
 - 1 -

Paper 178-28 
 

A Successful Implementation of a Complicated Web-based Application Through webAF™ 
and SAS® Integration Technologies 

 
Clare Nicklin, Amadeus Software Ltd., Oxfordshire, UK 
Daniel Morris, Amadeus Software Ltd., Oxfordshire, UK 

 
ABSTRACT 
Amadeus Software Ltd. in the United Kingdom has 
been involved in analysing, designing, and 
implementing a complicated, web-based, tax 
modelling system. The system was built to be a 
browser based application, available internally 
through a company intranet. This paper, initially, 
details the applications software requirements 
where a combination of SAS® software (including 
webAF from AppDev Studio™, Integration 
Technologies, SAS/AF® software, and Base SAS 
Software Release 8.2) and additional software 
(such as Apache, Tomcat, and JDK) was used 
collectively. Secondly, the systems architecture is 
summarised to describe how the specified 
software and hardware components are 
organised. Thirdly, the applications design 
features and defining characteristics are 
explained. Finally, a number of difficulties that 
emerged during the process of creating the 
application using the specified software are 
described. This paper is intended to be of use to 
both developers and managers to aid in the 
conception, construction, and problem 
management of complicated, web-based 
applications which interact with The SAS System.  

INTRODUCTION 
The web-based tax modelling system explained in 
this paper allows a series of tax calculations to be 
defined, stored and run through a set of tax 
modeller calculation code. The system was initially 
built for a single tax model. However it was 
necessary to future proof it so that any number of 
different models could be integrated. In this way 
the design is such that much of the application is 
built using metadata and specified directory 
structures. It is therefore capable of handling 
modification and fine-tuning by the system 
administrators themselves. 

APPLICATION IMPLEMENTATION 
Software Used and Systems Architecture 
The application was built to be housed on a Unix 
server and accessed from standard Windows 
desktop machines using Microsoft Internet 
Explorer version 5 and above. The browser based 
application is available internally to the company 
through its intranet. Both the web server and the 
application server are installed on the same 
physical Unix machine.   Figure 1, shown in 
Appendix A of this paper, depicts the applications 
systems architecture. Its main features are: 

 
• The Web Server hosts all the web-based files, 

including any HTML files, JavaServer Pages 
(JSPs), other Java classes, and JAR files 
necessary for the running of the application. 
These files are published to the Apache1 web 
server, its Tomcat2 servlet engine, or the JDK3. 
While Apache hosts the application, Tomcat is 
necessary to interpret the JSPs and provide 
full support for the necessary Servlet 2.2/JSP 
1.1 standards. 

• JDK is the short-cut name for the set of Java 
development tools needed to build and 
compile Java applications. The JDK 
environment includes the necessary class 
libraries and other files that support the 
execution of programs written in Java. 
Additional class libraries in the form of JAR 
files from AppDev Studio were placed here.  

• The SAS Server consists of Version 8.2 with 
Integration Technologies. All data is stored 
and manipulated on this server.  

• The IOM Spawner (Integrated Object Model 
Spawner) is part of SAS Integration 
Technologies. External applications 
communicate with SAS software through this 
object spawner, which listens constantly for 
calls to SAS on a specific port. Any 
conversation between the application (via the 
web server) and the SAS software is done 
through the spawner. 

• Base SAS Software Release 8.2 is used for all 
data storage, manipulation and retrieval.  

• The application is accessed from a browser, 
the default for this application being Internet 
Explorer version 5 or above. 

• AppDev Studio’s webAF was used for the 
applications development. The application 
comprises of many JavaServer Pages (JSPs). 
TransformationBeans were used in both Java 
scriptlets and XML tags to link to webAFs 
existing models and represent any results on 
web pages in HTML. InformationBeans were 
also used for providing the application with 
access to several SCL classes. Additional 
Java classes were also written to perform 
particular tasks throughout the application.  

• SAS/AF was also used for the applications 
development to create various SCL classes. 
Parameters are passed from the Java into the 
SCL, where various tasks are performed. 
Information in the form of strings and lists are 
then sent back to the application. 
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Application Characteristics 
Metadata Driven 
The system has been designed to easily handle 
future modifications and changes in policy by 
using metadata, stored in SAS data sets, and 
specific directory structures to generate its 
screens.  There are different levels of metadata: 
• Environment level - the highest level of 

metadata allows the environment itself to be 
defined including all the system paths to the 
top level directory structures and user logon 
information.  

• Application level – this metadata allows an 
administrator to define information to 
dynamically produce the applications screens. 
Metadata is generated from the stored data 
sets through SCL classes. It is then passed to 
the JSPs, where the Java builds the HTML for 
the screens content and appearance. Such 
screen elements built this way include: 

o Names, labels, groupings, ordering, 
valid value ranges, and screen 
positions for all parameters. This 
applications main function is the 
editing of large groups of parameters 
and their characteristics. This makes 
the parameter metadata the most 
complicated and comprehensive in the 
system. The metadata must be 
extensible to new sets of parameters 
and also to entirely new tax models.  

o Radio buttons for the selection of 
subsets. A radio button is generated 
for every subset that is defined in 
metadata. 

o Images and styles being used in the 
GUI. Company logos and colour 
schemes may change. Images and 
stylesheets can be amended without 
the need to re-develop entire screens. 

o Any displayed text such as screen 
labels. This means that language can 
be edited at any time during or after 
development.  

o Drop down menus and navigational 
button contents and destinations.   

• User level - this holds various information such 
as user preferences and user defined formats. 

Metadata Managers 
Provision had to be made for non SAS 
programmers to edit the various datasets involved 
in defining the applications metadata4. Screens 
were therefore built to allow the systems 
administrators to make changes (ordinary users do 
not have access to such screens).  The managers 
consist of: 
• Parameter Metadata Manager – creating new 

parameters and new parameter sets, editing 
existing parameters, and moving parameters 
between different groupings are necessary 
tasks for this application. This metadata 

defines how the parameters are displayed on 
the screen within the application that allows for 
the editing of the parameters actual values. 

• Subset Metadata Manager – subsets can be 
used on data within the tax modelling code. 
These are set up by a SAS knowledgeable 
administrator who defines a meaningful label 
for a subset and then includes the actual SAS 
code to be run. This metadata defines the 
number of subsets available in the system and 
allows users who are not SAS conversant to 
simply select a subset description. 

• Stylesheet Manager - the look and feel of the 
application is based around the clients web 
site using specified company standards and 
images. Due to the future proof nature of the 
application, the design has to be flexible for 
when standards change. Stylesheets are used 
heavily to define such standards and to 
provide a single access point for editing. The 
application comes equipped with a stylesheet 
editor to assist changes. The stylesheet to be 
used is stored in metadata. 

• Image Manager - it is also possible that 
images and logos change in the future. An 
image manager inside the application is used 
to select new GIF or JPG files for defined 
areas of the application screens. The images 
selected to be used are stored in metadata. 

• User Manager – an administrator can define 
new users of the application along with their 
logon information and system privileges. 

Directory Structure Driven 
As well as various types of metadata, the 
application uses specific directory structures to 
store system data and save various definitions.  
The specified directory structure exists at three 
levels (the paths to which are held in metadata):  
• The system area - contains all code templates, 

input data and parameter templates. If any 
new inputs are necessary, for example the 
inputs for a new year, they can simply be 
placed in the correct directory structure. 

• The user area - contains all the users defined 
jobs (and the pre-specified directory structure 
for those jobs) and the user level metadata 

• The utility area - contains a dustbin for deleted 
jobs to be stored, a public area for users to 
share their work, and a directory for images to 
be dropped so that different pictures can be 
selected in the image manager (described 
above) to change the look and feel of the 
application.  

Development and Technical Difficulties 
The application proved to be a complicated system 
for a web-based application. There were therefore 
several difficulties during the development 
process: 
• There are long periods of time where nothing 

is returned to the browser, for example when 
tax modelling code is being run on a large 
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number of records. The browser would receive 
connection timeout errors making it unable to 
forward to the next screen. This problem is 
due to the use of proxy servers in the clients 
network architecture. The proxy server 
forwarding the browsers connection to the 
application server would timeout and therefore 
lose the browsers connection to the program 
being run. This is currently being solved by by-
passing the proxy servers in the advanced 
connection features of the browsers internet 
options. 

• Rogue SAS processes were being left on the 
Unix server which would continue to run and 
use up memory. Processes are left behind 
when an error occurs in the application or 
when users exit the browser itself instead of 
using the applications own Exit function (which 
contains the Java code to stop the SAS 
connection). This was a major problem 
especially as large numbers of processes 
were left on the process lists which had to be 
killed manually. Error trapping was attempted 
which would stop the SAS connection but not 
all circumstances could be identified. 
Eventually a way of combating this problem 
was found by tying up the SAS connection 
with the HTTP session itself. No matter how 
the application is exited, the HTTP session 
used by the browser times out after a preset 
time period. A Java class was written which 
implements the HttpSessionBindingListener. 
The valueUnbound method of this listener 
traps the event of the session closing and 
closes the SAS connection at the same time. 

• There are several screens which have a large 
number of input fields to be edited by the user. 
Dynamically displaying these fields on the 
screen using the metadata, while also making 
the screens efficient and appealing to the user 
was challenging. Many more metadata fields 
had to be added in order to build these 
screens and allow the administrator more 
control over the display of the input fields. 
Further training was then required to instruct 
the administrator about the impact of this extra 
functionality. 

• Speed issues were initially a concern as 
information has to be constantly transferred 
between the client and the server to fill screen 
objects and save definitions. The application 
initially tried to avoid using SCL classes in 
favour of the newer Java technologies. 
However, longer delays were experienced 
using the Java equivalents to the SCL 
methods. For example, retrieving a value from 
a data set using a data set interface class 
directly in Java took about 4 times longer than 
performing the same task by calling an SCL 
method and passing the retrieved value back 
to the application as a parameter. The SCL 
classes were therefore used more prolifically 
than anticipated. 

• When it became time to publish the application 
to the server machine, the Integration 
Technologies installation on the Unix server 
seemed incomplete. SAS could not find a 
series of necessary SCL classes. The 
catalogues that hold these classes were 
located on a Windows machine and had to be 
ported across to the Unix server. 

• AppDev Studio had various difficulties 
generating the Java proxies necessary for 
interfacing with SCL classes through its 
InformationBean Wizard. Memory problems 
were also encountered while running AppDev 
Studio even though the development 
machines exceeded the recommended 
specification requirements. 

CONCLUSION 
In summary, this project has pushed the limits of 
what we feel is appropriate for a web based 
application using AppDev Studio and Integration 
Technologies. The metadata driven approach, 
required for the future proofing and extensibility of 
the system, is demanding in terms of functionality, 
performance, and maintenance. At the time of 
writing, the application is in the final stages of user 
and acceptance testing and is expected to go live 
in early 2003. Although the project has been a 
challenge, the application is proving to have both 
met and exceeded the clients original business 
requirements. 
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APPENDIX A – SYSTEMS ARCHITECTURE 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - Systems Architecture 
 
 
 
                                                      
1 http://httpd.apache.org 
2 http://jakarta.apache.org 
3 http://java.sun.com 
4 Some metadata predominantly affects the development team, for example environment level metadata or 
menu contents. As such it is changed by directly editing the SAS data sets storing the metadata rather than 
building any further managers within the application itself.  
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