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ABSTRACT  
Traditional OLAP technologies impose rigid rules on how data must 
be organized.  A variety of hybrid OLAP solutions have evolved in an 
attempt to make OLAP more flexible and adaptive to unique data 
problems.  This paper introduces another hybrid called 
Programmatic Online Analytical Processing (PROLAP), which is 
focused on using a program to generate the data model at runtime. 

INTRODUCTION  
OLAP solutions assume your data is hierarchical and that you have 
a limited number of analysis variables.  The dimensions in the 
hierarchies are assumed to “roll-up”.  For example, sales can roll-up 
from store to region.  What do you do when your data does not so 
easily roll-up and/or you have large numbers of analysis variables?  
This paper offers a solution using SAS®. 

OLAP CHALLENGES 
The ability of an OLAP tool to provide drill-down functionality is 
supported by the concept of dimensions and hierarchies.  
Dimensions are data elements that are used to classify data, e.g. 
region or store.  Hierarchies organize these classifications into 
different drill paths the user may want to follow when working with 
the data.  
 
OLAP tools make certain assumptions about the data model.  First, 
the assumption is that your data is already organized into a single 
table or a snowflake or star schema model.  If it isn’t, it is assumed 
that you can load such a schema from a denormalized data 
warehouse.  The importance of this in the context of this paper is 
that you or your organization have committed significant resources to 
database schema design , loading and on-going maintenance.  For 
many of us, that is not the case.  We have valid OLAP requirements, 
but we don’t have the resources to manage a schema centric 
approach and our source databases are more highly normalized, 
operational databases.   
 
One of the important benefits of the approach we cover in this paper 
is that it shifts the focus from the schema to the SAS programmer, 
thus leveraging the skills you already have and greatly reducing the 
resources required to install and maintain an OLAP environment. 
 
Here are some examples of other restrictions we encountered with 
traditional OLAP. 

NON ADDITIVE MEASURES 
One of the first problems we ran into was the need to use analysis 
variables that are non-additive.  This means that the default 
aggregation functions of the OLAP tool, e.g. sum or average, are not 
sufficient to roll-up an analysis variable.  For example, the price to 
earnings ratio (P/E) of an individual stock does not roll-up to the 
price to earning ratio for the entire portfolio. 
 
Most OLAP solutions provide methods for dealing with this issue to 
a limited extent. The most common solution is a calculated measure. 
If you can’t use common aggregation methods such as sum and 
mean, then you can usually break the variable in question into 
precedent components (such as price and earnings used to 
calculate the P/E ratio), then aggregate those components and 
calculate the new variable based on the aggregated results. 
 
Let’s take a look at this P/E Ratio example for added clarity. For 
simplicity sake, let’s pretend that I own a portfolio of a meager 2 

stocks,  ABC Company and XYZ Corporation. At the End of 2001, 
ABC had a market cap (price) of $1M and earnings of $100K.  
P/E (ABC) = $1M ÷ $100K  = 10. On the other hand, XYZ had a 
market cap of $5M and earnings of only $50K.  P/E(XYZ) = $5M ÷ 
$50K = 100. 
 
If I own only these two stocks, then the P/E ratio of my portfolio is 
the average of the P/E ratios calculated above, right? Not exactly. 
First, we need to consider how much of each stock that I own. So, 
lets say that I own 400 shares of ABC and 200 shares of XYZ. 
Then, the P/E ratio of my portfolio is simply the weighted average of 
the two P/E ratios using the number of shares as the weight, right? 
Not quite. The number of shares is only part of the picture. What 
really matters is how much those shares are valued at. (Number of 
shares times price per share equals market value.) So let’s say that 
ABC was at $10 per share:  
Market Value (ABC) =  $10 per share * 400 Shares = $4000. XYZ 
was trading at $6 per share: Market Value(XYZ) = $6 per share * 
200 Shares = $1200. 
 
So, finally we can use the market values to weight the average of 
P/E, right? Nope, but we’re getting closer! To calculate a P/E at the 
portfolio level, we need to use what is called a Harmonic-Mean 
methodology. Simply put, that means that we use the inverse of the 
weighted mean of the Earnings Price (E/P) ratio instead of the P/E 
ratio.  
 
That’s easy enough. All that we need to do is calculate the E/P by 
inverting the P/E before we aggregate, then invert the weighted 
mean after we aggregate. That sounds very easy. However, the 
problem is that when we use calculated measures in an OLAP 
application, there does not appear to be any way to control which 
measures are calculated before the aggregation and which 
measures are calculated after the aggregation. 
 
Conceptually, we could make this work in a good OLAP tool by 
creating two calculated columns, one being E/P_Calculated, and the 
other being P/E_Calculated. EP_Calculated is nothing more than 
1/PE. P/E_Calculated is then 1/EP_Calculated. The reason that we 
need the P/E_Calculated is because its result is based on a simple 
calculation (inverse) applied to the weighted mean of 
E/P_Calculated. It is not a simple weighted aggregate of P/E. With 
the OLAP tool, I would need to ensure that P/E and P/E_Calculated 
are not aggregated from the stock level to the portfolio level. I may, or 
may not be able to accomplish that with a high end OLAP tool. But, 
things are starting to get complicated and we haven’t even begun to 
address the more difficult tasks of excluding outliers, rolling a 
portfolio up to a fund of portfolios, and calculating any of about 100 
other characteristics.  
 
We work for a large financial institution where all of the data at the 
stock level, the portfolio level, and the fund level is already available 
and used on a regular basis. Rather than trying to replicate all the 
formulas already coded elsewhere, all that we really need to do is 
extract the right data from the right tables at the right time. 

THE HYBRID APPROACH 
As we looked at ways to tackle non-additive measures, it was only 
natural to try existing solutions before plowing our own trail.  The 
solution to our problem looked a little like ROLAP (see glossary) 
because the source data was already stored in a relational database. 
The solution looked a little like MOLAP (see glossary) because most 
of the data is already aggregated at all levels of the hierarchy. Yet, 
the solution more closely matched HOLAP (see glossary) because it 

SUGI 28 Emerging Technologies



 

2 

was a combination of both ROLAP and MOLAP. With any of these 
approaches the problem may be solvable, but at what cost?  
 
Using hybrid extensions to existing OLAP tools, we found that we 
could access our pre-aggregated data at any specific level of the 
hierarchy, but this was only feasible if the source data were 
structured specifically for the HOLAP queries.  As we mentioned in 
the opening, having data already denormalized in a data warehouse 
or multi-dimensional data store is a significant restriction.  In reality, 
our data sources are structured for the applications which 
individually create, maintain, and exhibit that data. We do not have a 
data warehouse with star schemas or snowflakes which are virtually 
required in order to make feasible the HOLAP approach advertised 
by many OLAP venders. We have a vast array of existing code that 
has been highly optimized for each source system to extract 
reasonable quantities of data at once using complicated join 
conditions that are necessary because of the highly normalized 
nature of our data sources. We couldn’t even begin to simplify that 
code enough so that we could use it with a conventional HOLAP 
model.  
 
The next likely candidate for an existing solution might be MOLAP 
alone. With a MOLAP approach, we could pre-extract the 
aggregated data (at all levels of the hierarchy) and store the results it 
in a separate multidimensional dataset.  The OLAP server would 
then be able to find the respective level it needed in the 
multidimensional datasets.  While this worked, the MOLAP 
approach again takes a schema centric approach and requires 
significant human and system resources to support. To make 
matters worse, all of the testing that we did with this approach 
proved to be much slower than anticipated, even with relatively small 
samples of data. So, just how much data are we talking about here? 
 
At Russell we track over 15,000 securities, over 6,000 funds, and 
fund portfolios for over 1,000 clients. That alone, doesn’t sound too 
astonishing. But the numbers get really big when we start adding in 
some of the other dimensions, like Industry (> 200), Sector (~ 12), 
Countries (> 250), Regions (> 200), Time (assume 10 years of 
quarterly data for 40 quarters total) and then consider the 
exponential effect of all those dimensions.  
 
In one example, we would like to drill from the fund level, to region to 
country to sector to industry to stock. Each fund (6000 of them) 
holds stock in an average of only 3 regions each consisting of an 
average of only 12 countries. Each country has stocks in most (say 
10 of the 12) sectors. Each sector contains an average of 10 
industries. And each industry contains an average of only 10 stocks. 
That’s 6000 funds * 3 Regions * 12 countries * 10 sectors * 10 
industries * 10 stocks * 40 quarters (for ten years of analysis) = over 
8.6 Billion rows. Multiply that times 100 characteristics that we would 
like to be able to analyze at 8 bytes each and we’re looking at over 
6.9 Terabytes just to store the numeric measures in 
multidimensional cube that would be needed for the MOLAP 
approach. That excludes the identifier for each of the dimensions, so 
realistically we would be looking at even more space than that. This 
extremely large multidimensional cube was one of our prohibiting 
factors to using MOLAP.  
 
That led us right back to HOLAP, which we could not use without 
building a large datamart specifically for this application. 
Unfortunately, the solution to one set of problems is based on getting 
data from an enormous static multidimensional dataset and the 
solution to the other problem is based on retrieving the data 
dynamically from a highly denormalized set of relational tables.  
What we really needed was the ability to pull the data from a highly 
normalized set of database tables, constrain the amount we retrieve 
at runtime, and aggregate the data at runtime. 

DIFFERENT ANALYSIS VARIABLES 
We also ran into cases where our users wanted to see different 
analysis variables at different levels of a hierarchy.  For example, 
they expected stock fundamentals like average day’s trading volume 

at the stock level but that characteristic had no value (and no defined 
formula for calculating it) at the portfolio level.  The hierarchy seems 
to be there, but the underlying analysis variables are different. 
Virtually every OLAP tool that we looked at assumed that each 
characteristic was defined and had values available at every level of 
the hierarchy. 

PROLAP TO THE RESCUE 
Since we have to program the routines to assemble the aggregations 
in any case, why not run a program that can fetch a highly 
constrained amount of data, combine existing aggregated data into a 
multidimensional dataset, perform any additional calculations needed 
while we’re at it, and roll up all our hierarchies at runtime?  In order 
to do all this, we need a tool that lets us put a program in place of a 
data source. Instead of passing a set of parameters to a data source 
to be processed and returned, we would pass the parameters to a 
program that knows how to get the data. 
 
Since OLAP tools do the hierarchy aggregations and we now want a 
program to perform or assemble them instead, we also need a tool 
that we instruct when to do aggregations and when not to do 
aggregations. 

THE ROLE OF FUTRIX® 
Futrix is an OLAP tool built with SAS.  Because it is built with SAS, it 
already has a rich set of compute and data services we can exploit.  
Futrix is also designed in such a way that its core functionality can 
be easily modified by over-riding SCL methods exposed to the 
developer. 
 
Working with Futrix, we were able to implement a data source that is 
a SAS program.  Where Futrix passes the state of the user’s 
session to a data source, e.g. what dimensions, analysis variables 
and filters they have selected, we are now passing those same 
parameters to our own SAS program. Now we can do almost 
anything. 

NON ADDITIVE MEASURES 
We can now perform any calculation that SAS is capable of 
performing, on any dataset SAS has access to, to determine the 
correct value we should display at any level in our hierarchy. The 
calculations can be performed in data steps or procedures and the 
order of the calculations can be concisely controlled. 
 
After the values are calculated at each level of the hierarchy, they are 
stored in a simulated SAS summary dataset. The summary dataset 
is simulated in the sense that it was not necessarily created by 
PROC MEANS or PROC SUMMARY, yet it contains the _TYPE_ 
variable that is characteristic of a summary dataset. The _TYPE_ 
variable can then be used to identify the hierarchical level of each 
row in the summary dataset. In other words, the _TYPE_ variable 
identifies which dimensions are shown at the aggregate level and 
which dimensions are shown at the detail level for each row in the 
dataset. The simulated summary dataset is then used as our 
multidimensional cube. 
 
Futrix can be made aware that the data source in use is a SAS 
summary dataset, and is capable of using the _TYPE_ variable as a 
filter to select the appropriate rows based on the user’s current 
selections. 

DIFFERENT ANALYSIS VARIABLES 
Using SAS summary tables, we can now show whatever variables 
we want at any level of the hierarchy.  Futrix has a unique capability 
of allowing us to specify required dimensions for display of any given 
analysis variable. In other words, we can specify that the Average 
Days Trading Volume analysis variable is not to be shown unless the 
Security Identifier or Security Name dimension variable is also 
shown. 
 
With the simulated summary dataset, we can store missing values 
for Average Days Trading Volume at all levels of the hierarchy where 
security is at a summary level instead of a detail level. 
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CONCLUSION 
PROLAP is a hybrid OLAP approach that addresses data retrieval 
and presentation through the replacement of the data source 
interface with a program interface.  The OLAP tool passes the same 
system state parameters to the program that it passes to the data 
source interface.  The program takes care of the data model entirely 
and returns a multidimensional dataset in the form of a simulated 
SAS Summary dataset which the OLAP tool can consume, just as if 
the dataset was returned from the data source interface. 
 
This approach delegates all the complex problems of fitting data into 
restrictive OLAP models to the SAS programmer, where the full 
power of SAS can be used to better address them. The approach is 
very effective at dealing with the classic OLAP problems of non-
additive measures and large multidimensional cubes, because it 
solves them outside of the OLAP model and returns a dataset that 
fits the model. 
 
Futrix is an OLAP tool built on SAS.  Futrix is unique in it’s ability to 
implement the PROLAP approach. 
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GLOSSARY 
OLAP – Online Analytical Processing is a category of software tools 
that allows high performance analysis of data. OLAP tools typically 
aggregate the data at many different levels allowing the user to drill 
from a highly summarized level of data and eventually down to the 
detail level while exposing many different levels of aggregation along 
the way. 

 
Many OLAP tools can plug right in to an existing Data Warehouse 
with little or no additional programming required to expose the data 
contained in the Data Warehouse and perform all the necessary 
calculations to aggregate the data. However, a basic OLAP 
approach often assumes that the detail level of data is completely 
denormalized into a single table. With large amounts of data, the 
basic OLAP approach can often be unreasonably slow. 
 
ROLAP – Relational OLAP is an OLAP extension where the detail 
level of data is stored in a relational database, usually in a star 
schema or snow flake model that is common to a data warehouse. 
This approach has the advantage of being more scaleable than a 
basic OLAP approach, but requires more maintenance and 
administration.  
 
MOLAP – Multidimensional OLAP is an OLAP extension where the 
data is aggregated before runtime into all levels required for the 
hierarchy. The pre aggregated data is stored in a Multidimensional 
Database (MDDB). Since the data is already aggregated, this 
approach can provide great improvements to response time. 
However, the amount of space required to store the MDDB grows 
exponentially as more dimensions are added. 
 
HOLAP – Hybrid OLAP is a combination of both ROLAP and 
MOLAP. The advantages of each are combined into a single 
implementation. The MDDB can be divided into several relational 
databases allowing different levels of the hierarchy to be stored in 
different places (stacking), or even allowing different parts of one 
level of aggregation to be stored in different places (racking). 
 
POLAP  - Progressive OLAP, though not used in the discussion of 
this paper, we thought would be worth mentioning. Before coining 
the term PROLAP, we decided run a quick search to find out if 
anyone was already using such a term. In fact POLAP was our first 
choice for an acronym. However, the POLAP acronym has already 
been used for Progressive OLAP, a method in which statistical 
models are used to estimate the aggregate values from a sample of 
data rather than aggregating from every record of detail.  
 
LOLAP – Logical OLAP is the closest thing that we could find to 
PROLAP. Logical OLAP is a method in which a logical layer is 
inserted between the OLAP tool and the Data Warehouse. This layer 
is intended to provide independence between the OLAP tools and 
the data warehouse.  If the logical layer is interpreted as a program 
or series of programs, then LOLAP and PROLAP may indeed be the 
same thing. On the other hand, if LOLAP is interpreted as a model 
under which source data relationships are defined and related to 
OLAP tools, then these approaches appear to have common traits, 
yet be different enough to deserve distinct terminology. 
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