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ABSTRACT

Designing for interoperability requires the choice of key
technologies for the software components of a Web
Service. SAS provides very powerful data management
and analysis capabilities which can be enhanced and
extended in a distributed service-oriented architecture.
As XML has become the de facto standard for structured
data representation on the Web, Java has become the
programming language of choice when considerations of
portability and device-independence are paramount. The
confluence of SAS, Java and XML creates a symbiotic
relationship enabling the existence of “Data Services”
which are conceptually metadata-driven, analytically
capable, and universally accessible. The continued
development and emphasis of Java and XML capabilities
in SAS underscores the natural alignment of these
technologies. SAS Data Services, distributed via XML
and Java, will provide interoperability not only for
business problems, but also for scientific, governmental,
academic and non-profit institutions.

INTRODUCTION

A persistent challenge for information management is the
necessity to integrate disparate applications. One of the
most problematic issues for integration is choosing (or
creating) and enforcing a data transport standard that
inter-operates with processing software (like SAS), but is
also vendor independent. In recent years, it has become
clear that XML serves this unique role of a “universal
data” representation layer. The capacity to develop data
driven content models in XML schema that are
validate-able and which can be interpreted by any
capable software, is propelling the success of XML. By
understanding that XML is now the de facto data
interchange medium, it is a simple shift in perspective to
re-factor data management applications as services, with
their access mechanisms formally defined in XML.

Although the Web Services idea has been criticized as
“just another distributed computing model”, such as
CORBA, RMI or DCOM, there appears to be genuine
potential for ’loosely coupled’ application integration.
Much of this optimism concerns the fact that the Web
Services model is based on core Internet technologies for
document transport (XML) over standard protocols (like
HTTP SMTP, FTP, etc.). The ability to achieve remote

object access in a web service model is profound
because it simplifies the interoperability conundrum by
standardizing the protocol(s) and the data-representation
language. The ubiquity of HTTP makes it ideal for data
transfer between clients and services, while XML, as an
extensible (meta) language, specifies the data structure
and interactions between the parties.

Additionally, the web-services “stack” - SOAP, WSDL, and
UDDI provides standardized layers of functionality to
ensure interoperability. The Simple Object Access
Protocol defines a uniform way to pass XML and perform
remote procedure calls. Universal Description, Discovery
and Integration provides a registry of SOAP-encoded
messages. The UDDI registry uses the Web Services
Description Language to describe what a client needs to
know to bind to the service. A broad array of support is
growing for these ideas and technologies.

Even if wholesale adoption of the web services model is
not immediately feasible, there is merit in understanding
the concepts and incorporating relevant ideas into future
project plans. The proposed architecture of the web
services style of distributed computing promises greatly
enhanced deployment flexibility. A service can be used by
a certain client, by many different clients or by another
service. Along with this flexibility comes the increased
capability to partition and modularize applications into
components. The programming languages in which those
components are built is a matter of choice.

JAVA

Java is an ideal language to create distributed enterprise
applications. Because of it’s object-oriented design and
platform independence, it can be used for scalable,
distributed systems, and is an obvious platform for web
services, which may be accessed by many different
clients. Additionally, the motivation to use Java is
enhanced by the fact that a coalition of organizations
support the Java 2 Enterprise Edition platform, which
includes EJB’s, Servlets, JSP’s, Java Message Services,
etc. This coalition has formally evolved into the Java
Community Process which oversees the development of
Java technology.

The success of Java is evidenced in application server as
well as on clients and information appliances like PDA’s.
JVM’s are supported on many operating systems
including Windows, Linux, MacOS X, Solaris,
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SymbianOS, PalmOS, and PocketPC. This wide-spread
availability makes it possible to address multiple platforms
with the same or similar code bases, and eases the effort
involved in porting. The concept of modularity can then
be extended to the choice of platform(s), creating greater
choice and potentially simplifying development and
migration.

XML

The Extensible Markup Language may owe its pedigree
to SGML, but it owes its success to the web. In its key
role of data interchange, XML-based information has
come to be referred to as ’Universal Data’. XML provides
interoperability because it is structured, extensible and
open. The structure is embodied in the concepts of
well-formedness and validation. Extensibility is inherent in
the design of XML, giving the authors of XML documents
and schema control over the choice and implementation
of the structure. XML is intrinsically open, in that XML
documents are readable text, often with associated DTD’s
(Document Type Definition) or Schema, providing all the
metadata needed to use, or transform, the data.
The benefits of XML have been detailed extensively, but a
typical list of features would include:

• Plain Text

• Data Identification

• Stylability

• Inline Reusability

• Linkability

• Easily Processed

• Hierarchical

Notably, the hierarchical nature of XML data
representation contrasts distinctly with the ’rectangular’
nature of SAS data sets. Thus the difference between
hierarchical and rectangular data representation
illustrates the need for efficient and automate-able means
of ’transformation’.

Transformation of XML data concerns principally three
XML specifications: XSL, XSLT and XPath. The
Extensible Stylesheet Language (XSL) is both a language
for transforming XML documents and a vocabulary for
formatting XML documents (McLaughlin 2001). XSL
Transformations (XSLT) specifies the textual conversion
from one document type to another. XPath (Clark &
DeRose 1999) provides a mechanism to identify and refer
to an arbitrary element or attribute names and values.
XPath and XSLT work together to define what data to
use, and how to transform it.

Of course, an XML parser1 is required to read XML data
into memory. XML can be read from a file, although Java

1Parsers are available in many languages including Java, both
commercial and open-source.

XML parsers can read from an InputStream or a URL. A
validating parser uses the documents’ DTD or Schema to
validate the data during the parsing process, which
simplifies the Java validation code required.

COOPERATING TECHNOLOGIES

Java has deep and multi-faceted XML support. In Java,
the Simple API for XML (SAX) is the most commonly
used parsing method. Current parsers, (Apache Xerces
for example) now implement SAX and DOM (Document
Object Model) interfaces and are adding support for
Namespaces, Schema and JAXP (see below).

Java, XML, and XSLT are suitable for web applications
because of the high degree of modularity they offer
(Burke 2001). The Java API for XML Processing (JAXP)
supports processing of XML documents using DOM, SAX
and XSLT. It is essentially an abstraction which allows the
substitution of different parser in an application without
changing the application code. This achieves
vendor-independence of parsers: “It encapsulates
differences between various XML parsers, allowing Java
programmers to use a consistent API regardless of which
parser they use”(Burke 2001).

SAS has been steadily acquiring the ability to process
XML and to expose SAS data as XML documents. These
functions are incorporated in the Output Delivery System
and the LIBNAME XML facility

The ODS MARKUP statement can be given various
tagset= options to define several markup languages
including several XML types. Notably, the XML tagsets
generate corresponding XML data, XSL stylesheets and
DTD (Document Type Definition) schema. The tagset
definitions define ODS MARKUP and LIBNAME XML
destinations.

SAS ODS MARKUP XML

XSL DTD

Figure 1: ODS MARKUP can be used to create XML data,
stylesheets and schema (DTDs) from procedural and data
step output. Using XML to represent content relegates the
presentation another (client) component.

Conversely, there is also the ability to import XML using
the XML LIBNAME engine, providing that the XML is
“very regular”. As of version 9.0, there is also the ability to
import XML into a SAS dataset using the XMLMap2

2Using XPath methodology to define and retrieve XML ele-
ments.
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TAGSET XML Type

DEFAULT ODSXML (Generic XML)
DOCBOOK OASIS DocBook
SASIOXML Generic XML
SASXMOG Oracle8iXMLa

SASXMOIM Open Information Model XML
SASXMOR Oracle8iXMLb

aXML LIBNAME XMLTYPE=GENERIC
bXML LIBNAME XMLTYPE=ORACLE

Table 1: ODS MARKUP in SAS v9.0 has
TAGSET options to support several XML ’di-
alects’.

option with an explicitly defined XML file containing syntax
to ’map’ variables, observations and variable attributes.

In cases where the XML is not sufficiently regular,
transformation using XSL/XSLT could be used to
re-shape the XML to a format SAS can accommodate.
However, this highlights a perplexing issue for XML
processing with SAS, because the XML capabilities in
SAS (ODS MARKUP, LIBNAME XML) overlap with (but
don’t completely duplicate) the functionality of XSLT,
XPATH, and Java technologies such as JAXB3 and
JDOM4. In this regard, the SAS (Java-based) Atlas5

product may help in the creation of XMLMAP files,
however the need to automate (XML ⇔ SAS)
transformation is a requirement beyond just an interactive
interface.

XML LIBNAME XML SAS

XMLMap data step

Figure 2: LIBNAME XML uses XMLMap directives
(XPath) to map data from XML input to a rectangular SAS
data set.

A combination of Java and SAS technologies can be
used to achieve XML processing and validation. Using
the java ant build system, the xalan XSL Stylesheet
processor and the xerces validating parser, structured
metadata can be auto-generated from SAS data. There is
a simplified XML transformation example in Appendix 1.

SERVICE ORIENTED ARCHITECTURE

Extending the capabilities of SAS and designing for
interoperability are increasingly important objectives but
implementation of these goals is often difficult. Multiple
platforms, languages and access methods all contribute

3Java API for XML Binding.
4A java-centric XML processing approach (JSR-102).
5An interactive XMLMAP creation utility released in v9.0

ODS MARKUP XSLT Valid XML

XML Schema java

Figure 3: Automating the conversion of XML with
Schema-based validation can be accomplished very well
by using cooperating technologies. ODS MARKUP is
quite adept at generating metadata for sas data structures.
XSL stylesheets can then be used to manipulate the XML
based on transformation logic and Schema requirements.

to implementation headaches. The promise of the
Service Oriented Architecture [SOA] conceptual
framework, is to simplify many of these difficulties by
providing common standards-based technologies to
support web services. The benefits of the SOA approach
are rapidly becoming appreciated by data managers and
IT architects everywhere. A Service Oriented Architecture
[SOA] is “an architecture that uses a distributed,
discovery-based environment to expose and manage a
collection of service-oriented software assets.”(Chappell
& Jewell 2002).

The design intent in these emerging Web services
aspires to a loose coupling approach to the integration of
systems. Although some detractors fault the model as
being little more than basically cross-platform RPC, this
loose coupling is advantageous insofar as the
components used can be modular and therefore
replaceable. The SOA is thus built on independent,
interdependent, replaceable components.

The service oriented architectural effect, which web
services is supposed to achieve (and about which there is
so much hype), envisions a ’semantic web’ wherein
self-describing information is produced, advertised,
delivered and consumed. This result as a wide spread
phenomenon is probably still a long way off, for a variety
of technical and non technical reasons. But the vision is a
compelling one, especially for data managers and other
IT professionals who spend seemingly inordinate effort
massaging data to get it “in the right format”.

A SAS DATA SERVICE

SAS has long provided cross-platform connectivity and
distributed processing via SAS/Connect and SAS/Access
as well as concurrent update access via SAS/Share. The
evolution of these products has resulted in a feature rich
set of distributed processing technologies which
comprises one of SAS’ core strengths6. Increasingly,
SAS has provided software to extend it’s data

6SSL is supported in v9 SAS/Share and is on the SASWare
Ballot for SAS/Connect
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management capabilities through “information delivery”
by facilitating access via the web.

As these SAS tools and abilities have evolved,
presentation of information in SAS has graduated from
delivery of static HTML to dynamic content and
interactivity. SAS recognizes the need for application
integration and is increasingly providing the tools to
support interoperability. SAS is now poised to provide the
functionality envisioned by the service oriented
architecture in the form of ’SAS Data Services’.

Product Technology niche

IntrNet CGI Java HTML
ODS XML HTML PDF RTF WML etc.
LIBNAME XML XML, markup
Integration Tech. Middleware
WebEIS OLAP Java
WebAF Java Servlet JSP WAP/WML

Table 2: SAS Web Technologies.

INTEGRATION TECHNOLOGIES

SAS Integration Technologies, which is available under
separate license, provides support for communication
with SAS via standards-based mechanisms, as well as a
publishing framework. The Integrated Object Model (IOM)
component provides interfaces to distributed object
standards such as COM, DCOM and CORBA. The object
interfaces include:

• SAS Workspace

• LanguageService

• DataService

• FileService

• Utilities

create a single server-side implementation which can be
used by many clients. Because the IOM interfaces are
standards-based, almost any programming language can
be used for client development. The extensibility and
modularity of this approach is obvious; .NET components,
J2EE application servers or Java applets can all
reference the same set of IOM interfaces.

STORED PROCESSES: A stored process is simply a
SAS program stored on a server which can be executed
by requesting applications. The stored process can return
result packages7 or can produce streaming results8.
Maintaining stored processes on the server facilitates
change control management and enhances security and
application integrity. But furthermore, provides a

7IOM Direct Interface Stored Processes
8Introduced in v9 as “SAS Stored Processes”.

distribution mechanism which can potentially support a
model-view-controller application architecture, strictly.
Thus an application can request a result object which
would be returned according to the needs of that
particular client application.

SAS DATA SERVICE: The idea of using SAS in a Web
Service is addressed in the recent SAS Whitepaper “How
to Implement a Web Service with SAS - A Business
Scenario”. The approach is demonstrated wherein a
Stored Process can be executed as a simple “data
service” and return the result back to the requesting
client. As previously mentioned, an architectural feature is
that the client is loosely coupled to the Service via SOAP
and the Web Service is loosely coupled to SAS via IOM.
So the client and the web service need not be written in
the same language nor on the same platform. In the
whitepaper, two approaches are outlined to deploying a
service which can utilize the stored process; one using
VB.NET and the other using the Java API for XML-based
RPC (JAX-RPC).

In a web service, if data presentation considerations are
handled by the client and data processing (business
logic) is handled by SAS, what is left to do? Well, there
are a number of requirements to satisfy including: 1)
Publishing service metadata to a registry; 2)Finding the
appropriate service; 3) Determining how to bind to the
service (HTTP, MIME, SMTP, etc.), 4) Facilitate the
transactions between the requester and the provider.
Many of these capabilities are becoming available in SAS
Integration Technologies software.

The JAX-RPC approach described in the whitepaper is
followed in the “Climate Service” example. The service
requires coding the following components:

• ClimateServiceIF.java - The service definition
interface.

• ClimateServiceImpl.java - The service
implementation class, which implements the
ClimateServiceIF interface.

• ClimateServiceClient.java - Simple client (for
testing) which contacts the service to invoke the
getClimateData() method.

The example was developed and tested using:

• SAS v9.0

• Integration Technologies

• Platform Services 1.0

– sas.core.jar

– sas.svc.connection.jar

• Java Development Kit 1.4.1

• Java Web Services Developer Pack
4
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The client initiates the transaction and communicates to
the Web Service via SOAP over HTTP. The WSDL
describing the “Climate Service” is generated during the
build process and is included in the Appendix. It includes
definitions for <message>, <portType>, <binding> and
<service>. JAX-RPC generates java classes built from
the WSDL definitions.

In the service implementation class
(ClimateServiceImpl), the getClimateData() method
connects to the SAS IOM server to execute a Stored
Process (GetClimateData.sas) and return the result to
the caller.

1 /* GetClimateData.sas */

2 *ProcessBody;

3

4 libname climate ’/data/climate’;

5 data &outdata (keep=datetime outparam);

6 set climate.&indata;

7 where datetime = "&datetime"dt;

8 outparam = &requestedparam;

9 run;

In a Stored Process, the *ProcessBody; comment is a
marker interpreted by the Server to end the prologue in
which the default values of necessary parameters can be
declared (essentially providing functionality equivalent to
the %macro variables):

%let indata = ;

%let outdata = ;

%let datetime = ;

%let requestedparam = ;

But, importantly, when the stored process is executed, the
IOM StoredProcessServer substitutes the values for
these parameters provided by the getClimateData()

method in ClimateServiceImpl as described below.
Using the IOM bridge for Java, a reference to a
Workspace object can be created to connect to a remote
object on the IOM server, such as in the
getClimateData() method:

1 /* ClimateServiceImpl.java */

2 /* getClimateData() method */

3 WorkspaceFactory climf = new WorkspaceFactory();

4 ...

5 IWorkspace climWorkspace =

6 climf.createWorkspaceByServer(climprop);

7 ILanguageService climLang =

8 climWorkspace.LanguageService();

Once the ILanguageService object is created, then the
location of the Stored Process on the server can be
defined using the Repository method and run using
parameters passed via the Execute method9. So the
parameter list which the stored process expects is a
series of name/value pairs which correspond to
macro-type variables that occur in and are resolved by
the stored process.

9There is also the ExecuteWithResults method which returns
a ResultPackage from the Stored Process that can be published
and transported

dateTime, requestedParam

ClimateServiceClient SOAP MESSAGE ClimateService

WSDL HTTP

(a) Client initiates a request, by specifying a dateTime

value and the requestedParameter to query, which is
transported via SOAP.

ClimateService getClimateData() IOM Server

IOM Bridge work.out

(b) The Climate Service invokes the Stored Process via
the getClimateData() method

work.out

ClimateService getClimateData() IOM Server

outParam JDBC

(c) outParam value returned via the getClimateData()

method

outParam

ClimateServiceClient SOAP MESSAGE ClimateService

Value of requestedParam HTTP

(d) Value returned to client via SOAP.

Figure 4: Climate Data Service web service example
which uses JAX-RPC implementation to invoke a Stored
Process via IOM on SAS server. “Loose coupling” of
the components is accomplished by the JAX-RPC runtime
which handles SOAP, WSDL interpretation and process-
ing.
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9 IStoredProcessService climSP =

10 climLang.StoredProcessService();

11 climSP.Repository("file: /stored_processes");

12 climSP.Execute("GetClimateData",

13 "libname=climate"

14 + " indata=alldates"

15 + " outdata=work.out"

16 + " datetime=" + dateTime

17 + " requestedparam=" + requestedParam);

For this simple example, the result is a single number
which is returned by the getClimateData() method. In
order to do so, a DataService object is used to allow an
MVAConnection to read the result via JDBC.

18 IDataService climDataService =

19 climWorkspace.DataService();

20 java.sql.Connection climconnect =

21 new MVAConnection(climDataService,

22 new Properties());

23 java.sql.Statement statement =

24 climconnect.createStatement();

25 java.sql.ResultSet rs =

26 statement.executeQuery("Select * from work.out");

27 if( rs.next()) {

28 String climData = rs.getString("outParam");

29 _retVal = Double.parseDouble(climData);

The method then closes the connection, ends the use of
the workspace and shuts down the WorkSpaceFactory.

30 climconnect.close();

31 climWorkspace.Close();

32 climf.shutdown();

Although this example highlights a very simple operation
of returning a value, the approach could be used to return
objects of any sort. So a statistical operation or an ODS
generated report could be the result of a service request.
Another design objective of a web service is to provide a
’coarse grained’ functionality. This means that the actual
service would not consist of a single fine grained method
such as getClimateData(), but would rather be a
carefully designed package of functions which would
provide access to the appropriate logic. For example,
these types of operations might be bundled as a service:

• getClimateData

• getClimateStat

• getClimateReport

• getClimateGraph

• getClimateMetadata

• updateClimateLog

• updateClimateUsageHistory

SAS STORED PROCESSES: Introduced in version 9,
“SAS Stored Processes” have the additional capability to
stream results to a PIPE via a SAS fileref. The stream is
then usable by the calling program via the
StoredProcessExecutionInterface. A web service
could be written to expect a known, validatable XML

stream as the result of SAS Stored Process. This is
obviously a powerful combination of analytic and data
delivery capabilities when using SAS in a web service. It
also enhances the ability to partition the application logic
in appropriate ways. For example, XSLT or some binding
mechanism may be more adept at transforming complex
XML than SAS methodologies; whereas analytical
capabilities available via stored processes are likely more
capable, maintainable and scalable.

The idea of web services is compelling in many ways. Not
least of which is the potential for components of the
system to evolve independently as long as they continue
to conform to understood specifications and interfaces. In
this respect, a problem to which the web service model
seems to provide an attractive solution, is the deployment
of Handheld computers for data collection. The
expectation is that it will be simpler to manage a diversity
of data collection devices that, inevitably, undergo
continuous hardware and software changes. Java client
software on these devices is attractive because of it’s
availability on many platforms. A SAS-based ’data
service’ (in development), is intended to simplify the
deployment of handheld computers in a ’field’ situation by
standardizing the access method and data delivery.
Although not yet complete, a prototype of this service
exchanges information between the handheld and the
’data service’. In connected-mode, a message defined on
the handheld will be delivered to the server (via a SOAP
request), and the server responds with the requested
form definition in XML. The handheld application then
parses the XML encoded form-definition to build a data
entry form and its behaviors. In disconnected mode data
are entered into the form, after which it is reconnected.
Finally, the XML-encoded data are transferred to the ’data
service’ which transforms the incoming data for
processing and updates to the data repository.

Other aspects of a data entry web-service are planned to
achieve:

• Description: To name and define forms and their
data models.

• Discovery: To acquire form definitions from
unknown sources.

CONCLUSIONS

The motivation for delivering information as a ’service’ is
very compelling and web services are now being
positioned to provide a Service Oriented Architecture.
XML increasingly provides the ’data transportation layer’
for inter application messaging and presentation-neutral
content markup to such an extent that it is now a de-facto
standard. XML supporting technologies, however, are still
evolving rapidly and it remains to be seen which of them
will be successfully and garner support into the future.
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XML/SOAP

XML PROJECT

Connected

Field Mode
Data Entry

Connected

XML Data

SAS Servlet/EJB
‘Data Service’

PDA

PDA

PDA

Disconnected

802.11b

Stand-alone

802.11b

Figure 5: Modeling a Data Service for Data Entry: Dis-
tribute form definitions; Data Entry in stand-alone mode;
Subsequent data synchronization event after data collec-
tion.

Software legacy systems, which perform data processing
and storage functions, obviously perpetuate themselves
by their inherent utility and through an unwillingness to
abandon the investment in that technology. But
increasingly, these systems are required to interoperate
more extensively and flexibly. SAS has focused
technology development to satisfy the requirement for
interoperability with products like IntrNet, AppDevStudio
and Integration Technologies. The commitment by SAS to
support Java and XML is beginning to yield compelling
alternatives including web service capabilities. Using
SAS, Java and XML in cooperation, allows for partitioning
the design of information access into components that
interoperate as a loosely coupled data service.
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APPENDIX 1

Using SAS XML in cooperation with XSLT.

Metadata generated in SAS:

libname contents xml "../metadata/datasets/&DSNAME._contents.xml";

proc contents

data=library.&DSNAME

out=work.&DSNAME

varnum

details

directory;

run;

data contents.&DSNAME;

set work.&DSNAME;

run;

A resulting XML fragment, can then be transformed by
XSLT to...

<?xml version="1.0" encoding="iso-8859-1" ?>

<TABLE>

<GC>

<LIBNAME>LIBRARY</LIBNAME>

<MEMNAME>GC</MEMNAME>

<MEMLABEL Missing="" />

<TYPEMEM Missing="" />

<NAME>commitd</NAME>

<TYPE>1</TYPE>

<LENGTH>8</LENGTH>

<VARNUM>4</VARNUM>

<LABEL>Commit Date</LABEL>

<FORMAT>YYMMDDD</FORMAT>

<FORMATL>10</FORMATL>

<FORMATD>0</FORMATD>

<INFORMAT>YYMMDD</INFORMAT>

<INFORML>8</INFORML>

<INFORMD>0</INFORMD>

<JUST>1</JUST>

<NPOS>0</NPOS>

<NOBS>5</NOBS>

<ENGINE>V8</ENGINE>

....

</GC>

Satisfy the requirements of a particular Schema:

<?xml version="1.0" encoding="UTF-8"?>

<dataTable

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="eml://jonesctr.org/dataTable-2.0.0">

<entityName xmlns="">LIBRARY.GC</entityName>

<entityDescription xmlns="">LIBRARY.GC

</entityDescription>

<attributeList xmlns="">

<attribute>

<attributeName>commitd</attributeName>

<attributeLabel>Commit Date</attributeLabel>

<attributeDefinition>Commit Date

</attributeDefinition>

<storageType>date</storageType>

<measurementScale>

<datetime>

<formatString>YYYY-MM-DD</formatString>

<dateTimePrecision>1</dateTimePrecision>

<dateTimeDomain/>

</datetime>

</measurementScale>

</attribute>

...

</dataTable>
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APPENDIX 2

WSDL example for the Web Service “Climate Service”:
http://slash:8080/climateservice-jaxrpc/climateservice?WSDL

<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://jonesctr.org/ClimateService"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

name="ClimateService"

targetNamespace="http://jonesctr.org/ClimateService">

<types/>

<message name="ClimateServiceIF_getCliateData">

<part name="String_1" type="xsd:string"/>

<part name="String_2" type="xsd:string"/></message>

<message name="ClimateServiceIF_getClimateDataResponse">

<part name="result" type="xsd:double"/></message>

<portType name="ClimateServiceIF">

<operation name="getClimateData" parameterOrder="String_1 String_2">

<input message="tns:ClimateServiceIF_getClimateData"/>

<output message="tns:ClimateServiceIF_getClimateDataResponse"/>

</operation>

</portType>

<binding name="ClimateServiceIFBinding" type="tns:ClimateServiceIF">

<operation name="getClimateData">

<input>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"

namespace="http://jonesctr.org/ClimateService"/>

</input>

<output>

<soap:body

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

use="encoded"

namespace="http://jonesctr.org/ClimateService"/>

</output>

<soap:operation soapAction=""/></operation>

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>

</binding>

<service name="ClimateService">

<port name="ClimateServiceIFPort" binding="tns:ClimateServiceIFBinding">

<soap:address xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

location="http://slash:8080/climateservice-jaxrpc/climateservice"/>

</port>

</service>

</definitions>
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