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ABSTRACT 
XML is an SGML variant, which is an excellent messaging 
mechanism for passing data back and forth among applications.  
In this workshop, we discuss XML in the context of SAS 
applications and how XML can be used in the preparation and 
presentation of data. We explore some of the features of XML 
that make it a good partner for applications that are based on 
SAS.   This workshop focuses on the tools that SAS provides for 
parsing XML documents so that the full power of SAS can be 
brought to bear on the manipulation and analysis of XML-
encoded data.  After a brief introduction to XML syntax, the 
workshop will demonstrate how to use the ever evolving XML 
library engine to make XML data available to SAS.  Particular 
attention will be paid to the XMLMAP option, which provides the 
programmer with great control over how a   particular XML 
document will appear to SAS in terms of the number of tables 
and units of observation of those tables.  The intended audience 
for this workshop is intermediate SAS programmers with solid 
Base SAS skills and familiarity with markup languages such as 
HTML.  

SCOPE OF WORKSHOP 
As noted in the abstract above, the purpose of this hands-on 
workshop is to demonstrate how to use SAS to read and create 
XML documents.  We will devote little time to the important topic 
of why you would want to read or create an XML document, or 
how XML documents might fit into your new or existing 
applications.  That is not to say that these are not important 
topics.  Rather, they are beyond the scope of this workshop.  We 
encourage interested readers to review two excellent papers on 
XLM and SAS recently published and presented at SUGI27.  The 
papers are “XML and SAS®:  An Advanced Tutorial” by Greg 
Barnes Nelson and “<XML> at SAS - A More Capable XML 
Libname Engine” by Tony Friebel. 

EXERCISES 
This workshop will consist of a series of exercises which will 
demonstrate how to use SAS to read and create XML 
documents. 

EXERCISE 1:  A SIMPLE DOCUMENT 
Viewed as any other file, an XML document is nothing more than 
an ASCII file.  That is, it contains no special, or hidden, 
characters or word-processing paraphernalia.  As a result you 
can use any text editor capable of creating an ASCII file to create 
an XML document.  The choice of an appropriate editor is a 
personal decision on well beyond the scope of this presentation.  
Since this workshop occurs at SUGI, we will use the SAS Display 
Manager as our editor for this workshop.  Bear in mind that any 
ASCII editor will do – UltraEdit, Kedit, Emacs, even Notepad. 
 
To begin, let’s create a simple XML document.  Type the 
following into the Editor window of Display Manager. 
 

<?xml version="1.0"?> 
<message> 
Problems solved.  World saved! 
</message> 

 
Select File->Save As from the File menu.  Type exercise1.xml 
in the Filename box and click the Save button.  Congratulations!  
You have just used the SAS Display Manager editor to create a 

non-SAS file.  Namely, an XML document called 
exercise1.xml.  You can view this XML document either in the 
Editor window of Display Manager (it should be there already) or 
by using MS Internet Explorer.  By default, Internet Explorer will 
render an XML document in a tree view.  You should give this a 
try.  Open up a Windows Explorer window and navigate to the 
folder containing exercise1.xml.  Depending on the version of the 
Windows operating system that you are using the location of this 
document will vary.  You may wish to use the Find or Search 
function to locate the document.  In any event, once you have 
located the document, double-click the icon to render the 
document inside Internet Explorer.  You should see something 
similar to this 
 

  <?xml version="1.0" ?>  
       <message>Problems solved. World 

saved!</message>  
 
You’ve just learned about two ways to view the contents of an 
XML document.  You can use the SAS Display Manager to view 
and modify the contents of the document by opening the 
document in the editor buffer.  Or, you can use Internet Explorer 
to render a read-only tree view of the document.  Although the 
tree view of this document looks very similar to the code view of 
the document, we will see shortly that the tree view is a neat way 
to view more complex XML documents. 

EXERCISE 2:  USING A DATA STEP TO CREATE AN XML 
DOCUMENT 
We created the XML document in exercise 1 without any 
explanation about syntax or rules.  That’s because the rules are 
very simple and flexible.  First, every XML document must begin 
with the special header “<?xml version="1.0"?>”.  There are 
other name-value attribute pairs like version= that you may 
specify.  And, as the XML standard evolves and matures, more of 
these attributes may come into common usage.  Notwithstanding, 
the bare minimum is what we have shown and will likely suffice 
for your applications for some time to come.  The only other 
requirement for an XML document is that it contains balanced 
element tags.  The names of these element tags are for you to 
choose.  In our first exercise, we created an XML document with 
a single element called “message”.  The contents of the message 
element is everything between the opening “<message>” and the 
closing “</message”.  Note that every element must be properly 
balanced in this fashion.  That is, and opening “<name>” must be 
closed by a closing “</name>”.  At a very basic level, that’s really 
all there is to an XML document.  As noted in the scope of 
workshop section above, there is plenty to consider when 
creating real-life XML documents.  Also, just like HTML, XML 
elements may have numerous name-value attributes; however, 
we don’t intend to provide a class on XML at this workshop.  
Through the exercises, you should be able to pick up a few others 
rules about structure and usage, though that insight will be 
tangential to the thrust of this workshop. 
 
Since an XML document is just a plain ASCII file, you can use 
DATA _NULL_ processing to create an XML document using 
PUT statements just as if you were creating a formatted report in 
the days before PROC QPRINT and PROC REPORT.  For 
example, let’s say you have a SAS data set called EXERCISE2 
which has two observations and one field called MESSAGE.  You 
can create an XML document with two elements – one for each 
observation – by performing the following steps.  First, write out 
the XML header.  Second, create a top-level collection for the 
messages, called, say, “<messages>”.  Then for each 
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observation in EXERCISE2, write out “<message>” on a new line 
followed by the contents of the MESSAGE field from the 
EXERCISE2 data set followed by “</message>”.  Finally, 
conclude the document with a closing “</messages>”.  Your data 
step would look something like this. 
 

data _null_; 
  set exercise2 end = lastrec; 
  file 'exercise2.xml'; 
  if _n_ = 1 then do; 
    put '<?xml version="1.0"?>'; 
 put "<messages>"; 
  end; 
  put "<message>" message "</message>"; 
  if lastrec then put "</messages>"; 
  run;   

 
It is left to the reader to create the EXERCISE2 data set.  At the 
hands-on-workshop, a data set will be provided for you.  In any 
event, once you run (submit) this program, there will be a new 
XML document called exercise2.xml in the same folder where 
you found exercise1.xml.  You should use Internet Explore to 
render this document.  You should notice a minus sign next to the 
opening <messages> element.  Move your mouse over this 
minus sign and left-click once.  The minus sign will turn into a 
plus sign and the contained message elements will disappear.  
This is what is meant by a tree view.  Internet Explorer allows you 
to collapse and expand elements as you wish.  As a result, you 
have a great deal of control over how much detail you wish to 
view of a particular XML document. 

EXERCISE 3: CONVERTING A SAS DATA SET TO XML 
What could be more natural than to turn a SAS data set into an 
XML document?  Based on the example above, you might be 
tempted to use a data step to encapsulate and write out all the 
fields in a particular data set.  You could do that; however, SAS 
provides a much easier way of accomplishing this task through 
the XML LIBNAME engine.  That is, you can create a SAS 
LIBNAME using the XML engine and then just write a data set to 
that aggregate location.  Let’s use the data set called 
SASHELP.AIR, which is one of the sample data sets shipped 
with SAS, to create an XML document called EXERCISE3.  Here 
are the steps to follow.  First, define a LIBNAME called XMLOUT 
using the XML LIBNAME engine.  Associate this LIBNAME with a 
file.  Use a simple data step to create a new data set called 
XMLOUT.EXERCISE3 from SASHELP.AIR.  Your data step 
should look something like this. 
 

libname xmlout xml 'exercise3.xml'; run; 
 
data xmlout.exercise3; 
  set sashelp.air; 
  run; 

 
After you run this program, there should be a new XML document 
called erercise3.xml in the same folder as the previous XML 
documents.  It is worth noting a few details about this small 
program and the resulting XML document.  First, note that the 
LIBNAME statement refers to a specific file, exercise3.xml, and 
not a directory as is the normal custom.  Admittedly, this is a bit 
confusing at first.  Normally, FILENAME statements reference 
specific files and LIBNAME statements reference aggregate 
storage locations like directories.  When using the XML LIBNAME 
engine, this distinction blurs.  At an abstract level, the XML 
document is just a special aggregate storage location.  It may be 
easier just to remember that the XML LIBNAME engine requires 
that you specify an exact file name, not just a directory location. 
 
Once the XMLOUT LIBNAME is defined, you can use it in SAS 
programming just as if it were any other LIBNAME.  The same 
rules for naming the LIBNAME hold.  That is, the LIBNAME must 
be eight characters or less and may not start with a number, nor 

may the LIBNAME contain any characters other than numbers, 
the underscore, and letters.  (Sorry about those name-space 
restrictions.  The authors are just SAS users like you.)  There is 
nothing special about the XMLOUT name.  We could have used 
SASAVE, MYXML, or whatever LIBNAME flatters your 
prejudices. 
 
If you have not already done so, you should use Internet Explorer 
to view the new XML document called EXERCISE3.XML.  Note 
that the top-level container is called “<TABLE>”.  This is name 
which SAS decided to use when building the XML LIBNAME 
engine.  It is a sound and reasonable choice, though one made 
by the developers at SAS®.  That is, there is no other special 
meaning to this element name.  The <TABLE> collection 
contains a number of <ERERCISE3> elements.  This name 
comes from the name of the data set we create with the data step 
in this example.  That is, had we decided to create a data set 
called XMLOUT.MYAIR, then the <TABLE> collection would 
contain a set of <MYAIR> elements. 
 
Inside the <EXERCISE3> elements there are two elements called 
<DATE> and <AIR>.  These two elements correspond to the two 
fields in SASHELP.AIR called DATE and AIR.  Finally, there is 
one <EXERCISE> element for each observation in 
SASHELP.AIR. 
 
As you can see, it is remarkably easy to turn a SAS data set into 
an XML document.  Perhaps it is too easy.  Consider the 
overhead in terms of storage.  Each field-value is encapsulated 
with over twenty characters of XML wrapper.  For a small data set 
like SASHELP.AIR, that doesn’t amount to much.  Surely, you 
would not want to convert your multi-million row trade-history 
table to an XML document.  The added storage overhead would 
be prohibitive.  On the other hand, many data-driven applications 
have parametric and meta data stored in smallish SAS data sets 
and tables.  These smaller tables might be excellent candidates 
for conversion to XML.  

EXERCISE 4: READING AN XML DOCUMENT – SIMPLE 
CASE 
You may also use the XML engine to define a LIBNAME which is 
used as input.  For example, now that we have an XML document 
called EXERCISE3.XML which contains rectangular data, we can 
create a SAS data step by reversing the process from exercise 3.  
That is, rather than use the XMLOUT LIBNAME on the DATA 
statement, we can use it on the SET statement instead to create 
a new SAS data set, say, EXERCISE4, in the SAS WORK area.  
For sake of clarity, let’s change the name of the LIBNAME from 
XMLOUT to XMLIN.  It will still refer to the same XML document, 
EXERCISE3.XML.  Your data step should look something like 
this. 
 

libname xmlin xml 'exercise3.xml'; run; 
 
data exercise4; 
  set xmlin.exercise3; 
  run; 
 

After you run this program, you should find a data set called 
EXERCISE4 in the WORK library.  Using the Explorer window 
inside SAS, find the WORK library and then double-click on the 
data set called EXERCISE4.  This should render the data set in 
the VIEWTABLE viewer.  SAS has no trouble parsing a regular 
and rectangular XML document such as EXERCISE3.XML.  A 
later exercise will demonstrate how to use SAS to parse more 
complex and non-rectangular XML documents. 
 

EXERCISE 5:  CREATING AN XML DOCUMENT FROM SAS 
OUTPUT 
The Output Delivery System (ODS) de-couples the content of 
procedure output from its presentation.  You may think that when 
you run PROC MEANS on a data set that the procedure writes 
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the results to the output window, or listing file, and that’s it.  Prior 
to the advent of ODS, this was the case.  Now all SAS 
procedures write the contents of the procedure output to an ODS 
data store.  ODS then uses a template to render these data to an 
output destination.  The default output destination is the familiar 
output window, or listing file.  Other output destinations include 
HTML, RTF, and, of course, XML. 
 
To see how this works, let’s render the output from PROC 
MEANS in an XML document.  We will use the SASHELP.AIR 
data set again.  As mentioned previously, the default output 
destination, called LISTING, is opened by default when you run 
SAS.  To render the output to a different destination you 
encapsulate the procedure output in a pair of ODS statements.  
The first ODS statement opens the output destination and begins 
capturing the output.  The second ODS statement closes the 
output destination and writes out the specified file.  A full 
discussion of the Output Delivery System is beyond the scope of 
this workshop.  Suffice it to say that the simple form of an ODS 
statement to open an XML destination is 
 

ods xml file = “filename.xml”; run; 
 
The corresponding ODS statement to close the XML destination 
is 
 

ods xml close; run; 
 
If we put a PROC MEANS statement inside these two ODS 
statements, the output from PROC MEANS will go to the file 
specified in the opening ODS statement.  Your complete program 
should look something like this. 
 

ods xml file = 'exercise5.xml'; run; 
 
proc means data = sashelp.air;  
  var air;  
  run; 
 
ods xml close; run; 

 
If you haven’t done so already, you should open 
EXERCISE5.XML using Internet Explorer.  Try to find the actual 
values for the N, Mean, Std Dev, Minimum, and Maximum 
statistics.  They should appear towards the bottom of the 
document inside the “<output-body>” element.  This XML 
document is a far cry from the trivial example we started with in 
exercise 1.  At this point you should have some appreciation of 
the wonderfully complex data structures that may be stored using 
XML.  We will conclude this workshop with a final exercise to 
parse a non-rectangular XML document. 
 

EXERCISE 6:  PARSING NON-RECTANGULAR XML 
DOCUMENTS 
The XML LIBNAME engine which ships with SAS 8.2 or earlier 
will not work with the following exercise.  In order to use the 
LIBNAME options referenced in this example, you must first 
download and install the XMLMAP enhancements from the SAS 
web site.  The URL for this update as of late 2002 is shown 
below. 
 
http://www.sas.com/apps/demosdownloads/xmlengine_EXP_sys
dep.jsp?packageID=000198 
 
If you don’t find anything at this location, start by navigating to the 
download section of the SAS web site and then look for Base 
SAS.  This link contains both the download and instructions on 
how to apply this update to your version of SAS.  We will not go 
into a discussion on how to apply this upgrade as part of this 
workshop.  The workstations used for this HOW will already have 
this upgrade in place. 

 
Consider the following problem.  You wish to identify patients 
having a particular disease state by applying pattern-matching 
algorithms to a claims-history table.  These patterns consist of 
one, or more diagnosis codes, and one or more procedure codes.  
You can encapsulate these data in an XML document like the 
one shown below. 
 

<?xml version="1.0" ?> 
 
<community> 
  <disease> 
     <Name>Aaa Bee Cee</Name> 
     <Abbrev>ABC</Abbrev> 
     <Events> 
        <DX effdate="01JAN2001">123.45</DX> 
        <DX effdate="01JAN2001">678.90</DX> 
        <DX effdate="01JAN2001">345.67</DX> 
        <PX effdate="01JAN2001">12345</PX> 
        <PX effdate="01JAN2001">67890</PX> 
     </Events> 
  </disease> 
  <disease> 
     <Name>Dee Eee Eff</Name> 
     <Abbrev>DEF</Abbrev> 
     <Events> 
        <DX effdate="01JAN2001">990.12</DX> 
        <PX effdate="01JAN2001">12345</PX> 
        <PX effdate="01JAN2001">67890</PX> 
        <PX effdate="01JAN2001">34512</PX> 
     </Events> 
  </disease> 
</community> 

 
There are two disease states represented, ABC and DEF.  
Disease ABC has three diagnosis codes (DX) and two procedure 
codes (PX).  Disease DEF has one diagnosis code and three 
procedure codes.  These meta data are clearly non-rectangular 
and would not fit easily into a single SAS data set. 
 
The first challenge is to determine how to store these data in 
rectangular SAS tables.  For the sake of discussion, let’s agree 
that one sensible solution would be to create one table of 
disease-specific information; one table of DX events, and one 
table of PX events.  We wish to be able to link the DX and PX 
event tables to the disease table, so certain key information must 
be retained in the DX and PX event tables. 
 
The XMLMAP= option on the LIBNAME statement allows you to 
specify an XML file that defines how to parse an XML document 
into various bits.  As noted above, the XMLMAP= option will only 
work if you have applied the patch described above.  The 
XMLMAP= options changes the way that the XML LIBNAME 
engine parses the XML document.  The revised syntax looks like 
this. 
 

libname xmlin  
  xml ‘SUGI28.HOW.xml’  
  xmlmap = ‘SUGI28.HOW.map’; run; 

   
That is, the XMLMAP= option refers to a special XML document 
which contains information that the XML LIBNAME engine uses 
to parse the XML document.  We’ll examine the structure of the 
XMLMAP file in a moment.  For now, let’s stipulate that it will 
parse the XML document above into three SAS data sets called 
DISEASE, DXEVENTS, and PXEVENTS.  Using the LIBNAME 
statement above, you can print these “data sets” directly as 
follows. 
 

proc print data = xmlin.disease; 
proc print data = xmlin.dxevents; 
proc print data = xmlin.pxevents; 
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Obviously, the “programming” occurs in the XMLMAP file.  The 
remainder of this workshop will discuss the elements of the 
XMLMAP file and how to construct one for the XML document 
listed above. 
 

EXERCISE 7: BUILDING AN XMLMAP DOCUMENT 
The XMLMAP document is itself an XML document.  The content 
and structure of the XMLMAP document are defined by SAS.  
Like all XML documents, the XMLMAP file must begin with the 
special XML header.  The top-level collection name for the 
XMLMAP document is <SXLEMap>.  So, the basis outline for an 
XMLMAP document is 
 

<?xml version="1.0" ?> 
 
<SXLEMap> 
</SXLEMap> 

 
Data sets, or tables are specified by <TABLE> elements.  We 
wish to parse our XML document into three tables, so it stands to 
reason, that the SXLEMap collection will contain three <TABLE> 
elements as follows. 
 

<?xml version="1.0" ?> 
 
<SXLEMap> 
  <TABLE name=”DISEASE”> 
  </TABLE> 
  <TABLE name=”DXEVENTS”> 
  </TABLE> 
  <TABLE name=”PXEVENTS”> 
  </TABLE> 
</SXLEMap> 

 
Next we need to tell SAS where in the XML document the tables 
begin and end.  This is done with the <TABLE_XPATH> element 
which employs standard XPATH syntax to specify where in the 
XML document tree a table begins.  For the DISEASE table, this 
would be “/community/disease”.  That is, the <disease> elements 
in the XML document will define rows, or observations, in the 
resulting DISEASE table.  The DISEASE table element would 
therefore look like this. 
 

<TABLE name="DISEASE"> 
   <TABLE_XPATH> /community/disease 
</TABLE_XPATH> 
</TABLE> 

 
Next we need to specify which elements inside the <disease> 
container correspond to columns in the resulting SAS DISEASE 
data set.  This is done with the <COLUMN> element which also 
uses XPATH syntax to locate where the values for the column 
may be found.  In out example, the SAS data set DISEASE will 
contain the name of the disease as well as the short name or 
abbreviation.  The name is found at /community/disease/Name 
and the short name is found at /community/disease/Abbrev.  In 
addition to specifying the location of these elements in the 
document tree, the <COLUMN> element also contains sub-
elements which you can use to specify the type, length, label, 
format, and informat of the column contents.  Here is what the 
<COLUMN> element looks like for the Name column in the 
DISEASE data set. 
 

<TABLE name="DISEASE"> 
   <TABLE_XPATH> /community/disease 
</TABLE_XPATH> 
    <COLUMN name="Name"> 
         <XPATH> /community/disease/Name 
</XPATH> 
         <TYPE> character </TYPE> 

         <DATATYPE> string </DATATYPE> 
         <LENGTH> 40 </LENGTH> 
         <LABEL> Formal Disease Name </LABEL> 
      </COLUMN> 
</TABLE> 

 
Note the two elements called <TYPE> and <DATATYPE>.  The 
element called <TYPE> is the resulting SAS data type.  The 
element called <DATATYPE> is the XML data type and only 
comes in flavors of string and number.  Since you can use 
INFORMATS to read-in values, you can safely treat almost all 
XML data as string.   Our XML document associates effective 
dates with the various DX and PX values.  We would like to store 
this information as a column in the resulting DXEVENTS and 
PXEVENTS tables.  We use the XPATH ‘@’ syntax to access 
these attribute values.  Since these values are actually dates, we 
prefer to store then as SAS dates.  We can use the <FORMAT> 
and <INFORAMT> sub-elements to accomplish this.  For 
example, the <COLUMN> element for effective dates might look 
like this. 
 

<TABLE name="DXEVENTS"> 
   <TABLE_XPATH> /community/disease/Events/DX 
</TABLE_XPATH> 
   <COLUMN name="EffDate"> 
      <XPATH> 
/community/disease/Events/DX@effdate </XPATH> 
      <TYPE> numeric </TYPE> 
      <DATATYPE> string </DATATYPE> 
      <LENGTH> 9 </LENGTH> 
      <LABEL> Effective Date </LABEL> 
      <FORMAT width = "9"> date </FORMAT> 
      <INFORMAT width = "9"> date </INFORMAT> 
   </COLUMN> 
</TABLE> 

 
We mentioned at the outset of this exercise, that we would retain 
certain key information in DXEVENTS and PXEVENTS so that 
we could later link DXEVENTS and DISEASE.  This is done by 
specifying the attribute retain=”YES” on the column element.  For 
example the column element inside the DXEVENTS table for the 
short name might begin like this. 
 

<COLUMN name="ShortName" retain="YES" > 
  
You now have most of the basic elements required to construct 
an XMLMAP document.  There are a number of other elements 
not mentioned here which provide even greater control over 
parsing.  Those may be found in the XMLMAP documentation 
found on the SAS web site.  Without looking ahead, see if you 
can build an XMLMAP document for our XML document by 
following the following rules.  First, the top-level container is 
called <SXLEMap>.  Second, tables are specified by <TABLE> 
elements.  The <TABLE> elements contain a sub-element to 
indicate where an observation for the table begins, 
<TABLE_XPATH> as well as <COLUMN> elements for each 
desired output column.  The <COLUMN>, in turn, contains sub-
elements to specify the location of the column in the XML 
documents, <XPATH>, as well as various attributes on the 
column such as LENGTH, TYPE, FORAMT, and INFORMAT. 
 
Here is our solution to the full XMLMAP file for this exercise. 
 

<?xml version="1.0" ?> 
 
<SXLEMap> 
    
   <!-- TABLE (DISEASE)                               
--> 
   <!-- top level disease description                  
--> 
   <TABLE name="DISEASE"> 
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      <TABLE_XPATH> /community/disease 
</TABLE_XPATH> 
      <TABLE_LABEL> Individual disease 
communities </TABLE_LABEL> 
 
      <!-- Name                                                            
--> 
      <COLUMN name="Name"> 
         <XPATH> /community/disease/Name 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 40 </LENGTH> 
         <LABEL> Formal Disease Name </LABEL> 
      </COLUMN> 
 
      <!-- Short Name                                                      
--> 
      <COLUMN name="ShortName"> 
         <XPATH> /community/disease/Abbrev 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 10 </LENGTH> 
         <LABEL> Short Disease Name </LABEL> 
      </COLUMN> 
 
   </TABLE> 
 
   <!-- TABLE (DXEVENTS)                                                   
--> 
   <!-- List of DX Events                                                  
--> 
   <TABLE name="DXEVENTS"> 
      <TABLE_XPATH> 
/community/disease/Events/DX </TABLE_XPATH> 
      <TABLE_LABEL> DX Events </TABLE_LABEL> 
 
      <!-- Short Name                                                      
--> 
      <COLUMN name="ShortName" retain="YES" > 
         <XPATH> /community/disease/Abbrev 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 10 </LENGTH> 
         <LABEL> Short Disease Name </LABEL> 
      </COLUMN> 
 
      <!-- DX Code                                                         
--> 
      <COLUMN name="DX"> 
         <XPATH> /community/disease/Events/DX 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 6 </LENGTH> 
         <LABEL> ICD9CM DX Code </LABEL> 
      </COLUMN> 
 
      <!-- Effective Date                                                  
--> 
      <COLUMN name="EffDate"> 
         <XPATH> 
/community/disease/Events/DX@effdate </XPATH> 
         <TYPE> numeric </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 9 </LENGTH> 
         <LABEL> Effective Date </LABEL> 
         <FORMAT width = "9"> date </FORMAT> 
         <INFORMAT width = "9"> date 
</INFORMAT> 
      </COLUMN> 

 
   </TABLE> 
 
   <!-- TABLE (PXEVENTS)                               
--> 
   <!-- List of PX Events                              
--> 
   <TABLE name="PXEVENTS"> 
      <TABLE_XPATH> 
/community/disease/Events/PX </TABLE_XPATH> 
      <TABLE_LABEL> PX Events </TABLE_LABEL> 
 
      <!-- Short Name                                  
--> 
      <COLUMN name="ShortName" retain="YES" > 
         <XPATH> /community/disease/Abbrev 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 10 </LENGTH> 
         <LABEL> Short Disease Name </LABEL> 
      </COLUMN> 
 
      <!-- PX Code                                     
--> 
      <COLUMN name="PX"> 
         <XPATH> /community/disease/Events/PX 
</XPATH> 
         <TYPE> character </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 5 </LENGTH> 
         <LABEL> CPT-4 PX Code </LABEL> 
      </COLUMN> 
 
      <!-- Effective Date                              
--> 
      <COLUMN name="EffDate"> 
         <XPATH> 
/community/disease/Events/PX@effdate </XPATH> 
         <TYPE> numeric </TYPE> 
         <DATATYPE> string </DATATYPE> 
         <LENGTH> 9 </LENGTH> 
         <LABEL> Effective Date </LABEL> 
         <FORMAT width = "9"> date </FORMAT> 
         <INFORMAT width = "9"> date 
</INFORMAT> 
      </COLUMN> 
 
   </TABLE> 
 
</SXLEMap> 

CONCLUSION 
We hope that this workshop has whetted your appetite to do 
more with XML and SAS.  XML is an excellent choice for storing 
messages and meta data.  If you build data-driven applications, 
you likely have some of these sorts of data already lying about.  
SAS provides some very clean and elegant interfaces to data in 
XML format which you can use to your advantage.  The cocktail 
is intoxicating and the possibilities are boundless. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  
Contact the authors at: 
 

Jack N Shoemaker 
 ThotWave Technologies 
 Cary, NC 
          shoe@thotwave.com 
  
                Greg S Barnes Nelson   
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