
Paper 187-28

- 1 -

New Technologies for Delivering Data to Internal and External Clients
Sigurd W. Hermansen, Westat, Rockville, Maryland

ABSTRACT
Back in the Big Iron era, programmers captured, stored, and
delivered data in the same form. Files were all we knew. Now we
have visual representations: Web data entry forms, MDBB's, Web
page browsers, and electronic codebooks. What we consider the
same 'data' have different shapes and structures in container
objects than in an RDBMS or in an XML stream. So, how do we get
from forms to data? How do we serve data to internal or external
clients? To explore these questions we trace a set of data from
capture to database to delivery. Blaise(R), Oracle Clinical(R), Web
server pages, and SAS(R) FS/AF/SCL forms illustrate alternative
DE programs. 'Flat files', 'drill downs', RDBMS schema, and tagged
fields in data streams serve as examples of data products. We will
illustrate methods that preserve essential data as they pass through
a series of transformations via several scenarios.

INTRODUCTION
Displays of data provide visual cues to help humans comprehend
them. Viewers of data displays do not typically distinguish data from
visual cues when they look for information. A simple paper form
defines data items or fields:
Person name:______ ID ______ #dogs _____
dogs: 1. breed____ age_____

2. breed____ age_____
……………………..

Infraction ___ dog __ date ______
___ dog __ date ______
 ……………………………

Viewers understand intuitively what to enter in each field. Good form
design promotes reliably intuitive understanding of the pragmatics of
data entry and display.

Computers have none of the visual intuition that viewers have.
Sequencing, implicit typing, and spacing do not translate directly into
bits and bytes. Precise identification of data items requires an
explicit indexing scheme. Mapping from data displays to computer
storage has to be done under the control of complex and
sophisticated programs.

Developers of data entry forms (DEF) and data display forms (DDF)
rarely start programming these data objects from scratch. A number
of programming environments provide automated support for
development of DEF’s and DDF’s. Each programming environment
supports one or more databases (DB’s) under the hood.

Database programmers specialize in mapping and transforming data
from DEF to DB and from DB to DDF. In a brave new world of
enterprise, distributed, federated, and Web databases, cross-
platform and cross-database development has become the norm,
not the exception. Examples in the next sections illustrate how data
morph as they migrate from DEF to DB and from DB to DDF.

DATA ENTRY FORMS (DEF’S)
Developers of a DEF have target applications in mind. An automated
data collection instrument presents visual cues and slots for entering
data into forms. Depending on the design and capabilities of the
system supporting the DEF, it may also display data that have
already been stored in a DB. That requires an ability to capture
identified information first, then to transmit a query that selects data
from a DB. The DEF queries the database to validate entries, and to
insert or update a DB.

DEF: BLAISE SCREENS
Blaise is a widely-used software system for computer-assisted
interviewing (CAI) and survey processing. A DEF targeted at CAI
must replicate the basic process of displaying a questionnaire form
and using a pencil to enter data in prescribed slots. Further, it must
implement ‘skip patterns’ in survey instrument by displaying one
screen or another depending on the response to a lead-in question.
(eg., Q29: How many dogs do you own? If 0, skip to Q35; else
answer Q30-Q34 for each dog.) We can picture this pattern of
responses as a row of columns that bulges into a table to
accommodate data on one or more dogs:
Column[person1]: #dogs _____

| dog i=1: breed____ age_____
table: | dog i=2 breed____ age_____

| ….
| Inf_i=1:___ dog __ date ______

table: | Inf_i=2:___ dog __ date ______
| ……………………………

Column[person2]: ……

Whether clients might wish to have data delivered in the same form
depends on intended uses of the data.

DEF: ORACLE CLINICAL CASE REPORT FORMS (CRF'S)
Tight control of reporting of adverse reactions to drugs has led to
rigid standardization of DEF’s designed to support clinical trials.
Each trial accumulates an unbounded stack of case event reports
from medical centers. A simplified event form captures column
values in each row of CRF data:
protocol: __________
 Person: __________
 Dog: __________
 event_date:__________
 event_type: __________
 event: __________
eg. (12,Jones,3,12/18/02,INF,X3243)

The first five data items index each event. The order of these index
values does not matter. The event_type has the same role as a
column name in a row of patient events. Expanding the domain of
the event_type allows the form to accommodate new types of events
without modifying the DEF (or the DB structure underneath the
DEF).

DEF: SAS/AF FRAMES
The SAS System V8 SAS/AF product serves as a convenient
example of a visual object toolkit that programmers can use to create
simple or complex DEF’s. Visual objects appear as displays or parts
of displays on a computer screen, or control how displays ‘behave’.
Objects have properties. Programmers control the behaviors of
objects by sending messages to detect and change property
settings.

SAS/AF objects bind values entered on a DEF object to object
property names. A programmer assigns instances of properties to
data elements in a database.

DEF: HTML FORMS
The HTML protocol supports DEF’s in Web pages. The <FORM>
and <INPUT> tags identify different types of input fields in an HTML
DEF and bind the value entered in the ID slot on the HTML form to a
variable label (Id):

<FORM>
………

SUGI 28 Emerging Technologies

2

<TR><TD WIDTH="3%" VALIGN="TOP"
HEIGHT=31><P></P></TD>
<TD WIDTH="13%" VALIGN="TOP" COLSPAN=2 HEIGHT=31>
<P> ID</TD>
<TD WIDTH="31%" VALIGN="TOP" COLSPAN=5 HEIGHT=31>
<P>
<INPUT TYPE="TEXT" MAXLENGTH="50" NAME="Id">
</TD>
<TD WIDTH="52%" VALIGN="TOP" COLSPAN=4
HEIGHT=31><P></P></TD>
</TR>
……..

Which displays in a Web browser as

Web browser programs (Netscape, MS Internet Explorer, Opera,
Mozilla, etc…) support HTML DEF’s and attach lists of label-value
pairs to hyperlinks.

DEF: SERVER PAGES
Although open and flexible, HTML forms seem designed primarily to
support transfers of parameter values or other limited lists of data
items. Java Server Pages (jsp) and Active Server Pages (asp)
provide alternatives to HTML forms that support enhanced forms,
better data validation, and faster and more secure data transfer
methods. Support for server pages comes largely from servers.

Data for delivery to clients often originate from more than one DEF.
Different DEF’s transfer data to central databases. The visual format
of each DEF has to map to a common database structure.

DATABASES (DB’S)
Date makes a point of distinguishing a ‘database’, a logical
framework for data and the data that populate it, from a database
system that houses databases, whether DB2, Oracle, SQLServer,
Sybase, Informix, Ingres, or, yes, MySQL, and those database
systems outside the relational database system (RDBMS) mold,
such as XML databases. In the same sense, twelve ounces of cola
does not become ‘bottle cola’ when bottled or ‘can cola’ when
canned. In fact, to their discredit, database system developers put

additives in databases that blend logical database and
implementation features, and add to the difficulty of porting
databases to other database systems.

Database systems provide tools for database design and for
maintaining data integrity, but good database design and useful
database systems do not come in a box. Client requirements for data
deliveries often include irreconcilable differences. For example, a
requirement to deliver data as a ‘flatfile’ may force database
programmers to scrunch many interrelated dimensions of
observations into a two-dimensional structure. The next sections
present alternative data models and their strengths and limitations.
Each section includes a brief discussion of data transfers to and
from each data structure.

DB: FILE
A general layout of a file uses field names and descriptions to index
and model a DB. Repeating blocks (records) in a file map to field
names according to a scheme:
field-indexed repeating groups data model
group[dog]:=(breed,age)
record[person]=ph#,group[dog1],group[dog2],
eg. Jones,555-1212,dog1(cocker,3),dog2(mutt,2)

Each record ends with a line marker that separates one record from
another. An alternative data structure stores the same data in
repeating records:
record[person]
record[person,dog1]
record[person,dog2]
…..
eg. Jones,555-1212
 cocker,3
 mutt,2
 ……

The SAS System INFILE and INPUT statements and the
DBMS/COPY product provide a truly mature and very useful
technology for data capture from these and other special file formats
generated by DEF’s. Blaise exports field-indexed data and SAS
INPUT statements to read them (among the several options Blaise
offers for exporting data).

DB: MDDB
The two dimensional index [person,dog] points to a row of data in a
repeating record structure. In a multidimensional database (MDDB),
a full index points to individual data items, and partial indexes point
to rows or tables (eg. value[person,dog,event_date,event_type]). The
SAS MDDB product and other specialized systems map data from
DEF’s or intermediate data sources. An MDDB extends an old
technology, multidimensional arrays, to database object classes with
associated constructor methods. An MDDB often contains summary
data as well as details.

DB: XML
The hierarchical XML data model extends data value tagging in Web
documents to DB indexing. XML interprets a hierarchical structure of
tags as a multidimensional index:

<?xml version="1.0" ?>
……….
<PERSONS ID="111" NAME="Jones">
 <PETS ID="222" BREED="mutt">

 <FACT>
 <PETID>222</PETID>
<EVDT>12/18/02</EVDT>
<EVTYP>INF</EVTYP>
<EVNT>2203</EVNT>

 </FACT>
 <FACT>

 <PETID>222</PETID>
<EVDT>12/18/02</EVDT>
<EVTYP>VAC</EVTYP>

SUGI 28 Emerging Technologies

3

<EVNT>distemper</EVNT>
 </FACT>
 </PETS>

</PERSONS>
………
The hierarchical XML data model embeds metadata in tags and
forces a somewhat arbitrary distinction between data labelled as
attributes and tagged data elements. The metadata tags make it
almost impossible to display or search an XML document without
mapping it to another format.

Fortunately, SAS provides the experimental XMLAtlas application in
V9.0 to assist in designing an XMLPath map specification for
specific forms of XML documents:

<?xml version="1.0" ?>

<!-- 2002-12-10T02:39:43.786 -->
<!-- SAS XML Libname Engine Map -->
<!-- Generated by XMLAtlas, Version 9.0.1 -->

<SXLEMAP version="1.1" name="SXLEMAP" description="">

 <TABLE name="PERSONS">
 <TABLE-PATH>/PERSONS</TABLE-PATH>

 <COLUMN name="ID">
 <PATH>/PERSONS/@ID</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="name">
 <PATH>/PERSONS/@name</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>5</LENGTH>
 </COLUMN>

 </TABLE>

 <TABLE name="PETS">
 <TABLE-PATH>/PERSONS/PETS</TABLE-PATH>

 <COLUMN name="PersonID">
 <PATH>/PERSONS/@ID</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="ID">
 <PATH>/PERSONS/PETS/@ID</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="breed">
 <PATH>/PERSONS/PETS/@breed</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>4</LENGTH>
 </COLUMN>

 </TABLE>

 <TABLE name="FACT">
 <TABLE-PATH>/PERSONS/PETS/FACT</TABLE-PATH>

 <COLUMN name="PersonID">

 <PATH>/PERSONS/@ID</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="PetsID">
 <PATH>/PERSONS/PETS/@ID</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="EVDT">
 <PATH>/PERSONS/PETS/FACT/EVDT</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>8</LENGTH>
 </COLUMN>

 <COLUMN name="EVTYP">
 <PATH>/PERSONS/PETS/FACT/EVTYP</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>3</LENGTH>
 </COLUMN>

 <COLUMN name="EVNT">
 <PATH>/PERSONS/PETS/FACT/EVNT</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>STRING</DATATYPE>
 <LENGTH>4</LENGTH>
 </COLUMN>

 </TABLE>

</SXLEMAP>

The SAS XML engine uses the XMLPath map as a guide for
parsing an XML document:

filename inxml "\\..\person.xml";
filename inmap "\\...\person.map";
libname inxml xml xmlmap=inmap;

proc contents data=inxml._all_;
run;
data persons;

set inxml.persons;
run;
data pets;

set inxml.pets;
run;
data fact;

set inxml.fact;
run;
filename _all_ CLEAR;
libname _all_ CLEAR;

The SAS XML engine decomposes the hierarchical relation Persons
– Pets – Facts into three tables (datasets) logically linked by person
and pet ID’s. The three tables retain all of the essential information in
the XML document.

DB: RELATIONAL DB (RDB)
In contrast to field-indexed or pointer-indexed DB’s, a relational
database uses column names as column indexes and columns of
key data values as row indexes. A normalized relational data model
represents relations among different dimensions of data as linked
tables.

SUGI 28 Emerging Technologies

4

Normalized RDB data model
Persons Dogs Infractions
 ID ID dogID
 Name breed type

 Age date
 ownerID

A normalized RDB has an innate property that recommends it as a
deliverable to clients: The normal form of the database supports
reshaping of data into any structure the client may want (though not
necessarily from a reshaped set of data back to the original relational
scheme).

DB: DIMENSION-INDEXED FACTS SCHEME (DIFS)
In databases that contain data with many dimensions, relations
among data elements may number in the hundreds. A fully
normalized database divides each relation into a separate table and
soon reaches a level of complexity that complicates data entry and
reporting, and makes modifying the database a nightmare. Further,
few internal or external clients have the time or expertise to select
and combine data into useful datasets. While a dimension-indexed
DB scheme has the same design as a relational database for the
major dimension of a database (household, person, company, etc.),
a single ‘fact’ or entity-attribute table, indexes interrelated data
elements that might appear in many different tables in a relational
database. Others have called the same structure an Entity-Attribute-
Value (EAV) data model because it combines entity identifiers and
attribute labels in a composite key that serves as a natural index to
data items.

normalized DIFS data model
Persons Pets Events
 ID ID petID
 Name breed typePet
 birthDate date
 ownerID eventType

 event

This model combines a normal form with a structure that
accommodates new classes of data. Data warehouse architects
favor variants of the DIFS data model ,called star or snowflake
schema, for databases that house many repetitions of fact records.

DATA DISPLAY FORMS (DDF’S)

Deliveries of data to clients may include DB’s, DDF’s, and metadata.
In some instances, clients may want data subsets in different
database structures. Deliveries of public-use datasets or research
data also require access to metadata and detailed codebooks/data
dictionaries. DDF’s map selected contents of databases into forms
that build in visual cues for viewers.

DDF: REPORT OBJECT GENERATORS
A popular, generic report generator, Crystal Reports, belongs to a
class of programs that package formats and data into a report
object. It constructs objects that map DB contents to a DDF.

Database programmers set up a library of reports that clients can
select and run. Some prepackaged reports prompt users for
parameter values. A typical report generator builds queries of one or
more databases. Changes in database contents change the yields of
queries, and thus change the contents of reports.

DDF: SAS/GRAPH
SAS/Graph operates much the same as a report object generator. It
generates graphic objects and stores them in special graphics

catalogs. Clients with access to the SAS System can edit and
reformat graphic objects in SAS/Graph catalogs.

DDF: HTML/XHTML/PDF DOCUMENTS
Document mark-up languages automatically map data from
databases to Web pages that give clients static and dynamic DDF’s.
Arrays of hyperlinked values have the same function as MDDB drill-
down DDF’s and marginal thumbnail indexes.

The ODS and Mark-Up contexts of the SAS programming
environment maps results of SAS PROC’s to document types that
have extended support for an embedded mark-up language (HTML,
RTF, XML, pdf). Stylesheets, templates, and schema bring visual
elements effectively into dynamic mapping of database elements to
DDF’s.

WEB SERVLETS AND SERVER PAGES
Servlets and server pages give Web page developers convenient
access to DDF’s and supporting DB query languages. This example
(developed by James W. Cooper) illustrates the simplicity and
flexibility of Java servlet technology:

<HTML>
<TITLE> Servlet Test </TITLE>
<BODY> <H1> Servlet Test </H1>
<FORM ACTION="/servlet/HiYou"
METHOD="POST">
<INPUT TYPE="text" NAME="name" SIZE="20">
<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY></HTML>

The servlet produces a form into which a viewer can enter, for
example, a report parameter value:

Servlet Test
Submit

Server pages support DDF’s much as they support DEF’s.
Embedded queries on Web pages supply data that populate DDF’s.
Web and internet servers (predominately Apache and IIS) offer
alternatives to MS Windows dynamic-link libraries and supplant
much of the functionality formerly provided by operating systems.

SAS in Version 9 catalogs the output of SAS procedures, including
PRINT, REPORT, and TABULATE, in DDF object catalogs much
like SAS/Graph catalogs graphic objects. Object libraries combined
with new interactive technologies open up new possibilities for
delivering DDF object catalogs to clients. Increasingly, internal as
well as external clients are asking database programmers to build
options for selecting, reformatting, and displaying information in
databases.

CONCLUSION
No one structure and organization of data meets all the needs of all
clients. Visual forms display data in fundamentally different
arrangements than one needs for storage of data on permanent
media. New technologies make mapping and reshaping of data
easier and better at preserving information in data. Web
technologies have kicked off a revolution in data collection, database
programming, and presentation of information. We have selected a
small sample of emerging technologies to present. The rapid
expansion of computer systems now underway suggests that new
technologies are emerging at accelerating rates.

SUGI 28 Emerging Technologies

5

SAS solutions have played important roles in discussions of
mapping data from visual forms to databases and back to visual
forms. Emphasis on SAS tools for database programming not only
suits the forum, it also aligns well with the realities of database
programming.

DISCLAIMER: The contents of this paper are the work of the author
and do not necessarily represent the opinions, recommendations, or
practices of Westat.

ACKNOWLEDGEMENTS
Colleagues at Westat, especially Kellar Wilson, Francis Harvey,
Karin Davis, and James Kuan, contributed to content and the style of
presentation. Mike Rhoads and Duke Owen reviewed the paper and
made valuable editorial suggestions. Francis Harvey guided me
through the twists and turns of SXLE architecture. The author takes
full responsibility for errors or omissions that remain.

REFERENCES
Date, C.J. and Hugh Darwen, Foundation for Object/Relational
Databases: the Third Manifesto (1998) Addison-Wesley (see p.
144).

Freibel, Anthony, '<XML> at SAS- A More Capable
XML Libname Engine', Proceedings of the Twenty-Seventh

Annual SAS Users Group International Conference, 27, (2002)
179.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Sigurd W. Hermansen
Westat
1650 Research Blvd.
Rockville, MD 20850
(301) 251-4268
hermans1@westat.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies.

SUGI 28 Emerging Technologies

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

