
Paper 193-28

- 1 -

XML Primer for SAS® Programmers
Jack N Shoemaker, ThotWave Technologies, Cary, NC

Greg S Barnes Nelson, ThotWave Technologies, Cary, NC

ABSTRACT
XML is an SGML variant, which is an excellent messaging
mechanism for passing data back and forth among applications.
In this workshop, we discuss XML in the context of SAS
applications and how XML can be used in the preparation and
presentation of data. We explore some of the features of XML
that make it a good partner for applications that are based on
SAS. This workshop focuses on the tools that SAS provides for
parsing XML documents so that the full power of SAS can be
brought to bear on the manipulation and analysis of XML-
encoded data. After a brief introduction to XML syntax, the
workshop will demonstrate how to use the ever evolving XML
library engine to make XML data available to SAS. Particular
attention will be paid to the XMLMAP option, which provides the
programmer with great control over how a particular XML
document will appear to SAS in terms of the number of tables
and units of observation of those tables. The intended audience
for this workshop is intermediate SAS programmers with solid
Base SAS skills and familiarity with markup languages such as
HTML.

SCOPE OF WORKSHOP
As noted in the abstract above, the purpose of this hands-on
workshop is to demonstrate how to use SAS to read and create
XML documents. We will devote little time to the important topic
of why you would want to read or create an XML document, or
how XML documents might fit into your new or existing
applications. That is not to say that these are not important
topics. Rather, they are beyond the scope of this workshop. We
encourage interested readers to review two excellent papers on
XLM and SAS recently published and presented at SUGI27. The
papers are “XML and SAS®: An Advanced Tutorial” by Greg
Barnes Nelson and “<XML> at SAS - A More Capable XML
Libname Engine” by Tony Friebel.

EXERCISES
This workshop will consist of a series of exercises which will
demonstrate how to use SAS to read and create XML
documents.

EXERCISE 1: A SIMPLE DOCUMENT
Viewed as any other file, an XML document is nothing more than
an ASCII file. That is, it contains no special, or hidden,
characters or word-processing paraphernalia. As a result you
can use any text editor capable of creating an ASCII file to create
an XML document. The choice of an appropriate editor is a
personal decision on well beyond the scope of this presentation.
Since this workshop occurs at SUGI, we will use the SAS Display
Manager as our editor for this workshop. Bear in mind that any
ASCII editor will do – UltraEdit, Kedit, Emacs, even Notepad.

To begin, let’s create a simple XML document. Type the
following into the Editor window of Display Manager.

<?xml version="1.0"?>
<message>
Problems solved. World saved!
</message>

Select File->Save As from the File menu. Type exercise1.xml
in the Filename box and click the Save button. Congratulations!
You have just used the SAS Display Manager editor to create a

non-SAS file. Namely, an XML document called
exercise1.xml. You can view this XML document either in the
Editor window of Display Manager (it should be there already) or
by using MS Internet Explorer. By default, Internet Explorer will
render an XML document in a tree view. You should give this a
try. Open up a Windows Explorer window and navigate to the
folder containing exercise1.xml. Depending on the version of the
Windows operating system that you are using the location of this
document will vary. You may wish to use the Find or Search
function to locate the document. In any event, once you have
located the document, double-click the icon to render the
document inside Internet Explorer. You should see something
similar to this

 <?xml version="1.0" ?>
 <message>Problems solved. World

saved!</message>

You’ve just learned about two ways to view the contents of an
XML document. You can use the SAS Display Manager to view
and modify the contents of the document by opening the
document in the editor buffer. Or, you can use Internet Explorer
to render a read-only tree view of the document. Although the
tree view of this document looks very similar to the code view of
the document, we will see shortly that the tree view is a neat way
to view more complex XML documents.

EXERCISE 2: USING A DATA STEP TO CREATE AN XML
DOCUMENT
We created the XML document in exercise 1 without any
explanation about syntax or rules. That’s because the rules are
very simple and flexible. First, every XML document must begin
with the special header “<?xml version="1.0"?>”. There are
other name-value attribute pairs like version= that you may
specify. And, as the XML standard evolves and matures, more of
these attributes may come into common usage. Notwithstanding,
the bare minimum is what we have shown and will likely suffice
for your applications for some time to come. The only other
requirement for an XML document is that it contains balanced
element tags. The names of these element tags are for you to
choose. In our first exercise, we created an XML document with
a single element called “message”. The contents of the message
element is everything between the opening “<message>” and the
closing “</message”. Note that every element must be properly
balanced in this fashion. That is, and opening “<name>” must be
closed by a closing “</name>”. At a very basic level, that’s really
all there is to an XML document. As noted in the scope of
workshop section above, there is plenty to consider when
creating real-life XML documents. Also, just like HTML, XML
elements may have numerous name-value attributes; however,
we don’t intend to provide a class on XML at this workshop.
Through the exercises, you should be able to pick up a few others
rules about structure and usage, though that insight will be
tangential to the thrust of this workshop.

Since an XML document is just a plain ASCII file, you can use
DATA _NULL_ processing to create an XML document using
PUT statements just as if you were creating a formatted report in
the days before PROC QPRINT and PROC REPORT. For
example, let’s say you have a SAS data set called EXERCISE2
which has two observations and one field called MESSAGE. You
can create an XML document with two elements – one for each
observation – by performing the following steps. First, write out
the XML header. Second, create a top-level collection for the
messages, called, say, “<messages>”. Then for each

SUGI 28 Hands-on Workshops

2

observation in EXERCISE2, write out “<message>” on a new line
followed by the contents of the MESSAGE field from the
EXERCISE2 data set followed by “</message>”. Finally,
conclude the document with a closing “</messages>”. Your data
step would look something like this.

data _null_;
 set exercise2 end = lastrec;
 file 'exercise2.xml';
 if _n_ = 1 then do;
 put '<?xml version="1.0"?>';
 put "<messages>";
 end;
 put "<message>" message "</message>";
 if lastrec then put "</messages>";
 run;

It is left to the reader to create the EXERCISE2 data set. At the
hands-on-workshop, a data set will be provided for you. In any
event, once you run (submit) this program, there will be a new
XML document called exercise2.xml in the same folder where
you found exercise1.xml. You should use Internet Explore to
render this document. You should notice a minus sign next to the
opening <messages> element. Move your mouse over this
minus sign and left-click once. The minus sign will turn into a
plus sign and the contained message elements will disappear.
This is what is meant by a tree view. Internet Explorer allows you
to collapse and expand elements as you wish. As a result, you
have a great deal of control over how much detail you wish to
view of a particular XML document.

EXERCISE 3: CONVERTING A SAS DATA SET TO XML
What could be more natural than to turn a SAS data set into an
XML document? Based on the example above, you might be
tempted to use a data step to encapsulate and write out all the
fields in a particular data set. You could do that; however, SAS
provides a much easier way of accomplishing this task through
the XML LIBNAME engine. That is, you can create a SAS
LIBNAME using the XML engine and then just write a data set to
that aggregate location. Let’s use the data set called
SASHELP.AIR, which is one of the sample data sets shipped
with SAS, to create an XML document called EXERCISE3. Here
are the steps to follow. First, define a LIBNAME called XMLOUT
using the XML LIBNAME engine. Associate this LIBNAME with a
file. Use a simple data step to create a new data set called
XMLOUT.EXERCISE3 from SASHELP.AIR. Your data step
should look something like this.

libname xmlout xml 'exercise3.xml'; run;

data xmlout.exercise3;
 set sashelp.air;
 run;

After you run this program, there should be a new XML document
called erercise3.xml in the same folder as the previous XML
documents. It is worth noting a few details about this small
program and the resulting XML document. First, note that the
LIBNAME statement refers to a specific file, exercise3.xml, and
not a directory as is the normal custom. Admittedly, this is a bit
confusing at first. Normally, FILENAME statements reference
specific files and LIBNAME statements reference aggregate
storage locations like directories. When using the XML LIBNAME
engine, this distinction blurs. At an abstract level, the XML
document is just a special aggregate storage location. It may be
easier just to remember that the XML LIBNAME engine requires
that you specify an exact file name, not just a directory location.

Once the XMLOUT LIBNAME is defined, you can use it in SAS
programming just as if it were any other LIBNAME. The same
rules for naming the LIBNAME hold. That is, the LIBNAME must
be eight characters or less and may not start with a number, nor

may the LIBNAME contain any characters other than numbers,
the underscore, and letters. (Sorry about those name-space
restrictions. The authors are just SAS users like you.) There is
nothing special about the XMLOUT name. We could have used
SASAVE, MYXML, or whatever LIBNAME flatters your
prejudices.

If you have not already done so, you should use Internet Explorer
to view the new XML document called EXERCISE3.XML. Note
that the top-level container is called “<TABLE>”. This is name
which SAS decided to use when building the XML LIBNAME
engine. It is a sound and reasonable choice, though one made
by the developers at SAS®. That is, there is no other special
meaning to this element name. The <TABLE> collection
contains a number of <ERERCISE3> elements. This name
comes from the name of the data set we create with the data step
in this example. That is, had we decided to create a data set
called XMLOUT.MYAIR, then the <TABLE> collection would
contain a set of <MYAIR> elements.

Inside the <EXERCISE3> elements there are two elements called
<DATE> and <AIR>. These two elements correspond to the two
fields in SASHELP.AIR called DATE and AIR. Finally, there is
one <EXERCISE> element for each observation in
SASHELP.AIR.

As you can see, it is remarkably easy to turn a SAS data set into
an XML document. Perhaps it is too easy. Consider the
overhead in terms of storage. Each field-value is encapsulated
with over twenty characters of XML wrapper. For a small data set
like SASHELP.AIR, that doesn’t amount to much. Surely, you
would not want to convert your multi-million row trade-history
table to an XML document. The added storage overhead would
be prohibitive. On the other hand, many data-driven applications
have parametric and meta data stored in smallish SAS data sets
and tables. These smaller tables might be excellent candidates
for conversion to XML.

EXERCISE 4: READING AN XML DOCUMENT – SIMPLE
CASE
You may also use the XML engine to define a LIBNAME which is
used as input. For example, now that we have an XML document
called EXERCISE3.XML which contains rectangular data, we can
create a SAS data step by reversing the process from exercise 3.
That is, rather than use the XMLOUT LIBNAME on the DATA
statement, we can use it on the SET statement instead to create
a new SAS data set, say, EXERCISE4, in the SAS WORK area.
For sake of clarity, let’s change the name of the LIBNAME from
XMLOUT to XMLIN. It will still refer to the same XML document,
EXERCISE3.XML. Your data step should look something like
this.

libname xmlin xml 'exercise3.xml'; run;

data exercise4;
 set xmlin.exercise3;
 run;

After you run this program, you should find a data set called
EXERCISE4 in the WORK library. Using the Explorer window
inside SAS, find the WORK library and then double-click on the
data set called EXERCISE4. This should render the data set in
the VIEWTABLE viewer. SAS has no trouble parsing a regular
and rectangular XML document such as EXERCISE3.XML. A
later exercise will demonstrate how to use SAS to parse more
complex and non-rectangular XML documents.

EXERCISE 5: CREATING AN XML DOCUMENT FROM SAS
OUTPUT
The Output Delivery System (ODS) de-couples the content of
procedure output from its presentation. You may think that when
you run PROC MEANS on a data set that the procedure writes

SUGI 28 Hands-on Workshops

3

the results to the output window, or listing file, and that’s it. Prior
to the advent of ODS, this was the case. Now all SAS
procedures write the contents of the procedure output to an ODS
data store. ODS then uses a template to render these data to an
output destination. The default output destination is the familiar
output window, or listing file. Other output destinations include
HTML, RTF, and, of course, XML.

To see how this works, let’s render the output from PROC
MEANS in an XML document. We will use the SASHELP.AIR
data set again. As mentioned previously, the default output
destination, called LISTING, is opened by default when you run
SAS. To render the output to a different destination you
encapsulate the procedure output in a pair of ODS statements.
The first ODS statement opens the output destination and begins
capturing the output. The second ODS statement closes the
output destination and writes out the specified file. A full
discussion of the Output Delivery System is beyond the scope of
this workshop. Suffice it to say that the simple form of an ODS
statement to open an XML destination is

ods xml file = “filename.xml”; run;

The corresponding ODS statement to close the XML destination
is

ods xml close; run;

If we put a PROC MEANS statement inside these two ODS
statements, the output from PROC MEANS will go to the file
specified in the opening ODS statement. Your complete program
should look something like this.

ods xml file = 'exercise5.xml'; run;

proc means data = sashelp.air;
 var air;
 run;

ods xml close; run;

If you haven’t done so already, you should open
EXERCISE5.XML using Internet Explorer. Try to find the actual
values for the N, Mean, Std Dev, Minimum, and Maximum
statistics. They should appear towards the bottom of the
document inside the “<output-body>” element. This XML
document is a far cry from the trivial example we started with in
exercise 1. At this point you should have some appreciation of
the wonderfully complex data structures that may be stored using
XML. We will conclude this workshop with a final exercise to
parse a non-rectangular XML document.

EXERCISE 6: PARSING NON-RECTANGULAR XML
DOCUMENTS
The XML LIBNAME engine which ships with SAS 8.2 or earlier
will not work with the following exercise. In order to use the
LIBNAME options referenced in this example, you must first
download and install the XMLMAP enhancements from the SAS
web site. The URL for this update as of late 2002 is shown
below.

http://www.sas.com/apps/demosdownloads/xmlengine_EXP_sys
dep.jsp?packageID=000198

If you don’t find anything at this location, start by navigating to the
download section of the SAS web site and then look for Base
SAS. This link contains both the download and instructions on
how to apply this update to your version of SAS. We will not go
into a discussion on how to apply this upgrade as part of this
workshop. The workstations used for this HOW will already have
this upgrade in place.

Consider the following problem. You wish to identify patients
having a particular disease state by applying pattern-matching
algorithms to a claims-history table. These patterns consist of
one, or more diagnosis codes, and one or more procedure codes.
You can encapsulate these data in an XML document like the
one shown below.

<?xml version="1.0" ?>

<community>
 <disease>
 <Name>Aaa Bee Cee</Name>
 <Abbrev>ABC</Abbrev>
 <Events>
 <DX effdate="01JAN2001">123.45</DX>
 <DX effdate="01JAN2001">678.90</DX>
 <DX effdate="01JAN2001">345.67</DX>
 <PX effdate="01JAN2001">12345</PX>
 <PX effdate="01JAN2001">67890</PX>
 </Events>
 </disease>
 <disease>
 <Name>Dee Eee Eff</Name>
 <Abbrev>DEF</Abbrev>
 <Events>
 <DX effdate="01JAN2001">990.12</DX>
 <PX effdate="01JAN2001">12345</PX>
 <PX effdate="01JAN2001">67890</PX>
 <PX effdate="01JAN2001">34512</PX>
 </Events>
 </disease>
</community>

There are two disease states represented, ABC and DEF.
Disease ABC has three diagnosis codes (DX) and two procedure
codes (PX). Disease DEF has one diagnosis code and three
procedure codes. These meta data are clearly non-rectangular
and would not fit easily into a single SAS data set.

The first challenge is to determine how to store these data in
rectangular SAS tables. For the sake of discussion, let’s agree
that one sensible solution would be to create one table of
disease-specific information; one table of DX events, and one
table of PX events. We wish to be able to link the DX and PX
event tables to the disease table, so certain key information must
be retained in the DX and PX event tables.

The XMLMAP= option on the LIBNAME statement allows you to
specify an XML file that defines how to parse an XML document
into various bits. As noted above, the XMLMAP= option will only
work if you have applied the patch described above. The
XMLMAP= options changes the way that the XML LIBNAME
engine parses the XML document. The revised syntax looks like
this.

libname xmlin
 xml ‘SUGI28.HOW.xml’
 xmlmap = ‘SUGI28.HOW.map’; run;

That is, the XMLMAP= option refers to a special XML document
which contains information that the XML LIBNAME engine uses
to parse the XML document. We’ll examine the structure of the
XMLMAP file in a moment. For now, let’s stipulate that it will
parse the XML document above into three SAS data sets called
DISEASE, DXEVENTS, and PXEVENTS. Using the LIBNAME
statement above, you can print these “data sets” directly as
follows.

proc print data = xmlin.disease;
proc print data = xmlin.dxevents;
proc print data = xmlin.pxevents;

SUGI 28 Hands-on Workshops

4

Obviously, the “programming” occurs in the XMLMAP file. The
remainder of this workshop will discuss the elements of the
XMLMAP file and how to construct one for the XML document
listed above.

EXERCISE 7: BUILDING AN XMLMAP DOCUMENT
The XMLMAP document is itself an XML document. The content
and structure of the XMLMAP document are defined by SAS.
Like all XML documents, the XMLMAP file must begin with the
special XML header. The top-level collection name for the
XMLMAP document is <SXLEMap>. So, the basis outline for an
XMLMAP document is

<?xml version="1.0" ?>

<SXLEMap>
</SXLEMap>

Data sets, or tables are specified by <TABLE> elements. We
wish to parse our XML document into three tables, so it stands to
reason, that the SXLEMap collection will contain three <TABLE>
elements as follows.

<?xml version="1.0" ?>

<SXLEMap>
 <TABLE name=”DISEASE”>
 </TABLE>
 <TABLE name=”DXEVENTS”>
 </TABLE>
 <TABLE name=”PXEVENTS”>
 </TABLE>
</SXLEMap>

Next we need to tell SAS where in the XML document the tables
begin and end. This is done with the <TABLE_XPATH> element
which employs standard XPATH syntax to specify where in the
XML document tree a table begins. For the DISEASE table, this
would be “/community/disease”. That is, the <disease> elements
in the XML document will define rows, or observations, in the
resulting DISEASE table. The DISEASE table element would
therefore look like this.

<TABLE name="DISEASE">
 <TABLE_XPATH> /community/disease
</TABLE_XPATH>
</TABLE>

Next we need to specify which elements inside the <disease>
container correspond to columns in the resulting SAS DISEASE
data set. This is done with the <COLUMN> element which also
uses XPATH syntax to locate where the values for the column
may be found. In out example, the SAS data set DISEASE will
contain the name of the disease as well as the short name or
abbreviation. The name is found at /community/disease/Name
and the short name is found at /community/disease/Abbrev. In
addition to specifying the location of these elements in the
document tree, the <COLUMN> element also contains sub-
elements which you can use to specify the type, length, label,
format, and informat of the column contents. Here is what the
<COLUMN> element looks like for the Name column in the
DISEASE data set.

<TABLE name="DISEASE">
 <TABLE_XPATH> /community/disease
</TABLE_XPATH>
 <COLUMN name="Name">
 <XPATH> /community/disease/Name
</XPATH>
 <TYPE> character </TYPE>

 <DATATYPE> string </DATATYPE>
 <LENGTH> 40 </LENGTH>
 <LABEL> Formal Disease Name </LABEL>
 </COLUMN>
</TABLE>

Note the two elements called <TYPE> and <DATATYPE>. The
element called <TYPE> is the resulting SAS data type. The
element called <DATATYPE> is the XML data type and only
comes in flavors of string and number. Since you can use
INFORMATS to read-in values, you can safely treat almost all
XML data as string. Our XML document associates effective
dates with the various DX and PX values. We would like to store
this information as a column in the resulting DXEVENTS and
PXEVENTS tables. We use the XPATH ‘@’ syntax to access
these attribute values. Since these values are actually dates, we
prefer to store then as SAS dates. We can use the <FORMAT>
and <INFORAMT> sub-elements to accomplish this. For
example, the <COLUMN> element for effective dates might look
like this.

<TABLE name="DXEVENTS">
 <TABLE_XPATH> /community/disease/Events/DX
</TABLE_XPATH>
 <COLUMN name="EffDate">
 <XPATH>
/community/disease/Events/DX@effdate </XPATH>
 <TYPE> numeric </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 9 </LENGTH>
 <LABEL> Effective Date </LABEL>
 <FORMAT width = "9"> date </FORMAT>
 <INFORMAT width = "9"> date </INFORMAT>
 </COLUMN>
</TABLE>

We mentioned at the outset of this exercise, that we would retain
certain key information in DXEVENTS and PXEVENTS so that
we could later link DXEVENTS and DISEASE. This is done by
specifying the attribute retain=”YES” on the column element. For
example the column element inside the DXEVENTS table for the
short name might begin like this.

<COLUMN name="ShortName" retain="YES" >

You now have most of the basic elements required to construct
an XMLMAP document. There are a number of other elements
not mentioned here which provide even greater control over
parsing. Those may be found in the XMLMAP documentation
found on the SAS web site. Without looking ahead, see if you
can build an XMLMAP document for our XML document by
following the following rules. First, the top-level container is
called <SXLEMap>. Second, tables are specified by <TABLE>
elements. The <TABLE> elements contain a sub-element to
indicate where an observation for the table begins,
<TABLE_XPATH> as well as <COLUMN> elements for each
desired output column. The <COLUMN>, in turn, contains sub-
elements to specify the location of the column in the XML
documents, <XPATH>, as well as various attributes on the
column such as LENGTH, TYPE, FORAMT, and INFORMAT.

Here is our solution to the full XMLMAP file for this exercise.

<?xml version="1.0" ?>

<SXLEMap>

 <!-- TABLE (DISEASE)
-->
 <!-- top level disease description
-->
 <TABLE name="DISEASE">

SUGI 28 Hands-on Workshops

5

 <TABLE_XPATH> /community/disease
</TABLE_XPATH>
 <TABLE_LABEL> Individual disease
communities </TABLE_LABEL>

 <!-- Name
-->
 <COLUMN name="Name">
 <XPATH> /community/disease/Name
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 40 </LENGTH>
 <LABEL> Formal Disease Name </LABEL>
 </COLUMN>

 <!-- Short Name
-->
 <COLUMN name="ShortName">
 <XPATH> /community/disease/Abbrev
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 10 </LENGTH>
 <LABEL> Short Disease Name </LABEL>
 </COLUMN>

 </TABLE>

 <!-- TABLE (DXEVENTS)
-->
 <!-- List of DX Events
-->
 <TABLE name="DXEVENTS">
 <TABLE_XPATH>
/community/disease/Events/DX </TABLE_XPATH>
 <TABLE_LABEL> DX Events </TABLE_LABEL>

 <!-- Short Name
-->
 <COLUMN name="ShortName" retain="YES" >
 <XPATH> /community/disease/Abbrev
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 10 </LENGTH>
 <LABEL> Short Disease Name </LABEL>
 </COLUMN>

 <!-- DX Code
-->
 <COLUMN name="DX">
 <XPATH> /community/disease/Events/DX
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 6 </LENGTH>
 <LABEL> ICD9CM DX Code </LABEL>
 </COLUMN>

 <!-- Effective Date
-->
 <COLUMN name="EffDate">
 <XPATH>
/community/disease/Events/DX@effdate </XPATH>
 <TYPE> numeric </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 9 </LENGTH>
 <LABEL> Effective Date </LABEL>
 <FORMAT width = "9"> date </FORMAT>
 <INFORMAT width = "9"> date
</INFORMAT>
 </COLUMN>

 </TABLE>

 <!-- TABLE (PXEVENTS)
-->
 <!-- List of PX Events
-->
 <TABLE name="PXEVENTS">
 <TABLE_XPATH>
/community/disease/Events/PX </TABLE_XPATH>
 <TABLE_LABEL> PX Events </TABLE_LABEL>

 <!-- Short Name
-->
 <COLUMN name="ShortName" retain="YES" >
 <XPATH> /community/disease/Abbrev
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 10 </LENGTH>
 <LABEL> Short Disease Name </LABEL>
 </COLUMN>

 <!-- PX Code
-->
 <COLUMN name="PX">
 <XPATH> /community/disease/Events/PX
</XPATH>
 <TYPE> character </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 5 </LENGTH>
 <LABEL> CPT-4 PX Code </LABEL>
 </COLUMN>

 <!-- Effective Date
-->
 <COLUMN name="EffDate">
 <XPATH>
/community/disease/Events/PX@effdate </XPATH>
 <TYPE> numeric </TYPE>
 <DATATYPE> string </DATATYPE>
 <LENGTH> 9 </LENGTH>
 <LABEL> Effective Date </LABEL>
 <FORMAT width = "9"> date </FORMAT>
 <INFORMAT width = "9"> date
</INFORMAT>
 </COLUMN>

 </TABLE>

</SXLEMap>

CONCLUSION
We hope that this workshop has whetted your appetite to do
more with XML and SAS. XML is an excellent choice for storing
messages and meta data. If you build data-driven applications,
you likely have some of these sorts of data already lying about.
SAS provides some very clean and elegant interfaces to data in
XML format which you can use to your advantage. The cocktail
is intoxicating and the possibilities are boundless.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the authors at:

Jack N Shoemaker
 ThotWave Technologies
 Cary, NC
 shoe@thotwave.com

 Greg S Barnes Nelson

SUGI 28 Hands-on Workshops

6

 ThotWave Technologies
 Cary, NC
 greg@thotwave.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Hands-on Workshops

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

