
Paper 174-28

Extending SAS R© Data Services via XML and Java
TM

Scott E. Chapal, Ichauway, Inc., Newton, GA

ABSTRACT

Designing for interoperability requires the choice of key
technologies for the software components of a Web
Service. SAS provides very powerful data management
and analysis capabilities which can be enhanced and
extended in a distributed service-oriented architecture.
As XML has become the de facto standard for structured
data representation on the Web, Java has become the
programming language of choice when considerations of
portability and device-independence are paramount. The
confluence of SAS, Java and XML creates a symbiotic
relationship enabling the existence of “Data Services”
which are conceptually metadata-driven, analytically
capable, and universally accessible. The continued
development and emphasis of Java and XML capabilities
in SAS underscores the natural alignment of these
technologies. SAS Data Services, distributed via XML
and Java, will provide interoperability not only for
business problems, but also for scientific, governmental,
academic and non-profit institutions.

INTRODUCTION

A persistent challenge for information management is the
necessity to integrate disparate applications. One of the
most problematic issues for integration is choosing (or
creating) and enforcing a data transport standard that
inter-operates with processing software (like SAS), but is
also vendor independent. In recent years, it has become
clear that XML serves this unique role of a “universal
data” representation layer. The capacity to develop data
driven content models in XML schema that are
validate-able and which can be interpreted by any
capable software, is propelling the success of XML. By
understanding that XML is now the de facto data
interchange medium, it is a simple shift in perspective to
re-factor data management applications as services, with
their access mechanisms formally defined in XML.

Although the Web Services idea has been criticized as
“just another distributed computing model”, such as
CORBA, RMI or DCOM, there appears to be genuine
potential for ’loosely coupled’ application integration.
Much of this optimism concerns the fact that the Web
Services model is based on core Internet technologies for
document transport (XML) over standard protocols (like
HTTP SMTP, FTP, etc.). The ability to achieve remote

object access in a web service model is profound
because it simplifies the interoperability conundrum by
standardizing the protocol(s) and the data-representation
language. The ubiquity of HTTP makes it ideal for data
transfer between clients and services, while XML, as an
extensible (meta) language, specifies the data structure
and interactions between the parties.

Additionally, the web-services “stack” - SOAP, WSDL, and
UDDI provides standardized layers of functionality to
ensure interoperability. The Simple Object Access
Protocol defines a uniform way to pass XML and perform
remote procedure calls. Universal Description, Discovery
and Integration provides a registry of SOAP-encoded
messages. The UDDI registry uses the Web Services
Description Language to describe what a client needs to
know to bind to the service. A broad array of support is
growing for these ideas and technologies.

Even if wholesale adoption of the web services model is
not immediately feasible, there is merit in understanding
the concepts and incorporating relevant ideas into future
project plans. The proposed architecture of the web
services style of distributed computing promises greatly
enhanced deployment flexibility. A service can be used by
a certain client, by many different clients or by another
service. Along with this flexibility comes the increased
capability to partition and modularize applications into
components. The programming languages in which those
components are built is a matter of choice.

JAVA

Java is an ideal language to create distributed enterprise
applications. Because of it’s object-oriented design and
platform independence, it can be used for scalable,
distributed systems, and is an obvious platform for web
services, which may be accessed by many different
clients. Additionally, the motivation to use Java is
enhanced by the fact that a coalition of organizations
support the Java 2 Enterprise Edition platform, which
includes EJB’s, Servlets, JSP’s, Java Message Services,
etc. This coalition has formally evolved into the Java
Community Process which oversees the development of
Java technology.

The success of Java is evidenced in application server as
well as on clients and information appliances like PDA’s.
JVM’s are supported on many operating systems
including Windows, Linux, MacOS X, Solaris,

1

SUGI 28 Emerging Technologies

SymbianOS, PalmOS, and PocketPC. This wide-spread
availability makes it possible to address multiple platforms
with the same or similar code bases, and eases the effort
involved in porting. The concept of modularity can then
be extended to the choice of platform(s), creating greater
choice and potentially simplifying development and
migration.

XML

The Extensible Markup Language may owe its pedigree
to SGML, but it owes its success to the web. In its key
role of data interchange, XML-based information has
come to be referred to as ’Universal Data’. XML provides
interoperability because it is structured, extensible and
open. The structure is embodied in the concepts of
well-formedness and validation. Extensibility is inherent in
the design of XML, giving the authors of XML documents
and schema control over the choice and implementation
of the structure. XML is intrinsically open, in that XML
documents are readable text, often with associated DTD’s
(Document Type Definition) or Schema, providing all the
metadata needed to use, or transform, the data.
The benefits of XML have been detailed extensively, but a
typical list of features would include:

• Plain Text

• Data Identification

• Stylability

• Inline Reusability

• Linkability

• Easily Processed

• Hierarchical

Notably, the hierarchical nature of XML data
representation contrasts distinctly with the ’rectangular’
nature of SAS data sets. Thus the difference between
hierarchical and rectangular data representation
illustrates the need for efficient and automate-able means
of ’transformation’.

Transformation of XML data concerns principally three
XML specifications: XSL, XSLT and XPath. The
Extensible Stylesheet Language (XSL) is both a language
for transforming XML documents and a vocabulary for
formatting XML documents (McLaughlin 2001). XSL
Transformations (XSLT) specifies the textual conversion
from one document type to another. XPath (Clark &
DeRose 1999) provides a mechanism to identify and refer
to an arbitrary element or attribute names and values.
XPath and XSLT work together to define what data to
use, and how to transform it.

Of course, an XML parser1 is required to read XML data
into memory. XML can be read from a file, although Java

1Parsers are available in many languages including Java, both
commercial and open-source.

XML parsers can read from an InputStream or a URL. A
validating parser uses the documents’ DTD or Schema to
validate the data during the parsing process, which
simplifies the Java validation code required.

COOPERATING TECHNOLOGIES

Java has deep and multi-faceted XML support. In Java,
the Simple API for XML (SAX) is the most commonly
used parsing method. Current parsers, (Apache Xerces
for example) now implement SAX and DOM (Document
Object Model) interfaces and are adding support for
Namespaces, Schema and JAXP (see below).

Java, XML, and XSLT are suitable for web applications
because of the high degree of modularity they offer
(Burke 2001). The Java API for XML Processing (JAXP)
supports processing of XML documents using DOM, SAX
and XSLT. It is essentially an abstraction which allows the
substitution of different parser in an application without
changing the application code. This achieves
vendor-independence of parsers: “It encapsulates
differences between various XML parsers, allowing Java
programmers to use a consistent API regardless of which
parser they use”(Burke 2001).

SAS has been steadily acquiring the ability to process
XML and to expose SAS data as XML documents. These
functions are incorporated in the Output Delivery System
and the LIBNAME XML facility

The ODS MARKUP statement can be given various
tagset= options to define several markup languages
including several XML types. Notably, the XML tagsets
generate corresponding XML data, XSL stylesheets and
DTD (Document Type Definition) schema. The tagset
definitions define ODS MARKUP and LIBNAME XML
destinations.

SAS ODS MARKUP XML

XSL DTD

Figure 1: ODS MARKUP can be used to create XML data,
stylesheets and schema (DTDs) from procedural and data
step output. Using XML to represent content relegates the
presentation another (client) component.

Conversely, there is also the ability to import XML using
the XML LIBNAME engine, providing that the XML is
“very regular”. As of version 9.0, there is also the ability to
import XML into a SAS dataset using the XMLMap2

2Using XPath methodology to define and retrieve XML ele-
ments.

2

SUGI 28 Emerging Technologies

TAGSET XML Type

DEFAULT ODSXML (Generic XML)
DOCBOOK OASIS DocBook
SASIOXML Generic XML
SASXMOG Oracle8iXMLa

SASXMOIM Open Information Model XML
SASXMOR Oracle8iXMLb

aXML LIBNAME XMLTYPE=GENERIC
bXML LIBNAME XMLTYPE=ORACLE

Table 1: ODS MARKUP in SAS v9.0 has
TAGSET options to support several XML ’di-
alects’.

option with an explicitly defined XML file containing syntax
to ’map’ variables, observations and variable attributes.

In cases where the XML is not sufficiently regular,
transformation using XSL/XSLT could be used to
re-shape the XML to a format SAS can accommodate.
However, this highlights a perplexing issue for XML
processing with SAS, because the XML capabilities in
SAS (ODS MARKUP, LIBNAME XML) overlap with (but
don’t completely duplicate) the functionality of XSLT,
XPATH, and Java technologies such as JAXB3 and
JDOM4. In this regard, the SAS (Java-based) Atlas5

product may help in the creation of XMLMAP files,
however the need to automate (XML ⇔ SAS)
transformation is a requirement beyond just an interactive
interface.

XML LIBNAME XML SAS

XMLMap data step

Figure 2: LIBNAME XML uses XMLMap directives
(XPath) to map data from XML input to a rectangular SAS
data set.

A combination of Java and SAS technologies can be
used to achieve XML processing and validation. Using
the java ant build system, the xalan XSL Stylesheet
processor and the xerces validating parser, structured
metadata can be auto-generated from SAS data. There is
a simplified XML transformation example in Appendix 1.

SERVICE ORIENTED ARCHITECTURE

Extending the capabilities of SAS and designing for
interoperability are increasingly important objectives but
implementation of these goals is often difficult. Multiple
platforms, languages and access methods all contribute

3Java API for XML Binding.
4A java-centric XML processing approach (JSR-102).
5An interactive XMLMAP creation utility released in v9.0

ODS MARKUP XSLT Valid XML

XML Schema java

Figure 3: Automating the conversion of XML with
Schema-based validation can be accomplished very well
by using cooperating technologies. ODS MARKUP is
quite adept at generating metadata for sas data structures.
XSL stylesheets can then be used to manipulate the XML
based on transformation logic and Schema requirements.

to implementation headaches. The promise of the
Service Oriented Architecture [SOA] conceptual
framework, is to simplify many of these difficulties by
providing common standards-based technologies to
support web services. The benefits of the SOA approach
are rapidly becoming appreciated by data managers and
IT architects everywhere. A Service Oriented Architecture
[SOA] is “an architecture that uses a distributed,
discovery-based environment to expose and manage a
collection of service-oriented software assets.”(Chappell
& Jewell 2002).

The design intent in these emerging Web services
aspires to a loose coupling approach to the integration of
systems. Although some detractors fault the model as
being little more than basically cross-platform RPC, this
loose coupling is advantageous insofar as the
components used can be modular and therefore
replaceable. The SOA is thus built on independent,
interdependent, replaceable components.

The service oriented architectural effect, which web
services is supposed to achieve (and about which there is
so much hype), envisions a ’semantic web’ wherein
self-describing information is produced, advertised,
delivered and consumed. This result as a wide spread
phenomenon is probably still a long way off, for a variety
of technical and non technical reasons. But the vision is a
compelling one, especially for data managers and other
IT professionals who spend seemingly inordinate effort
massaging data to get it “in the right format”.

A SAS DATA SERVICE

SAS has long provided cross-platform connectivity and
distributed processing via SAS/Connect and SAS/Access
as well as concurrent update access via SAS/Share. The
evolution of these products has resulted in a feature rich
set of distributed processing technologies which
comprises one of SAS’ core strengths6. Increasingly,
SAS has provided software to extend it’s data

6SSL is supported in v9 SAS/Share and is on the SASWare
Ballot for SAS/Connect

3

SUGI 28 Emerging Technologies

management capabilities through “information delivery”
by facilitating access via the web.

As these SAS tools and abilities have evolved,
presentation of information in SAS has graduated from
delivery of static HTML to dynamic content and
interactivity. SAS recognizes the need for application
integration and is increasingly providing the tools to
support interoperability. SAS is now poised to provide the
functionality envisioned by the service oriented
architecture in the form of ’SAS Data Services’.

Product Technology niche

IntrNet CGI Java HTML
ODS XML HTML PDF RTF WML etc.
LIBNAME XML XML, markup
Integration Tech. Middleware
WebEIS OLAP Java
WebAF Java Servlet JSP WAP/WML

Table 2: SAS Web Technologies.

INTEGRATION TECHNOLOGIES

SAS Integration Technologies, which is available under
separate license, provides support for communication
with SAS via standards-based mechanisms, as well as a
publishing framework. The Integrated Object Model (IOM)
component provides interfaces to distributed object
standards such as COM, DCOM and CORBA. The object
interfaces include:

• SAS Workspace

• LanguageService

• DataService

• FileService

• Utilities

create a single server-side implementation which can be
used by many clients. Because the IOM interfaces are
standards-based, almost any programming language can
be used for client development. The extensibility and
modularity of this approach is obvious; .NET components,
J2EE application servers or Java applets can all
reference the same set of IOM interfaces.

STORED PROCESSES: A stored process is simply a
SAS program stored on a server which can be executed
by requesting applications. The stored process can return
result packages7 or can produce streaming results8.
Maintaining stored processes on the server facilitates
change control management and enhances security and
application integrity. But furthermore, provides a

7IOM Direct Interface Stored Processes
8Introduced in v9 as “SAS Stored Processes”.

distribution mechanism which can potentially support a
model-view-controller application architecture, strictly.
Thus an application can request a result object which
would be returned according to the needs of that
particular client application.

SAS DATA SERVICE: The idea of using SAS in a Web
Service is addressed in the recent SAS Whitepaper “How
to Implement a Web Service with SAS - A Business
Scenario”. The approach is demonstrated wherein a
Stored Process can be executed as a simple “data
service” and return the result back to the requesting
client. As previously mentioned, an architectural feature is
that the client is loosely coupled to the Service via SOAP
and the Web Service is loosely coupled to SAS via IOM.
So the client and the web service need not be written in
the same language nor on the same platform. In the
whitepaper, two approaches are outlined to deploying a
service which can utilize the stored process; one using
VB.NET and the other using the Java API for XML-based
RPC (JAX-RPC).

In a web service, if data presentation considerations are
handled by the client and data processing (business
logic) is handled by SAS, what is left to do? Well, there
are a number of requirements to satisfy including: 1)
Publishing service metadata to a registry; 2)Finding the
appropriate service; 3) Determining how to bind to the
service (HTTP, MIME, SMTP, etc.), 4) Facilitate the
transactions between the requester and the provider.
Many of these capabilities are becoming available in SAS
Integration Technologies software.

The JAX-RPC approach described in the whitepaper is
followed in the “Climate Service” example. The service
requires coding the following components:

• ClimateServiceIF.java - The service definition
interface.

• ClimateServiceImpl.java - The service
implementation class, which implements the
ClimateServiceIF interface.

• ClimateServiceClient.java - Simple client (for
testing) which contacts the service to invoke the
getClimateData() method.

The example was developed and tested using:

• SAS v9.0

• Integration Technologies

• Platform Services 1.0

– sas.core.jar

– sas.svc.connection.jar

• Java Development Kit 1.4.1

• Java Web Services Developer Pack
4

SUGI 28 Emerging Technologies

The client initiates the transaction and communicates to
the Web Service via SOAP over HTTP. The WSDL
describing the “Climate Service” is generated during the
build process and is included in the Appendix. It includes
definitions for <message>, <portType>, <binding> and
<service>. JAX-RPC generates java classes built from
the WSDL definitions.

In the service implementation class
(ClimateServiceImpl), the getClimateData() method
connects to the SAS IOM server to execute a Stored
Process (GetClimateData.sas) and return the result to
the caller.

1 /* GetClimateData.sas */

2 *ProcessBody;

3

4 libname climate ’/data/climate’;

5 data &outdata (keep=datetime outparam);

6 set climate.&indata;

7 where datetime = "&datetime"dt;

8 outparam = &requestedparam;

9 run;

In a Stored Process, the *ProcessBody; comment is a
marker interpreted by the Server to end the prologue in
which the default values of necessary parameters can be
declared (essentially providing functionality equivalent to
the %macro variables):

%let indata = ;

%let outdata = ;

%let datetime = ;

%let requestedparam = ;

But, importantly, when the stored process is executed, the
IOM StoredProcessServer substitutes the values for
these parameters provided by the getClimateData()

method in ClimateServiceImpl as described below.
Using the IOM bridge for Java, a reference to a
Workspace object can be created to connect to a remote
object on the IOM server, such as in the
getClimateData() method:

1 /* ClimateServiceImpl.java */

2 /* getClimateData() method */

3 WorkspaceFactory climf = new WorkspaceFactory();

4 ...

5 IWorkspace climWorkspace =

6 climf.createWorkspaceByServer(climprop);

7 ILanguageService climLang =

8 climWorkspace.LanguageService();

Once the ILanguageService object is created, then the
location of the Stored Process on the server can be
defined using the Repository method and run using
parameters passed via the Execute method9. So the
parameter list which the stored process expects is a
series of name/value pairs which correspond to
macro-type variables that occur in and are resolved by
the stored process.

9There is also the ExecuteWithResults method which returns
a ResultPackage from the Stored Process that can be published
and transported

dateTime, requestedParam

ClimateServiceClient SOAP MESSAGE ClimateService

WSDL HTTP

(a) Client initiates a request, by specifying a dateTime

value and the requestedParameter to query, which is
transported via SOAP.

ClimateService getClimateData() IOM Server

IOM Bridge work.out

(b) The Climate Service invokes the Stored Process via
the getClimateData() method

work.out

ClimateService getClimateData() IOM Server

outParam JDBC

(c) outParam value returned via the getClimateData()

method

outParam

ClimateServiceClient SOAP MESSAGE ClimateService

Value of requestedParam HTTP

(d) Value returned to client via SOAP.

Figure 4: Climate Data Service web service example
which uses JAX-RPC implementation to invoke a Stored
Process via IOM on SAS server. “Loose coupling” of
the components is accomplished by the JAX-RPC runtime
which handles SOAP, WSDL interpretation and process-
ing.

5

SUGI 28 Emerging Technologies

9 IStoredProcessService climSP =

10 climLang.StoredProcessService();

11 climSP.Repository("file: /stored_processes");

12 climSP.Execute("GetClimateData",

13 "libname=climate"

14 + " indata=alldates"

15 + " outdata=work.out"

16 + " datetime=" + dateTime

17 + " requestedparam=" + requestedParam);

For this simple example, the result is a single number
which is returned by the getClimateData() method. In
order to do so, a DataService object is used to allow an
MVAConnection to read the result via JDBC.

18 IDataService climDataService =

19 climWorkspace.DataService();

20 java.sql.Connection climconnect =

21 new MVAConnection(climDataService,

22 new Properties());

23 java.sql.Statement statement =

24 climconnect.createStatement();

25 java.sql.ResultSet rs =

26 statement.executeQuery("Select * from work.out");

27 if(rs.next()) {

28 String climData = rs.getString("outParam");

29 _retVal = Double.parseDouble(climData);

The method then closes the connection, ends the use of
the workspace and shuts down the WorkSpaceFactory.

30 climconnect.close();

31 climWorkspace.Close();

32 climf.shutdown();

Although this example highlights a very simple operation
of returning a value, the approach could be used to return
objects of any sort. So a statistical operation or an ODS
generated report could be the result of a service request.
Another design objective of a web service is to provide a
’coarse grained’ functionality. This means that the actual
service would not consist of a single fine grained method
such as getClimateData(), but would rather be a
carefully designed package of functions which would
provide access to the appropriate logic. For example,
these types of operations might be bundled as a service:

• getClimateData

• getClimateStat

• getClimateReport

• getClimateGraph

• getClimateMetadata

• updateClimateLog

• updateClimateUsageHistory

SAS STORED PROCESSES: Introduced in version 9,
“SAS Stored Processes” have the additional capability to
stream results to a PIPE via a SAS fileref. The stream is
then usable by the calling program via the
StoredProcessExecutionInterface. A web service
could be written to expect a known, validatable XML

stream as the result of SAS Stored Process. This is
obviously a powerful combination of analytic and data
delivery capabilities when using SAS in a web service. It
also enhances the ability to partition the application logic
in appropriate ways. For example, XSLT or some binding
mechanism may be more adept at transforming complex
XML than SAS methodologies; whereas analytical
capabilities available via stored processes are likely more
capable, maintainable and scalable.

The idea of web services is compelling in many ways. Not
least of which is the potential for components of the
system to evolve independently as long as they continue
to conform to understood specifications and interfaces. In
this respect, a problem to which the web service model
seems to provide an attractive solution, is the deployment
of Handheld computers for data collection. The
expectation is that it will be simpler to manage a diversity
of data collection devices that, inevitably, undergo
continuous hardware and software changes. Java client
software on these devices is attractive because of it’s
availability on many platforms. A SAS-based ’data
service’ (in development), is intended to simplify the
deployment of handheld computers in a ’field’ situation by
standardizing the access method and data delivery.
Although not yet complete, a prototype of this service
exchanges information between the handheld and the
’data service’. In connected-mode, a message defined on
the handheld will be delivered to the server (via a SOAP
request), and the server responds with the requested
form definition in XML. The handheld application then
parses the XML encoded form-definition to build a data
entry form and its behaviors. In disconnected mode data
are entered into the form, after which it is reconnected.
Finally, the XML-encoded data are transferred to the ’data
service’ which transforms the incoming data for
processing and updates to the data repository.

Other aspects of a data entry web-service are planned to
achieve:

• Description: To name and define forms and their
data models.

• Discovery: To acquire form definitions from
unknown sources.

CONCLUSIONS

The motivation for delivering information as a ’service’ is
very compelling and web services are now being
positioned to provide a Service Oriented Architecture.
XML increasingly provides the ’data transportation layer’
for inter application messaging and presentation-neutral
content markup to such an extent that it is now a de-facto
standard. XML supporting technologies, however, are still
evolving rapidly and it remains to be seen which of them
will be successfully and garner support into the future.

6

SUGI 28 Emerging Technologies

XML/SOAP

XML PROJECT

Connected

Field Mode
Data Entry

Connected

XML Data

SAS Servlet/EJB
‘Data Service’

PDA

PDA

PDA

Disconnected

802.11b

Stand-alone

802.11b

Figure 5: Modeling a Data Service for Data Entry: Dis-
tribute form definitions; Data Entry in stand-alone mode;
Subsequent data synchronization event after data collec-
tion.

Software legacy systems, which perform data processing
and storage functions, obviously perpetuate themselves
by their inherent utility and through an unwillingness to
abandon the investment in that technology. But
increasingly, these systems are required to interoperate
more extensively and flexibly. SAS has focused
technology development to satisfy the requirement for
interoperability with products like IntrNet, AppDevStudio
and Integration Technologies. The commitment by SAS to
support Java and XML is beginning to yield compelling
alternatives including web service capabilities. Using
SAS, Java and XML in cooperation, allows for partitioning
the design of information access into components that
interoperate as a loosely coupled data service.

WEB REFERENCES

http://www.jcp.org
http://xml.apache.org

REFERENCES

Burke, E. M. (2001). Java and XSLT, first edn, O’Reilly.

Chappell, D. A. & Jewell, T. (2002). Java
TM

Web Services,
first edn, O’Reilly.

Clark, J. & DeRose, S. (1999). Xml path language (xpath)
version 1.0, ”http://www.w3.org/TR/xpath”.

How to Implement a Web Service with SAS - A Business
Scenario (2002). Technical report, SAS Institute.

McLaughlin, B. (2001). Java and XML, second edn,
O’Reilly.

ACKNOWLEDGMENTS

I would like to thank Myla Jordan, Information Systems
Developer, and John Merritt, System Administrator, for
Java development and software configuration
management support, respectively. I would also like to
thank the SAS Institute for providing a Demo version of
Integration Technologies without which the testing and
development of the “Climate Service” example code
would not have been possible.

CONTACT INFORMATION

Your comments and questions are valued and
encouraged. Contact the author at:

Scott Chapal
Ichauway, Inc.
Rt. 2 Box 2324
Newton GA. 31770
scott.chapal@jonesctr.org

7

SUGI 28 Emerging Technologies

http://www.jcp.org
http://xml.apache.org
http://www.w3.org/TR/xpath

APPENDIX 1

Using SAS XML in cooperation with XSLT.

Metadata generated in SAS:

libname contents xml "../metadata/datasets/&DSNAME._contents.xml";

proc contents

data=library.&DSNAME

out=work.&DSNAME

varnum

details

directory;

run;

data contents.&DSNAME;

set work.&DSNAME;

run;

A resulting XML fragment, can then be transformed by
XSLT to...

<?xml version="1.0" encoding="iso-8859-1" ?>

<TABLE>

<GC>

<LIBNAME>LIBRARY</LIBNAME>

<MEMNAME>GC</MEMNAME>

<MEMLABEL Missing="" />

<TYPEMEM Missing="" />

<NAME>commitd</NAME>

<TYPE>1</TYPE>

<LENGTH>8</LENGTH>

<VARNUM>4</VARNUM>

<LABEL>Commit Date</LABEL>

<FORMAT>YYMMDDD</FORMAT>

<FORMATL>10</FORMATL>

<FORMATD>0</FORMATD>

<INFORMAT>YYMMDD</INFORMAT>

<INFORML>8</INFORML>

<INFORMD>0</INFORMD>

<JUST>1</JUST>

<NPOS>0</NPOS>

<NOBS>5</NOBS>

<ENGINE>V8</ENGINE>

....

</GC>

Satisfy the requirements of a particular Schema:

<?xml version="1.0" encoding="UTF-8"?>

<dataTable

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="eml://jonesctr.org/dataTable-2.0.0">

<entityName xmlns="">LIBRARY.GC</entityName>

<entityDescription xmlns="">LIBRARY.GC

</entityDescription>

<attributeList xmlns="">

<attribute>

<attributeName>commitd</attributeName>

<attributeLabel>Commit Date</attributeLabel>

<attributeDefinition>Commit Date

</attributeDefinition>

<storageType>date</storageType>

<measurementScale>

<datetime>

<formatString>YYYY-MM-DD</formatString>

<dateTimePrecision>1</dateTimePrecision>

<dateTimeDomain/>

</datetime>

</measurementScale>

</attribute>

...

</dataTable>

8

SUGI 28 Emerging Technologies

APPENDIX 2

WSDL example for the Web Service “Climate Service”:
http://slash:8080/climateservice-jaxrpc/climateservice?WSDL

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://jonesctr.org/ClimateService"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

name="ClimateService"

targetNamespace="http://jonesctr.org/ClimateService">

<types/>

<message name="ClimateServiceIF_getCliateData">

<part name="String_1" type="xsd:string"/>

<part name="String_2" type="xsd:string"/></message>

<message name="ClimateServiceIF_getClimateDataResponse">

<part name="result" type="xsd:double"/></message>

<portType name="ClimateServiceIF">

<operation name="getClimateData" parameterOrder="String_1 String_2">

<input message="tns:ClimateServiceIF_getClimateData"/>

<output message="tns:ClimateServiceIF_getClimateDataResponse"/>

</operation>

</portType>

<binding name="ClimateServiceIFBinding" type="tns:ClimateServiceIF">

<operation name="getClimateData">

<input>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"

namespace="http://jonesctr.org/ClimateService"/>

</input>

<output>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"

namespace="http://jonesctr.org/ClimateService"/>

</output>

<soap:operation soapAction=""/></operation>

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>

</binding>

<service name="ClimateService">

<port name="ClimateServiceIFPort" binding="tns:ClimateServiceIFBinding">

<soap:address xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

location="http://slash:8080/climateservice-jaxrpc/climateservice"/>

</port>

</service>

</definitions>

9

SUGI 28 Emerging Technologies

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	trdmk174-28: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

