
Paper 183-28

 1

PROLAP – A Programmatic Approach to Online Analytical Processing
Jim Acker and Craig Austin, Frank Russell Company, Tacoma, WA

ABSTRACT
Traditional OLAP technologies impose rigid rules on how data must
be organized. A variety of hybrid OLAP solutions have evolved in an
attempt to make OLAP more flexible and adaptive to unique data
problems. This paper introduces another hybrid called
Programmatic Online Analytical Processing (PROLAP), which is
focused on using a program to generate the data model at runtime.

INTRODUCTION
OLAP solutions assume your data is hierarchical and that you have
a limited number of analysis variables. The dimensions in the
hierarchies are assumed to “roll-up”. For example, sales can roll-up
from store to region. What do you do when your data does not so
easily roll-up and/or you have large numbers of analysis variables?
This paper offers a solution using SAS®.

OLAP CHALLENGES
The ability of an OLAP tool to provide drill-down functionality is
supported by the concept of dimensions and hierarchies.
Dimensions are data elements that are used to classify data, e.g.
region or store. Hierarchies organize these classifications into
different drill paths the user may want to follow when working with
the data.

OLAP tools make certain assumptions about the data model. First,
the assumption is that your data is already organized into a single
table or a snowflake or star schema model. If it isn’t, it is assumed
that you can load such a schema from a denormalized data
warehouse. The importance of this in the context of this paper is
that you or your organization have committed significant resources to
database schema design , loading and on-going maintenance. For
many of us, that is not the case. We have valid OLAP requirements,
but we don’t have the resources to manage a schema centric
approach and our source databases are more highly normalized,
operational databases.

One of the important benefits of the approach we cover in this paper
is that it shifts the focus from the schema to the SAS programmer,
thus leveraging the skills you already have and greatly reducing the
resources required to install and maintain an OLAP environment.

Here are some examples of other restrictions we encountered with
traditional OLAP.

NON ADDITIVE MEASURES
One of the first problems we ran into was the need to use analysis
variables that are non-additive. This means that the default
aggregation functions of the OLAP tool, e.g. sum or average, are not
sufficient to roll-up an analysis variable. For example, the price to
earnings ratio (P/E) of an individual stock does not roll-up to the
price to earning ratio for the entire portfolio.

Most OLAP solutions provide methods for dealing with this issue to
a limited extent. The most common solution is a calculated measure.
If you can’t use common aggregation methods such as sum and
mean, then you can usually break the variable in question into
precedent components (such as price and earnings used to
calculate the P/E ratio), then aggregate those components and
calculate the new variable based on the aggregated results.

Let’s take a look at this P/E Ratio example for added clarity. For
simplicity sake, let’s pretend that I own a portfolio of a meager 2

stocks, ABC Company and XYZ Corporation. At the End of 2001,
ABC had a market cap (price) of $1M and earnings of $100K.
P/E (ABC) = $1M ÷ $100K = 10. On the other hand, XYZ had a
market cap of $5M and earnings of only $50K. P/E(XYZ) = $5M ÷
$50K = 100.

If I own only these two stocks, then the P/E ratio of my portfolio is
the average of the P/E ratios calculated above, right? Not exactly.
First, we need to consider how much of each stock that I own. So,
lets say that I own 400 shares of ABC and 200 shares of XYZ.
Then, the P/E ratio of my portfolio is simply the weighted average of
the two P/E ratios using the number of shares as the weight, right?
Not quite. The number of shares is only part of the picture. What
really matters is how much those shares are valued at. (Number of
shares times price per share equals market value.) So let’s say that
ABC was at $10 per share:
Market Value (ABC) = $10 per share * 400 Shares = $4000. XYZ
was trading at $6 per share: Market Value(XYZ) = $6 per share *
200 Shares = $1200.

So, finally we can use the market values to weight the average of
P/E, right? Nope, but we’re getting closer! To calculate a P/E at the
portfolio level, we need to use what is called a Harmonic-Mean
methodology. Simply put, that means that we use the inverse of the
weighted mean of the Earnings Price (E/P) ratio instead of the P/E
ratio.

That’s easy enough. All that we need to do is calculate the E/P by
inverting the P/E before we aggregate, then invert the weighted
mean after we aggregate. That sounds very easy. However, the
problem is that when we use calculated measures in an OLAP
application, there does not appear to be any way to control which
measures are calculated before the aggregation and which
measures are calculated after the aggregation.

Conceptually, we could make this work in a good OLAP tool by
creating two calculated columns, one being E/P_Calculated, and the
other being P/E_Calculated. EP_Calculated is nothing more than
1/PE. P/E_Calculated is then 1/EP_Calculated. The reason that we
need the P/E_Calculated is because its result is based on a simple
calculation (inverse) applied to the weighted mean of
E/P_Calculated. It is not a simple weighted aggregate of P/E. With
the OLAP tool, I would need to ensure that P/E and P/E_Calculated
are not aggregated from the stock level to the portfolio level. I may, or
may not be able to accomplish that with a high end OLAP tool. But,
things are starting to get complicated and we haven’t even begun to
address the more difficult tasks of excluding outliers, rolling a
portfolio up to a fund of portfolios, and calculating any of about 100
other characteristics.

We work for a large financial institution where all of the data at the
stock level, the portfolio level, and the fund level is already available
and used on a regular basis. Rather than trying to replicate all the
formulas already coded elsewhere, all that we really need to do is
extract the right data from the right tables at the right time.

THE HYBRID APPROACH
As we looked at ways to tackle non-additive measures, it was only
natural to try existing solutions before plowing our own trail. The
solution to our problem looked a little like ROLAP (see glossary)
because the source data was already stored in a relational database.
The solution looked a little like MOLAP (see glossary) because most
of the data is already aggregated at all levels of the hierarchy. Yet,
the solution more closely matched HOLAP (see glossary) because it

SUGI 28 Emerging Technologies

2

was a combination of both ROLAP and MOLAP. With any of these
approaches the problem may be solvable, but at what cost?

Using hybrid extensions to existing OLAP tools, we found that we
could access our pre-aggregated data at any specific level of the
hierarchy, but this was only feasible if the source data were
structured specifically for the HOLAP queries. As we mentioned in
the opening, having data already denormalized in a data warehouse
or multi-dimensional data store is a significant restriction. In reality,
our data sources are structured for the applications which
individually create, maintain, and exhibit that data. We do not have a
data warehouse with star schemas or snowflakes which are virtually
required in order to make feasible the HOLAP approach advertised
by many OLAP venders. We have a vast array of existing code that
has been highly optimized for each source system to extract
reasonable quantities of data at once using complicated join
conditions that are necessary because of the highly normalized
nature of our data sources. We couldn’t even begin to simplify that
code enough so that we could use it with a conventional HOLAP
model.

The next likely candidate for an existing solution might be MOLAP
alone. With a MOLAP approach, we could pre-extract the
aggregated data (at all levels of the hierarchy) and store the results it
in a separate multidimensional dataset. The OLAP server would
then be able to find the respective level it needed in the
multidimensional datasets. While this worked, the MOLAP
approach again takes a schema centric approach and requires
significant human and system resources to support. To make
matters worse, all of the testing that we did with this approach
proved to be much slower than anticipated, even with relatively small
samples of data. So, just how much data are we talking about here?

At Russell we track over 15,000 securities, over 6,000 funds, and
fund portfolios for over 1,000 clients. That alone, doesn’t sound too
astonishing. But the numbers get really big when we start adding in
some of the other dimensions, like Industry (> 200), Sector (~ 12),
Countries (> 250), Regions (> 200), Time (assume 10 years of
quarterly data for 40 quarters total) and then consider the
exponential effect of all those dimensions.

In one example, we would like to drill from the fund level, to region to
country to sector to industry to stock. Each fund (6000 of them)
holds stock in an average of only 3 regions each consisting of an
average of only 12 countries. Each country has stocks in most (say
10 of the 12) sectors. Each sector contains an average of 10
industries. And each industry contains an average of only 10 stocks.
That’s 6000 funds * 3 Regions * 12 countries * 10 sectors * 10
industries * 10 stocks * 40 quarters (for ten years of analysis) = over
8.6 Billion rows. Multiply that times 100 characteristics that we would
like to be able to analyze at 8 bytes each and we’re looking at over
6.9 Terabytes just to store the numeric measures in
multidimensional cube that would be needed for the MOLAP
approach. That excludes the identifier for each of the dimensions, so
realistically we would be looking at even more space than that. This
extremely large multidimensional cube was one of our prohibiting
factors to using MOLAP.

That led us right back to HOLAP, which we could not use without
building a large datamart specifically for this application.
Unfortunately, the solution to one set of problems is based on getting
data from an enormous static multidimensional dataset and the
solution to the other problem is based on retrieving the data
dynamically from a highly denormalized set of relational tables.
What we really needed was the ability to pull the data from a highly
normalized set of database tables, constrain the amount we retrieve
at runtime, and aggregate the data at runtime.

DIFFERENT ANALYSIS VARIABLES
We also ran into cases where our users wanted to see different
analysis variables at different levels of a hierarchy. For example,
they expected stock fundamentals like average day’s trading volume

at the stock level but that characteristic had no value (and no defined
formula for calculating it) at the portfolio level. The hierarchy seems
to be there, but the underlying analysis variables are different.
Virtually every OLAP tool that we looked at assumed that each
characteristic was defined and had values available at every level of
the hierarchy.

PROLAP TO THE RESCUE
Since we have to program the routines to assemble the aggregations
in any case, why not run a program that can fetch a highly
constrained amount of data, combine existing aggregated data into a
multidimensional dataset, perform any additional calculations needed
while we’re at it, and roll up all our hierarchies at runtime? In order
to do all this, we need a tool that lets us put a program in place of a
data source. Instead of passing a set of parameters to a data source
to be processed and returned, we would pass the parameters to a
program that knows how to get the data.

Since OLAP tools do the hierarchy aggregations and we now want a
program to perform or assemble them instead, we also need a tool
that we instruct when to do aggregations and when not to do
aggregations.

THE ROLE OF FUTRIX®
Futrix is an OLAP tool built with SAS. Because it is built with SAS, it
already has a rich set of compute and data services we can exploit.
Futrix is also designed in such a way that its core functionality can
be easily modified by over-riding SCL methods exposed to the
developer.

Working with Futrix, we were able to implement a data source that is
a SAS program. Where Futrix passes the state of the user’s
session to a data source, e.g. what dimensions, analysis variables
and filters they have selected, we are now passing those same
parameters to our own SAS program. Now we can do almost
anything.

NON ADDITIVE MEASURES
We can now perform any calculation that SAS is capable of
performing, on any dataset SAS has access to, to determine the
correct value we should display at any level in our hierarchy. The
calculations can be performed in data steps or procedures and the
order of the calculations can be concisely controlled.

After the values are calculated at each level of the hierarchy, they are
stored in a simulated SAS summary dataset. The summary dataset
is simulated in the sense that it was not necessarily created by
PROC MEANS or PROC SUMMARY, yet it contains the _TYPE_
variable that is characteristic of a summary dataset. The _TYPE_
variable can then be used to identify the hierarchical level of each
row in the summary dataset. In other words, the _TYPE_ variable
identifies which dimensions are shown at the aggregate level and
which dimensions are shown at the detail level for each row in the
dataset. The simulated summary dataset is then used as our
multidimensional cube.

Futrix can be made aware that the data source in use is a SAS
summary dataset, and is capable of using the _TYPE_ variable as a
filter to select the appropriate rows based on the user’s current
selections.

DIFFERENT ANALYSIS VARIABLES
Using SAS summary tables, we can now show whatever variables
we want at any level of the hierarchy. Futrix has a unique capability
of allowing us to specify required dimensions for display of any given
analysis variable. In other words, we can specify that the Average
Days Trading Volume analysis variable is not to be shown unless the
Security Identifier or Security Name dimension variable is also
shown.

With the simulated summary dataset, we can store missing values
for Average Days Trading Volume at all levels of the hierarchy where
security is at a summary level instead of a detail level.

SUGI 28 Emerging Technologies

3

CONCLUSION
PROLAP is a hybrid OLAP approach that addresses data retrieval
and presentation through the replacement of the data source
interface with a program interface. The OLAP tool passes the same
system state parameters to the program that it passes to the data
source interface. The program takes care of the data model entirely
and returns a multidimensional dataset in the form of a simulated
SAS Summary dataset which the OLAP tool can consume, just as if
the dataset was returned from the data source interface.

This approach delegates all the complex problems of fitting data into
restrictive OLAP models to the SAS programmer, where the full
power of SAS can be used to better address them. The approach is
very effective at dealing with the classic OLAP problems of non-
additive measures and large multidimensional cubes, because it
solves them outside of the OLAP model and returns a dataset that
fits the model.

Futrix is an OLAP tool built on SAS. Futrix is unique in it’s ability to
implement the PROLAP approach.

REFERENCES
Ann Weinberger & Matthias Ender. "The Power of Hybrid OLAP in a
Multidimensional World" Proceedings of the Twenty-Fifth Annual SAS®
Users Group International Conference. March 2000.
<http://www2.sas.com/proceedings/sugi25/25/dw/25p133.pdf>
(December 16, 2002).

Jose Luis Ambite, Cyrus Shahabi, Rolfe R. Schmidt, and Andrew
Philpot, “Fast Approximate Evaluation of OLAP Queries for
Integrated Statistical Data” <http://www.isi.edu/~ambite/ambite-
dgo2001.pdf> (December 16, 2002).

Luca Cabibbo and Riccardo Torlone, “Design and Development of a
Logical OLAP System” <http://cabibbo.dia.uniroma3.it/pub/T4-
R09.html> (December 16, 2002)

ACKNOWLEDGMENTS
We would like to thank Futrix and Qualex Consulting Services for
their support in developing the PROLAP approach.

TRADEMARKS
SAS and SAS/GRAPH are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries.
® indicates USA registration. Other brand and product
names are registered trademarks or trademarks of their
respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Jim Acker, Craig Austin
 Frank Russell Company
 P.O. Box 1616
 Tacoma, WA 98401-1616
 Work Phone: 253-572-9500
 Fax: 253-502-4299
 Email: jimacker@russell.com / caustin@russell.com
 Web: http://www.russell.com

GLOSSARY
OLAP – Online Analytical Processing is a category of software tools
that allows high performance analysis of data. OLAP tools typically
aggregate the data at many different levels allowing the user to drill
from a highly summarized level of data and eventually down to the
detail level while exposing many different levels of aggregation along
the way.

Many OLAP tools can plug right in to an existing Data Warehouse
with little or no additional programming required to expose the data
contained in the Data Warehouse and perform all the necessary
calculations to aggregate the data. However, a basic OLAP
approach often assumes that the detail level of data is completely
denormalized into a single table. With large amounts of data, the
basic OLAP approach can often be unreasonably slow.

ROLAP – Relational OLAP is an OLAP extension where the detail
level of data is stored in a relational database, usually in a star
schema or snow flake model that is common to a data warehouse.
This approach has the advantage of being more scaleable than a
basic OLAP approach, but requires more maintenance and
administration.

MOLAP – Multidimensional OLAP is an OLAP extension where the
data is aggregated before runtime into all levels required for the
hierarchy. The pre aggregated data is stored in a Multidimensional
Database (MDDB). Since the data is already aggregated, this
approach can provide great improvements to response time.
However, the amount of space required to store the MDDB grows
exponentially as more dimensions are added.

HOLAP – Hybrid OLAP is a combination of both ROLAP and
MOLAP. The advantages of each are combined into a single
implementation. The MDDB can be divided into several relational
databases allowing different levels of the hierarchy to be stored in
different places (stacking), or even allowing different parts of one
level of aggregation to be stored in different places (racking).

POLAP - Progressive OLAP, though not used in the discussion of
this paper, we thought would be worth mentioning. Before coining
the term PROLAP, we decided run a quick search to find out if
anyone was already using such a term. In fact POLAP was our first
choice for an acronym. However, the POLAP acronym has already
been used for Progressive OLAP, a method in which statistical
models are used to estimate the aggregate values from a sample of
data rather than aggregating from every record of detail.

LOLAP – Logical OLAP is the closest thing that we could find to
PROLAP. Logical OLAP is a method in which a logical layer is
inserted between the OLAP tool and the Data Warehouse. This layer
is intended to provide independence between the OLAP tools and
the data warehouse. If the logical layer is interpreted as a program
or series of programs, then LOLAP and PROLAP may indeed be the
same thing. On the other hand, if LOLAP is interpreted as a model
under which source data relationships are defined and related to
OLAP tools, then these approaches appear to have common traits,
yet be different enough to deserve distinct terminology.

SUGI 28 Emerging Technologies

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

