
 - 1 -

Paper 178-28

A Successful Implementation of a Complicated Web-based Application Through webAF™
and SAS® Integration Technologies

Clare Nicklin, Amadeus Software Ltd., Oxfordshire, UK
Daniel Morris, Amadeus Software Ltd., Oxfordshire, UK

ABSTRACT
Amadeus Software Ltd. in the United Kingdom has
been involved in analysing, designing, and
implementing a complicated, web-based, tax
modelling system. The system was built to be a
browser based application, available internally
through a company intranet. This paper, initially,
details the applications software requirements
where a combination of SAS® software (including
webAF from AppDev Studio™, Integration
Technologies, SAS/AF® software, and Base SAS
Software Release 8.2) and additional software
(such as Apache, Tomcat, and JDK) was used
collectively. Secondly, the systems architecture is
summarised to describe how the specified
software and hardware components are
organised. Thirdly, the applications design
features and defining characteristics are
explained. Finally, a number of difficulties that
emerged during the process of creating the
application using the specified software are
described. This paper is intended to be of use to
both developers and managers to aid in the
conception, construction, and problem
management of complicated, web-based
applications which interact with The SAS System.

INTRODUCTION
The web-based tax modelling system explained in
this paper allows a series of tax calculations to be
defined, stored and run through a set of tax
modeller calculation code. The system was initially
built for a single tax model. However it was
necessary to future proof it so that any number of
different models could be integrated. In this way
the design is such that much of the application is
built using metadata and specified directory
structures. It is therefore capable of handling
modification and fine-tuning by the system
administrators themselves.

APPLICATION IMPLEMENTATION
Software Used and Systems Architecture
The application was built to be housed on a Unix
server and accessed from standard Windows
desktop machines using Microsoft Internet
Explorer version 5 and above. The browser based
application is available internally to the company
through its intranet. Both the web server and the
application server are installed on the same
physical Unix machine. Figure 1, shown in
Appendix A of this paper, depicts the applications
systems architecture. Its main features are:

• The Web Server hosts all the web-based files,

including any HTML files, JavaServer Pages
(JSPs), other Java classes, and JAR files
necessary for the running of the application.
These files are published to the Apache1 web
server, its Tomcat2 servlet engine, or the JDK3.
While Apache hosts the application, Tomcat is
necessary to interpret the JSPs and provide
full support for the necessary Servlet 2.2/JSP
1.1 standards.

• JDK is the short-cut name for the set of Java
development tools needed to build and
compile Java applications. The JDK
environment includes the necessary class
libraries and other files that support the
execution of programs written in Java.
Additional class libraries in the form of JAR
files from AppDev Studio were placed here.

• The SAS Server consists of Version 8.2 with
Integration Technologies. All data is stored
and manipulated on this server.

• The IOM Spawner (Integrated Object Model
Spawner) is part of SAS Integration
Technologies. External applications
communicate with SAS software through this
object spawner, which listens constantly for
calls to SAS on a specific port. Any
conversation between the application (via the
web server) and the SAS software is done
through the spawner.

• Base SAS Software Release 8.2 is used for all
data storage, manipulation and retrieval.

• The application is accessed from a browser,
the default for this application being Internet
Explorer version 5 or above.

• AppDev Studio’s webAF was used for the
applications development. The application
comprises of many JavaServer Pages (JSPs).
TransformationBeans were used in both Java
scriptlets and XML tags to link to webAFs
existing models and represent any results on
web pages in HTML. InformationBeans were
also used for providing the application with
access to several SCL classes. Additional
Java classes were also written to perform
particular tasks throughout the application.

• SAS/AF was also used for the applications
development to create various SCL classes.
Parameters are passed from the Java into the
SCL, where various tasks are performed.
Information in the form of strings and lists are
then sent back to the application.

SUGI 28 Emerging Technologies

 - 2 -

Application Characteristics
Metadata Driven
The system has been designed to easily handle
future modifications and changes in policy by
using metadata, stored in SAS data sets, and
specific directory structures to generate its
screens. There are different levels of metadata:
• Environment level - the highest level of

metadata allows the environment itself to be
defined including all the system paths to the
top level directory structures and user logon
information.

• Application level – this metadata allows an
administrator to define information to
dynamically produce the applications screens.
Metadata is generated from the stored data
sets through SCL classes. It is then passed to
the JSPs, where the Java builds the HTML for
the screens content and appearance. Such
screen elements built this way include:

o Names, labels, groupings, ordering,
valid value ranges, and screen
positions for all parameters. This
applications main function is the
editing of large groups of parameters
and their characteristics. This makes
the parameter metadata the most
complicated and comprehensive in the
system. The metadata must be
extensible to new sets of parameters
and also to entirely new tax models.

o Radio buttons for the selection of
subsets. A radio button is generated
for every subset that is defined in
metadata.

o Images and styles being used in the
GUI. Company logos and colour
schemes may change. Images and
stylesheets can be amended without
the need to re-develop entire screens.

o Any displayed text such as screen
labels. This means that language can
be edited at any time during or after
development.

o Drop down menus and navigational
button contents and destinations.

• User level - this holds various information such
as user preferences and user defined formats.

Metadata Managers
Provision had to be made for non SAS
programmers to edit the various datasets involved
in defining the applications metadata4. Screens
were therefore built to allow the systems
administrators to make changes (ordinary users do
not have access to such screens). The managers
consist of:
• Parameter Metadata Manager – creating new

parameters and new parameter sets, editing
existing parameters, and moving parameters
between different groupings are necessary
tasks for this application. This metadata

defines how the parameters are displayed on
the screen within the application that allows for
the editing of the parameters actual values.

• Subset Metadata Manager – subsets can be
used on data within the tax modelling code.
These are set up by a SAS knowledgeable
administrator who defines a meaningful label
for a subset and then includes the actual SAS
code to be run. This metadata defines the
number of subsets available in the system and
allows users who are not SAS conversant to
simply select a subset description.

• Stylesheet Manager - the look and feel of the
application is based around the clients web
site using specified company standards and
images. Due to the future proof nature of the
application, the design has to be flexible for
when standards change. Stylesheets are used
heavily to define such standards and to
provide a single access point for editing. The
application comes equipped with a stylesheet
editor to assist changes. The stylesheet to be
used is stored in metadata.

• Image Manager - it is also possible that
images and logos change in the future. An
image manager inside the application is used
to select new GIF or JPG files for defined
areas of the application screens. The images
selected to be used are stored in metadata.

• User Manager – an administrator can define
new users of the application along with their
logon information and system privileges.

Directory Structure Driven
As well as various types of metadata, the
application uses specific directory structures to
store system data and save various definitions.
The specified directory structure exists at three
levels (the paths to which are held in metadata):
• The system area - contains all code templates,

input data and parameter templates. If any
new inputs are necessary, for example the
inputs for a new year, they can simply be
placed in the correct directory structure.

• The user area - contains all the users defined
jobs (and the pre-specified directory structure
for those jobs) and the user level metadata

• The utility area - contains a dustbin for deleted
jobs to be stored, a public area for users to
share their work, and a directory for images to
be dropped so that different pictures can be
selected in the image manager (described
above) to change the look and feel of the
application.

Development and Technical Difficulties
The application proved to be a complicated system
for a web-based application. There were therefore
several difficulties during the development
process:
• There are long periods of time where nothing

is returned to the browser, for example when
tax modelling code is being run on a large

SUGI 28 Emerging Technologies

 - 3 -

number of records. The browser would receive
connection timeout errors making it unable to
forward to the next screen. This problem is
due to the use of proxy servers in the clients
network architecture. The proxy server
forwarding the browsers connection to the
application server would timeout and therefore
lose the browsers connection to the program
being run. This is currently being solved by by-
passing the proxy servers in the advanced
connection features of the browsers internet
options.

• Rogue SAS processes were being left on the
Unix server which would continue to run and
use up memory. Processes are left behind
when an error occurs in the application or
when users exit the browser itself instead of
using the applications own Exit function (which
contains the Java code to stop the SAS
connection). This was a major problem
especially as large numbers of processes
were left on the process lists which had to be
killed manually. Error trapping was attempted
which would stop the SAS connection but not
all circumstances could be identified.
Eventually a way of combating this problem
was found by tying up the SAS connection
with the HTTP session itself. No matter how
the application is exited, the HTTP session
used by the browser times out after a preset
time period. A Java class was written which
implements the HttpSessionBindingListener.
The valueUnbound method of this listener
traps the event of the session closing and
closes the SAS connection at the same time.

• There are several screens which have a large
number of input fields to be edited by the user.
Dynamically displaying these fields on the
screen using the metadata, while also making
the screens efficient and appealing to the user
was challenging. Many more metadata fields
had to be added in order to build these
screens and allow the administrator more
control over the display of the input fields.
Further training was then required to instruct
the administrator about the impact of this extra
functionality.

• Speed issues were initially a concern as
information has to be constantly transferred
between the client and the server to fill screen
objects and save definitions. The application
initially tried to avoid using SCL classes in
favour of the newer Java technologies.
However, longer delays were experienced
using the Java equivalents to the SCL
methods. For example, retrieving a value from
a data set using a data set interface class
directly in Java took about 4 times longer than
performing the same task by calling an SCL
method and passing the retrieved value back
to the application as a parameter. The SCL
classes were therefore used more prolifically
than anticipated.

• When it became time to publish the application
to the server machine, the Integration
Technologies installation on the Unix server
seemed incomplete. SAS could not find a
series of necessary SCL classes. The
catalogues that hold these classes were
located on a Windows machine and had to be
ported across to the Unix server.

• AppDev Studio had various difficulties
generating the Java proxies necessary for
interfacing with SCL classes through its
InformationBean Wizard. Memory problems
were also encountered while running AppDev
Studio even though the development
machines exceeded the recommended
specification requirements.

CONCLUSION
In summary, this project has pushed the limits of
what we feel is appropriate for a web based
application using AppDev Studio and Integration
Technologies. The metadata driven approach,
required for the future proofing and extensibility of
the system, is demanding in terms of functionality,
performance, and maintenance. At the time of
writing, the application is in the final stages of user
and acceptance testing and is expected to go live
in early 2003. Although the project has been a
challenge, the application is proving to have both
met and exceeded the clients original business
requirements.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries.
® indicates USA registration.
Other brand and product names are registered
trademarks or trademarks of their respective
companies.

CONTACT INFORMATION
We very much welcome your feedback,
comments, and questions on this paper. Contact
the authors at:

Amadeus Software Ltd.
Orchard Farm
Witney Lane
Leafield
Oxfordshire
OX29 9PG
United Kingdom
www.amadeus.co.uk

clare.nicklin@amadeus.co.uk
daniel.morris@amadeus.co.uk

SUGI 28 Emerging Technologies

 - 4 -

APPENDIX A – SYSTEMS ARCHITECTURE

Figure 1 - Systems Architecture

1 http://httpd.apache.org
2 http://jakarta.apache.org
3 http://java.sun.com
4 Some metadata predominantly affects the development team, for example environment level metadata or
menu contents. As such it is changed by directly editing the SAS data sets storing the metadata rather than
building any further managers within the application itself.

Unix Server running Solaris

 SAS Server

Base SAS 8.2,
Integration

Technologies

IOM Spawner

 Windows
Client

Normal User

Internet
Explorer

5 or above

 Web Server

Apache 1.3,
Tomcat 3.3

Development User

Internet Explorer
5 or above,

webAF,
SAS/AF

JDK

SUGI 28 Emerging Technologies

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

