvetica,Helv",10pt,Italic) 
 'headingFont'=("Arial, Helvetica, Helv",12pt,Bold) 
 'docFont'=("Arial, Helvetica, Helv",11pt) 
 'footFont'=("Arial, Helvetica, Helv",8pt); 

This style statement is used to supply attributes to the 
style element called “fonts”. By using the “from fonts” 
syntax, we are overwriting and adding attributes to an 
existing style element. In this case, we are setting up 
seven font names and their characteristics. See Appendix 
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B for a reference on how and where each font name is 
used. 

Each attribute includes three characteristics in 
parentheses. Commas separate each characteristic. The 
first thing we specify is the typeface. In this example, you 
will see that each font name has a list of three typefaces. 
This is done to take advantage of one of the features of 
HTML output. Our first choice font is listed first; the 
other two are alternates in case the person browsing our 
web page does not have the first choice font. 

The next section of code is very similar to the font style 
element. Instead of a list of font names, this one is a list of 
font colors. In this case a replace statement is used since 
we’re going to replace the entire list. 

replace color_list / 
 'fgB2' = blue  /* links */ 
 'fgB1' = darkmagenta /* visited links */ 
 'fgA1' = black /* table cell foreground */ 
 'bgA3' = lightgrey /* table cell background */ 
 'bgA1' = lightgrey /* table background */ 
 'fgR'  = darkblue /* row header foreground */ 
 'bgR'  = darkgray /* row header background */ 
 'fgA2' = darkblue /* column header foreground */ 
 'bgA2' = darkgray /* column header background / 
 'fgA'  = navy  /* foreground: other */ 
 'bgA'  = white /* background: other */ 
 ‘bgP’  = white /* page background */; 

The cryptic color names like ‘fgA1’ and ‘bgP’ are used by 
the style definition to apply these colors to various parts 
of the output. 

The next section of code sets up the style element that 
controls rules, borders, and spacing for all tables. Since 
virtually all ODS output is in the form of tables, this is an 
important style element. 

replace Output from Container / 
 frame = void /* outside borders */ 
 rules = none /* internal borders */ 
 borderwidth = 1pt /* width of borders and rules */ 
 bordercolor = color_list('fga1') /* border color */ 
 cellpadding = 7pt /* space around cell contents */ 
 cellspacing = 0pt /* space between table cells */; 

Unlike the previous sections, this one is not a list of 
names to be used elsewhere. This element lists the actual 
style attributes and applies settings. 

The next section of code will not be covered in this 
workshop. It uses the colors and fonts to modify a number 
of other style elements. Just ignore the style statements 
for Body, Contents, Data, SystemTitle, SystemFooter, 
RowHeader, and Header. 

In addition to this section that modifies some style 
elements, there are dozens of other style statements that 
are “included” in our style. Those elements are part of the 

Default style, and are included by way of the PARENT 
statement at the beginning of our PROC TEMPLATE. (If 
you’d like to see the full Default style, issue a PROC 
TEMPLATE with a single statement: “source 
styles.default;” and a RUN. This will dump the full 
definition to the log. For the purposes of this workshop, 
you don’t need to understand the last section of code, or 
the code in the Default style. We’re just going to work 
with the top parts. 

At the end of the example PROC TEMPLATE are two 
more lines of code. These end the style definition that 
began with the DEFINE STYLE statement, and run the 
procedure. 

 end; 
run; 

After the PROC TEMPLATE, the example program 
includes some code to run a sample procedure so we can 
see what our style looks like. This code starts with some 
options settings. 

options nodate nonumber; 
ods noptitle; 
ods proclabel 'Frequencies'; 

The OPTIONS statement gets rid of dates and page 
numbers. The first ODS statement turns off the standard 
procedure titles (“The FREQ Procedure”) so they don’t 
clutter up our output. The second ODS statement is used 
to control the procedure labels in the HTML table of 
contents. Instead of the default title “The FREQ 
Procedure”, our table of contents will use “Frequencies”. 

The remaining lines of example code are a simple PROC 
FREQ, and the ODS statements needed to create HTML 
output. This example produces web output for ease of 
review during this workshop. This same code will work 
for RTF or PDF output as well, with a simple change to 
the ODS calls before and after the PROC FREQ. 

ods html file='c:\body.html' style=Custom; 
  title 'My Sample Title'; 
  footnote 'My Sample Footnote'; 
  proc freq data=sashelp.class; 
  tables sex; 
  run; 
ods html close; 

The only important thing to note here is the style=Custom 
option on the ODS statement. This calls our newly created 
style and applies it to the results. 

That’s it for the sample program. It’s a very simple 
example of customizing a style, but it can be very 
powerful, as you’ll see later.  

Before going any further, try running this sample 
program. Open the output file to see how the style looks 
right now. 
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If you’ve used the Default style before, you’ll realize that 
right now the Custom style doesn’t look very different 
from Default. The remainder of this workshop will be 
devoted to customizing the style. 

 CHANGING THE TYPEFACES 
The first thing we will learn how to modify is the fonts. 
We’ll be working with the fonts style element. To change 
the font in part of your output, all you have to do is use 
PROC TEMPLATE to modify the font definition that 
applies to that part of your output. Appendix B lists each 
of the font names, and where they apply. 

For each font name, we can modify three characteristics. 
The first is the typeface. To make a change, simply 
replace the typefaces listed between quotes with typefaces 
of your choice. Keep in mind that the person receiving 
your output will need to have the same fonts in order to 
view the web page, RTF file, or PDF file1 properly. You 
want to pick fonts that are commonly available. Appendix 
C lists some good font combinations to try. 

Using the sample program, try changing the typefaces 
used in the fonts style element. Before doing this, you 
may want to save the sample program using a different 
name so that you can go back if you make a mistake. Try 
changing a couple of the typefaces and then re-running 
the program.  

View the HTML file again to see how the change affected 
the output. You can leave the web page open, and just use 
the refresh button on the browser to see each new version 
of the output.  

                                                           
1 As of version 8.2, SAS does not embed fonts in PDF documents. 
Hopefully in the future this functionality will be added, allowing the use 
of any font in PDF output. 

A sample modification: 

style fonts from fonts / 
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica", 
    14pt,Bold Italic) 
 ‘TitleFont2' = ("Comic Sans MS, Arial, Helvetica", 
    12pt,Bold Italic) 
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica", 
    12pt,Bold) 
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica", 
     10pt,Italic) 
 'headingFont' = ("Comic Sans MS, Arial, Helvetica", 
     12pt,Bold) 
 'docFont' = ("Trebuchet MS, Arial, Helvetica", 
    12pt) 
 'footFont' = ("Arial, Helvetica, Helv", 
    8pt); 

The resulting output: 

 

 CHANGING THE FONT SIZES, WEIGHTS, AND STYLES 
Now that we’ve got the typefaces we want, we can turn to 
the font sizes. You may have noticed that the default 
HTML output from ODS uses very large fonts. Our 
example style has been set up with somewhat smaller 
fonts already. You can choose to keep them this size, or 
make them larger or even smaller. 

The Default style uses the same font specification for 
titles and footnotes. Our example style uses a different 
setting for each, so that you can have large titles and small 
footnotes.  

Try making some of the fonts bigger or smaller and see 
how this affects the output. 
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A sample modification: 

style fonts from fonts / 
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica", 
     18pt,Bold Italic) 
 'TitleFont2' = ("Comic Sans MS, Arial, Helvetica", 
     12pt,Bold Italic) 
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica", 
     12pt,Bold) 
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica", 
     10pt,Italic) 
 'headingFont' = ("Comic Sans MS, Arial, Helvetica", 
     11pt,Bold) 
 'docFont' = ("Trebuchet MS, Arial, Helvetica", 
     10pt) 
 'footFont' = ("Arial, Helvetica, Helv", 
     8pt); 

The resulting output: 

 

The other thing you can change about fonts is the font 
weight (Medium, Bold, Light) and the font style (Italic, 
Roman, Slant). You may also be able to control the font 
width, though few fonts honor settings like Compressed 
or Expanded. To use any of these settings, just list the 
appropriate keyword(s) after the font size specification. 
Generally, the only two settings that you’ll want to add 
are Bold and/or Italic. If you leave this setting blank, the 
fonts are set to Medium Roman. 

Try changing some of these settings to see what happens.  

A sample modification: 

style fonts from fonts / 
 'TitleFont' = ("Comic Sans MS, Arial, Helvetica", 
     18pt, Bold) 
 'TitleFont2' = ("Comic Sans MS, Arial, Helvetica", 
     12pt, Bold) 
 'StrongFont' = ("Comic Sans MS, Arial, Helvetica", 
     12pt,Bold) 
 'EmphasisFont' = ("Comic Sans MS, Arial, Helvetica", 
     10pt,Italic) 
 'headingFont' = ("Comic Sans MS, Arial, Helvetica", 
     11pt,Bold) 
 'docFont' = ("Trebuchet MS, Arial, Helvetica", 
     10pt) 
 'footFont' = ("Arial, Helvetica, Helv", 
     8pt, Italic); 

The resulting output: 

 

 CHANGING THE COLORS 
Changing the fonts is a fairly subtle thing. This next 
section lets you make big bold changes to your output. 
This section considers the color scheme. 

ODS allows you to set the foreground (text) colors and 
background colors of every part of your output. These 
colors are set by defining a color scheme in the colors 
style element.  

In the example program, each color is identified by name. 
Appendix D lists the color names you can use. This gives 
you a palette of 216 colors. This is a list of web-safe 
colors.  

You also have the option of specifying custom colors by 
using their RGB values given in hexadecimal. For 
example, white would be cxFFFFFF, and black would be 
cx000000 (the “cx” tells SAS that the following value is a 
hexadecimal color). For the purposes of this workshop, 
let’s stick to the named colors. 

When you modify these colors, notice that some of the 
names start in “fg” and represent foreground colors. 
Others start in “bg” and represent background colors. 
These colors work in pairs, and you need to be sure that 
you pick pairs of colors that will be readable. For 
example, pink foreground text on a red background would 
be a problem. 

Try creating a new color scheme. See how it looks. One 
warning here: if you use this style for a destination other 
than HTML, there may be some minor differences in how 
the colors are used. When you get your style set up for 
HTML, you’ll want to test it on other destinations. 
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A sample modification: 

replace color_list / 
 'fgB2' = blue 
 'fgB1' = darkmagenta 
 'fgA1' = orchid 
 'bgA3' = lime 
 'bgA1' = white 
 'fgR'  = lime 
 'bgR'  = darkorchid 
 'fgA2' = lime 
 'bgA2' = darkorchid 
 'fgA'  = deeppink 
 'bgA'  = white 
 'bgP'  = white; 

The resulting output: 

 

If you’re not very creative, there’s a web site that will 
help you design an attractive color scheme. Go to 
http://www.colorschemer.com/online/ and click on a color 
that you like. The web site will generate a group of 16 
related colors that create an attractive color scheme.2 You 
can then copy down the hex codes for these colors and 
use them in your style. 

Another way to pick colors for your scheme is to use 
colors from your corporate logo. Ask your graphics 
department for the correct color codes. They should be 
able to give you the RGB values (you can find an 
RGB/hex converter on the web). 

 CHANGING THE TABLE RULES AND BORDERS 
The next thing we will modify is the table rules and 
borders. The lines around the table and between rows and 
columns are controlled by two attributes: rules and frame. 

The frame attribute specifies whether there will be any 
lines around the outside of your tables. The frame is 
currently set to void, which means there will be no lines 
around the table. Another setting to try is box, which puts 
a line around the entire table. There are also settings that 
let you have borders top and bottom, both sides, or any 
individual edge. 

Try changing the frame setting. Don’t worry about the 
line width or color right now; we’ll get to that later. 

                                                           
2 Note: the site only works with Internet Explorer. 

A sample modification: 

replace Output from Container / 
 frame = box 
 rules = none 
 borderwidth = 1pt 
 bordercolor = color_list('fga1') 
 cellpadding = 7pt 
 cellspacing = 0pt; 

The resulting output is below. This change is a little hard 
to see, but lines have been added around the table. 

 

The rules attribute controls the lines that appear inside 
your tables. This attribute is currently set to none, so there 
are no lines at all. Other settings to try are all and group. 
All turns on all possible lines, creating a table grid. Group 
puts a border between row and column headers and 
footers and the rest of the table body. Other settings 
include rows and cols, which include only row dividers or 
column dividers. 

Try changing the rules setting. You may also want to 
experiment with combinations of frame and rules settings. 

A sample modification: 

replace Output from Container / 
 frame = box 
 rules = all 
 borderwidth = 1pt 
 bordercolor = color_list('fga1') 
 cellpadding = 7pt 
 cellspacing = 0pt; 

The resulting output: 

 

Now that you have all of the lines you want, we can look 
at the width and color for those lines. These are controlled 
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by the borderwidth and bordercolor attributes.3 Don’t 
forget that neither of these settings will have any effect 
unless you’ve specified some lines for your table. With 
frame=void and rules=none, the border width and color 
are irrelevant. 

Borderwidth is simply the line width. It affects the width 
of the table border, but not the rules. Use a number 
followed by “pt” to set the width in points.  

Bordercolor is assigned using a color from your list 
above. Note the syntax here in the original program: it 
uses the color_list element name, followed by the name of 
one of the items in that element (in quotes and inside 
parentheses). You can also just use a color name or code. 
Unlike borderwidth, bordercolor applies to all lines, both 
borders and rules. 

Try experimenting with the border width and color. If 
your custom style will not have any lines, go ahead and 
turn on frame=box and rules=all so that you can at least 
see how they work. You can reset frame and rules later. 

A sample modification: 

replace Output from Container / 
 frame = box 
 rules = all 
 borderwidth = 2pt 
 bordercolor = black 
 cellpadding = 7pt 
 cellspacing = 0pt; 

The resulting output: 

 

 CHANGING THE TABLE SPACING 
The final thing we will modify is the table spacing. This is 
the amount of space that is left between table cell contents 
(your results) and the top, bottom, left, and right sides of 
the cell. To make your table readable, you want a large 
value. But to squeeze more information on the page, you 
probably want a smaller value. 

The attribute that controls this spacing is called 
cellpadding. The example program uses a value of 7, 
which puts a fair amount of space around each value. To 
                                                           
3 Warning: these settings work much better in Internet Explorer than 
Netscape. Your HTML output may not look the same in the two 
browsers. 

save space, you could go down to about 3 without losing 
any readability. 

Experiment with various values to see what you like. One 
thing to note here is that you have to have the same 
amount of space on all sides. 

A sample modification: 

replace Output from Container / 
 frame = box 
 rules = none 
 borderwidth = 2pt 
 bordercolor = black 
 cellpadding = 3pt 
 cellspacing = 2pt; 

The resulting output is shown below. If you look closely, 
you can see the change from the previous output. 

 

 SAVING YOUR STYLE 
Once you’ve created your custom style, you can save the 
program that created. This will allow you to regenerate it 
at any time.  

But you don’t need to run this PROC TEMPLATE every 
time you want to use your new style. SAS has saved the 
style for you in the sasuser library. 

If this style is for you alone, this will work just fine. But if 
you want to share your style, you will need to make a 
couple of changes.  

First, set up a libname for your custom style in a 
commonly accessible area. Then, you’ll need to learn 
about the ODS PATH statement, which you can use to 
route your custom style to this libname. Other users can 
set up the same ODS PATH statement in their programs 
to reference this libname and access your style. 

 CONCLUSIONS 
This workshop has been a short cut to using some basic 
style functionality. If you just need to quickly modify a 
style, this may be enough. 

However, this template only allows you to modify certain 
aspects of your output. You may find that you want to 
control other aspects. To do that, you’re going to have to 
learn a lot more about PROC TEMPLATE syntax. 
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 RESOURCES 
PROC TEMPLATE documentation is in the References 
chapter of:  

Guide to the Output Delivery System in SAS Online 
Doc, version 8, 1999, SAS Institute Inc., Cary, NC, 
USA. 

Preliminary documentation of new features and sample 
programs can be found at: 

http://www.sas.com/rnd/base/ 
index-ods-resources.html.  

My book on ODS has a number of chapters on modifying 
ODS styles:  

Haworth, Lauren, Output Delivery System: The 
Basics, 2001, SAS Institute Inc., Cary, NC, USA. 
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SAS is a registered trademark or trademark of SAS 
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 CONTACTING THE AUTHOR 
Please direct any questions or feedback to the author at: 
info@laurenhaworth.com 
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APPENDIX A 
proc template; 
 define style Styles.Custom; 
 parent = Styles.Default; 
  style fonts from fonts / 
   'TitleFont' = ("Arial, Helvetica, Helv",14pt,Bold Italic) 
   'TitleFont2' = ("Arial, Helvetica, Helv",12pt,Bold Italic) 
   'StrongFont' = ("Arial, Helvetica, Helv",12pt,Bold) 
   'EmphasisFont' = ("Arial, Helvetica, Helv",10pt,Italic) 
   'headingFont' = ("Arial, Helvetica, Helv",12pt,Bold) 
   'docFont' = ("Arial, Helvetica, Helv",11pt) 
   'footFont' = ("Arial, Helvetica, Helv",8pt); 
  replace color_list / 
   'fgB2' = blue  /* links */ 
   'fgB1' = darkmagenta /* visited links */ 
   'fgA1' = black  /* table cell foreground */ 
   'bgA3' = lightgrey /* table cell background */ 
   'bgA1' = lightgrey /* table background - shows through if cellspacing>0 */ 
   'fgR'  = darkblue /* row header foreground */ 
   'bgR'  = darkgray /* row header background */ 
   'fgA2' = darkblue /* column header foreground */ 
   'bgA2' = darkgray /* column header background */ 
   'fgA'  = navy   /* foreground for everything else: notes, proc titles, ... */ 
   'bgA'  = white  /* background for everything else: notes, proc titles, ... */ 
   ‘bgP’  = white  /* page background */; 
  replace Output from Container / 
   frame = void /* outside borders: void, box, above/below, vsides/hsides, lhs/rhs */ 
   rules = none /* internal borders: none, all, cols, rows, group */ 
   borderwidth = 1pt /* the width of the borders and rules */ 
   bordercolor = color_list('fga1') /* the color of the borders and rules */ 
   cellpadding = 7pt /* the space between table cell contents and the cell border */ 
   cellspacing = 0pt /* the space between table cells, allows background to show */; 
  * Leave code below this line alone ; 
  style Body from Body / 
   background = color_list('bgP'); 
  style Contents from Contents / 
   background = color_list('bgP'); 
  style Data from Data / 
   font = fonts("docFont"); 
  style SystemTitle from SystemTitle / 
   font = fonts("TitleFont"); 
  style SystemFooter from SystemFooter / 
   font = fonts("footFont"); 
  style RowHeader from Header / 
   font = fonts("headingFont"); 
  style Header from Header / 
   font = fonts("headingFont"); 
 end; 
run; 
 
options nodate nonumber; 
ods noptitle; 
ods proclabel 'Frequencies'; 
ods html file='c:\body.html' style=Custom; 
 title 'My Sample Title'; 
 footnote 'My Sample Footnote'; 
 proc freq data=sashelp.class; 
  tables sex; 
 run; 
ods html close; 
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APPENDIX B 
 

Font Style Portion of Output it Controls 

TitleFont Titles generated with TITLE statement 

TitleFont2 Titles for procedures (“The ________ Procedure”) 

StrongFont Strong (more emphasized) table headings and footers, page 
numbers 

EmphasisFont Titles for table of contents and table of pages, emphasized 
table headings and footers 

headingFont Table column and row headings and footers, by-group 
headings 

docFont Data in table cells 

footFont Footnotes generated with FOOTNOTE statement 

 

APPENDIX C 
 

“Safe” fonts4,5 
Times New Roman, Times 
Arial, Helvetica 
Arial Black, Arial, Helvetica 
Book Antigua, Times New Roman, Times
Courier New, Courier 

Comic Sans MS, Arial, Helvetica 
Verdana, Arial, Helvetica 
Impact, Arial Black, Helvetica 
Georgia, Times New Roman, Times 
News Gothic MT, Arial, Helvetica 
Tahoma, Arial, Helvetica 
Trebuchet MS, Arial, Helvetica 

 

 

                                                           
4 Although these fonts are fairly safe, good alternate fonts have also been listed for each item. Also, this list is based on standard Windows fonts. If you have 
a lot of Mac users, you may want to list some Mac fonts like Chicago, Geneva, Helvetica, Monaco, New York, Times and Palatino as alternatives. 
5 Two very unsafe fonts are SAS Monospace and SAS Monospace Bold. 
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