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ABSTRACT  
This paper is a tour of what's new in the development arenas for 
SAS®  XML support. The features detailed include new options, 
new native support types, a demo of the SAS XML Mapper (a new 
XMLMap syntax generator GUI), new SAS ODS tagsets, and a 
preview of upcoming output generation enhancements to the SAS 
XML LIBNAME Engine.  
 

INTRODUCTION  
One of the most difficult things for me to deal with development-
wise, aside from already being involved in XML’s constantly 
changing usage and standards environment, is keeping track of 
the growing list of features and support items tending to blend 
together in a continuum that doesn’t (necessarily) reflect the ship 
dates of a product. I cannot recall the last time that I spoke 
simultaneously of three different releases of SAS. The goal of this 
particular paper is to display the entire spectrum of Base SAS 
XML support, and to delineate the features available, as well as 
some caveats, across multiple product releases in the field. 
 
Publication deadlines being what they are, it was nearing 
Christmas time when the finishing touches were put on this paper. 
Any coincidental references or organizational similarities to “A 
Christmas Carol” should be given the season’s nod and 
summarily dismissed.  
 
 

THE GHOSTS OF SXLE PAST ( 8.2 ) 

SXLE 
I think we’ve done a good job to date addressing the issues that 
arise in the field. The open mailing list1 has provided a direct 
communication level with you in the trenches, and it has also 
proved to be a valuable resource for the next feature addition. 
There were some “all star” candidates in SAS 8.2 which I want to 
specifically mention and discuss.  

 

TYPE RECOGNITION TIGHTENED 
SXLE, in its native operating mode, is a two-pass engine. It 
makes one scan to determine the general construction details and 
detect data types; primary metadata considerations. The second 
scan extracts data content from the XML stream. There are a set 
of heuristics involved in that first pass used to determine what 
particular data element content “felt” like. Was it an integer? float? 
date? time? string?  
 
Composite cases proved troublesome as delimiters became 
suspect. Phone numbers, SSN’s, part numbers, etc. delimited by 
dots instead of dashes combined with a loose internal floating 
point check produced unexpected results. Dates not conforming 
to ISO-8601 standards were not recognized as dates. Those sorts 
of loopholes have been addressed and the native mode 
recognition is now much more robust. This should be welcome 
news for generic mode processing users. 

 

ACCESS VIOLATIONS FROM UNSUPPORTED TYPES 
SXLE was also very narrow-minded in the level of supported input 
types. Feeding it a non-supported type was usually met with a 
generic “DESCRIBE ERROR” at best, and at times, a general 
crash because things just weren’t the way they were supposed to  

 
 
be constructed. We’ve made a concerted effort to diagnose 
improper constructions and become more fault-tolerant in the 
upcoming releases. If an input stream doesn’t seem to be 
constructed properly, you should now see a log message 
indicating such. And if not, I should see an e-Mail in the engine 
folder1. 
 

PARSER 
Parsing of the XML stream is often taken pretty much for granted, 
but there are, inevitably, the rule bending, mind numbing, 
imagination stretching cases that crop up from real world 
scenarios. We’ve consolidated support of XML parsing “under the 
covers” and now use a new, improved version which other internal 
applications also rely upon. This will provide operation more 
consistent with other XML-based offerings and a sound base 
upon which to continue to build our functionality. 

 

LONG LINES WITHOUT A CARRIAGE RETURN 
Why would some applications generate a 2M (megabyte) stream 
of brackets and characters, but never emit a single carriage return 
in the entire wide swath? XML was (originally) intended to be 
human-readable which tends to mean white space and line 
breaks to cue the human through the document. However, 
human-readable has evolved to mean machine-readable, and 
those same visual elements are now simply a nicety, rather than a 
necessity. Likewise, we’ve made that internal processing 
adjustment. 

 

ESCAPE SEQUENCES 
Special characters are always problematic in computerized data 
processing. But, at times, it seems to be more a problem for the 
operators, than the actual machines. According to the XML 
specification, certain characters have specific escape sequences 
which are to be substituted in their place should they occur. 
Shortcuts like “#x27;” aren’t expected when a single quote (') is to 
be replaced with the specification dictated string “&apos;” The 
humans responsible saved one byte per occurrence in a stream 
how many megabytes long with that clever little trick. We have 
likewise become more clever, and have evolved the parsing 
mechanisms to accept the variant specifications.  

 

CDATA SECTIONS 
The ultimate special character handling avoidance mechanism is 
supported by the parser. ‘nuff said. 

 

INTERNATIONAL CHARACTER SETS 
The parser also now recognizes and is sensitive to national 
characters contained in an XML stream. One additional caution is 
required here. While we’re much more aware of encoding issues 
than in prior incarnations, documents containing national 
characters should always begin with an XML declaration line 
which includes the encoding= attribute.  
 

XMLMAP 
A first quarter 2003 re-release of the XMLMap extension to SXLE, 
provides production status for the XMLMap input extension 
functionality.  
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EQUIVALENT V9 FUNCTIONALITY 
A hybrid of the original and new, added functionality, the 
production extension provides a SAS 9.0 equivalent feature set to 
the 8.2 XML product.    
 
As support levels have evolved, so too has the XMLMap syntax. 
We have decided on a version controlled parsing mechanism as 
the vehicle for new feature functionality introduction. Each version 
level dictates what feature set is available. 
 
 1.0 SAS 8.2 (and prior) 
 1.1 SAS 9 
 1.2 SAS 9.1  
 
The original XMLMap version was dubbed “1.0” and represents 
primarily the SAS 8.2 capabilities. An updated release, the “1.1” 
represents 9.0 level capabilities. There are XML markup 
differences between the two versions and, as expected, one 
version syntax is mutually exclusive of other versions. Since it did 
not originally correspond, we chose not to use SAS software 
release numbers as syntax versions. We’ll talk more about the 
new “1.1” features in the Future section to follow.  
 

NEW SYNTAX 
There are some fundamental changes in the “1.1” XMLMap 
markup that will be noticed immediately by users. The first, is a 
change to more generic terminology which is void of syntax 
dependency. 
 

(X)PATH  
The tags denoting paths (locations) in the XML stream are 
generic, and now indicate only PATH, rather than Xpath (the W3C 
standard upon which they are built). An optional syntax= attribute 
has been likewise added to indicate the particular specification to 
which the PATH conforms. 
 
Old form : 

<XPATH> 
/NHL/CONFERENCE/DIVISION/TEAM@NAME</XPATH> 
 

New form : 
<PATH syntax=”Xpath”> 
/NHL/CONFERENCE/DIVISION/TEAM@NAME</PATH> 
 

or, simply 
<PATH>/NHL/CONFERENCE/DIVISION/TEAM@NAME 
</PATH> 
 
 

“OLD-TIMER” UNDERSCORES 
The second change is younger inclinations having prevailed and 
the underscores in tags have thus given way to the currently 
preferred XML markup trends using the dash character. OK. I 
admit it. I can still spell M-V-S. Please see Appendix A for a side-
by-side comparison of syntax elements and release levels. 
 
Old form : 

<TABLE_XPATH>/NHL/CONFERENCE/DIVISION/TEAM 
</TABLE_XPATH> 
 

New form : 
<TABLE-PATH>/NHL/CONFERENCE/DIVISION/TEAM 
</TABLE-PATH> 

 
 

THE GHOSTS OF SXLE PRESENT ( 9.0 ) 

SXLE 
Limited availability played down the changes that the product 

offerings had undergone for SAS 9. The 8.2 bumps in the road 
had been smoothed and new functionality was added to address 
the growing field requirements of XML processing.  
 

OIM XMLTYPE DEPRECATED 
Mergers, acquisitions, abdications, are the way of the business 
world. The Metadata Coalition and its Open Information Model 
have also gone the way of bobby socks, hula hoops, and the 
Slinky, replaced by bigger, better, and improved offerings from 
new parent companies or consortiums. While it will continue (for a 
time) to be available as an XMLtype= operand, support for the 
OIM is being discontinued. Focus will shift to newer, more current 
offerings and users should begin to move away from the OIM 
XMLtype. There are also updates to other native XMLtypes 
coming (see below) which may provide equivalent or better 
functionality. 
 
 

XMLSCHEMA OPTION RENAMED XMLMETA 
The XMLSchema LIBNAME option was introduced when the W3C 
XML Schema was a draft proposal, but even then was probably a 
slight misnomer. SXLE users recognize the option as a way to 
control generation of additional metadata markup in supporting 
XMLtypes; format and informat information from OIM, header 
columns from HTML, etc. In an effort to separate the current 
functionality from upcoming support, the XMLSchema option has 
been renamed to a more corollary XMLMeta moniker. In SAS 9 
programs, the old XMLSchema option is no longer accepted on 
the LIBNAME statement and will generate a warning in the SAS 
log. The functionality of the option remains the same.  
 
 

NEW TAGSETS 
The conversion to utilize Output Delivery System (ODS) tagsets 
for generated engine output was one of the fundamental 
architecture changes introduced to SXLE in SAS 8.2. Tagset 
customization permits user control of generated XML markup 
within a tabular construction constraint. It is possible to completely 
change the markup generated by SXLE via a custom ODS tagset. 
The following examples, taken from field experience, were 
common requests and are now available tagsets in SAS 9. 
 
 

DTD AND SCHEMA GENERATION 
It may be necessary to describe XML markup content generated 
by SXLE to other XML-enabled applications. A popular field 
request, these two tagsets produce an elementary embedded 
DTD2 (Document Type Definition) or XSD (W3C XML Schema) in 
the body of the data markup. The elementary forms produced 
should be digestible by most XML-accepting applications. For 
DTD generation, on the LIBNAME statement, specify  
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
tagset=tagsets.sasxmdtd ; 

 
For XSD generation, on the LIBNAME statement, specify 
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
tagset=tagsets.sasxmxsd ; 

 
 

NO WHITESPACE IN PCDATA 
If I had a dollar for every time someone has tried to wave a “non-
conforming” finger at the engine for this particular markup 
behaviour, I’d be singing harmony with Steven Page and the rest 
of the BNL crew, and wearing a fur coat. But, not a real fur coat, 
that’s cruel. Fact is, the problem most often lies with conflicting 
definitions of “default” behaviour among applications, and not 
specification conformance, and I’ll make only footnote comment to 
the specification verbiage3. If you are thusly victimized by 
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application incompatibility, this tagset may prove of some benefit. 
On the LIBNAME statement, specify  
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
tagset=tagsets.sasxmnsp ; 

 
 

MISSING TAG GENERATION (OR NOT) 
SXLE changed the generated markup for a MISSING value 
between SAS 8.1 and 8.2 in favour of the shorthand notation <tag 
/> which had come into vogue. However, some application 
parsers might still expect the old open-close element <tag></tag> 
form. You can return to yester-year (and the open-close markup), 
by specifying  
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
tagset=tagsets.sasxmiss ; 

 
on the LIBNAME statement. To remove generation of tags for 
MISSING values entirely, specify  
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
tagset=tagsets.sasxmnmis ; 

 
on the LIBNAME statement. The latter does not generate an 
element occurrence at all in the target markup if the column 
contains a MISSING value.  
 

XMLMAP 
Limited availability played down the changes that the product 
offerings had undergone for SAS 9. The 8.2 bumps in the road 
had been smoothed and new functionality was added to address 
the growing field requirements of XML processing.  

 

CONDITIONAL SELECTION 
The conditional selection syntax of the column PATH element has 
been expanded in the version 1.1 specification. You can now 
select pcdata or an attribute value based on attribute value. This 
enhancement rounds outs the total selection criteria; pcdata, 
conditional pcdata, attribute value, and conditional attribute value. 
All selections must be based on, and terminate with, the “current” 
element.  
 
Accepted forms of PATH and conditional selections 
 

<PATH>/LEVEL/ITEM</PATH> 
<PATH>/LEVEL/ITEM[@attr2=”value”]</PATH> 
<PATH>/LEVEL/ITEM@attr</PATH> 
<PATH>/LEVEL/ITEM@attr[@attr2=”value”]</PATH> 

 
 

NTH OCCURRENCE 
The column PATH element expression also supports the 
position() function for accessing recurring element content of the 
same named element. Parallel to GENERIC mode generating 
suffixed element names for recurring elements, the expression 
enhancement allows creating multiple distinct columns for 
recurring elements in your XML input stream. 
 

<PATH>/LEVEL/RECURS[position()=2]</PATH> 
 

It should be noted that the recurring position() expression must 
based on, and terminate with the “current” element. Position() is 
only supported for extraction of pcdata content. 
 

ORDINAL GENERATION 
Generation of sequential valued columns is now possible. 
Incrementing (and decrementing), as well as reset to zero 

operations are available to a special column type we call an 
ordinal. These “computed” columns can be useful for 
discriminating values selected from recurring patterns in an XML 
input stream, creating distinct key values, or for any other 
situation where a counted value is desired. An ordinal is defined 
by the presence of an ordinal= attribute on the COLUMN 
element.  
 

<COLUMN name=”foo” ordinal=”yes”> … 
 
New INCREMENT-PATH, DECREMENT-PATH, and RESET-
PATH elements are available in the COLUMN syntax group. 
INCREMENT and DECREMENT are mutually exclusive controls. 

ATLAS (BETA) 
Atlas is an XMLMap support tool introduced in SAS 9. It can be 
found on the client-side installation CD-ROM for SAS 9. Atlas is a 
Java-based, stand-alone application designed to remove tedium 
from the generation of XMLMap syntax, as well as provide a level 
of data exploration via its graphical user interface construction. 
The Atlas tool is considered a BETA in this release. 
 

ASSIST TOOL FOR XMLMAP GENERATION 
Atlas’ primary task is the generation of XMLMap syntax. It 
displays the input XML sample in a text pane, as well as, in an 
Explorer-like graphical tree. Additionally, Atlas offers a 
“condensed” graphical tree pane, an XMLMap construction 
progress display pane, and a sample SAS program display pane. 
 
The “condensed” pane is a tree display of data patterns occurring 
within the sample XML content. It tracks detected data type, 
maximum lengths, and unique occurrences for data values.  
 

GRAPHICAL INTERFACE, DRAG-N-DROP MOTIF 
XMLMap generation is accomplished via a familiar drag-n-drop 
motif. Data elements desired to be extracted from the XML 
sample are dragged directly from the input tree and dropped onto 
the XMLMap target tree. The target tree is organized, not 
remarkably, in table column precedence. Multiple table 
extractions are supported. Atlas also provides control dialogues 
that adjust the properties of the extracted columns. You can 
manipulate the detected data type, length, format, informat, as 
well as provide enumeration constraints on the column.  

 

 

THE GHOSTS OF SXLE FUTURE ( 9.1 ) 

SXLE 
Scheduled for mass shipment, SAS 9.1 is the next evolutionary 
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step for our XML support in the field. We have augmented our 
success with new functionality and updated familiar tools with 
requested enhancements. 
 

MS-ACCESS SUPPORT 
Market presence is always a driving force behind any movement, 
whether it be a change of headache remedy or a preferred XML 
markup standard4. The newest native support XMLtype is the 
markup standard emitted by the Microsoft Access data base 
product. This markup is quite similar to the existing GENERIC 
XMLtype. MS-Access also supports inclusion of XML Schema as 
either embedded or separate file content. 
 

NO SCHEMA OR SCHEMA OUTBOARD 
To process MS-Access generated markup, on the LIBNAME 
statement specify the MSAccess option. 
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
xmltype=’MSAccess’ ; 

 
If there is no embedded XML Schema content, the processing is 
exactly as with XMLtype=GENERIC. A first pass of the data is 
made to glean metadata, and data is extracted during the second 
pass. Note: Without the XML Schema content the results will be 
similar to, but may not match exactly, the database schema 
information. 
 

SCHEMA EMBEDDED 
With XML Schema content embedded in the file, the metadata is 
read directly from the information contained in the file. Data types 
are recognized as defined by the XML Schema – Datatypes 
specification. See the table below for supported types and type 
coercion. 
 

XMLMETA OPTION VALUES CHANGED 
Prior incarnations of the XMLmeta option enumeration values 
used somewhat cryptic forms like “yes”, “full”, “no”, etc. We have 
made an effort in SAS 9.1 to use more meaningful names for 
these values, and match those in use in web applications. In the 
future, we will refer only to these new enumerations.  
 
XMLMeta=DATA produces only data content in the XML output 
file. XMLMeta=SCHEMA produces only XML Schema content in 
the XML output file. So, one might safely assume that, 
XMLMeta=SCHEMADATA produces both XML Schema and data 
content in the XML output file(s). These are logically the 
successors of the values NONE, ONLY5, and FULL, respectively.  
 

XMLSCHEMA OPTION RE-INTRODUCED 
The XMLSchema option has been re-introduced in SAS 9.1, and 
now specifies either a file reference or file path where generated 
XML Schema content is to reside. Initially, this option is restricted 
to output only.  
 
With upcoming future releases, this is the location for references 
to generalized XML Schema content as support for the XML 
Schema specification is added to the engine and expanded. 
 

PARSER 
Parsing issues continue to arise as applications push the 
envelope and we have responded in several arenas of contention.  
 

ALLOW  “DIRTY” XML CHARACTERS 
“True” XML is more than tossing a few angle brackets around 
existing data and calling it good. But, in direct conflict with the 
written specification, we see more and more occurrences of non-
escaped character sequences in open XML fields. This sort of 
faux pas causes a conforming parser to stop processing at the 

point of the offending character. We realize that this can be a 
frustrating experience for those tasked with processing third-party 
generated, non-conforming streams. 
 
We now support a “relaxed” mode of processing that allows un-
escaped special characters to be processed without error when 
they would not normally be accepted. The angle brackets in open 
text are still forbidden, but the other special characters 
(apostrophe, double quote, and ampersand) are processor 
pacified. On the LIBNAME statement, specify the XMLProcess 
option 
 

LIBNAME myxml xml ‘path-to-my-xml-data’ 
XMLProcess=Conform; 

 
The option takes values of either Conform or Relax.  The default 
is XMLProcess=Conform. 
 
 

FASTER, SMALLER, SMARTER 
Many improvements in the parser itself have streamlined the 
processing of XML inputs. Users should (continue to) expect good 
performance and resource usage with even the largest of 
streams. 
 

XMLMAP 
In keeping with a strict version control on syntax levels, SAS 9.1 
introduces a new version “1.2” syntax level.  
 

DATATYPE ENUMERATION CHANGE 
Fundamentally compatible with version “1.1” the content of the 
DATATYPE enumeration has been changed to conform directly to 
the XML Schema – Datatypes specification. The old values are 
NOT accepted by the “1.2” version. Please refer to the table 
below 
 
 

Schema type Version 1.2 
Version 1.0 
Version 1.1 

string string STRING 
integer integer INT 
float double FLOAT 
double double FLOAT 
dateTime dateTime DT-8601 
time time TIM-8601 
date date DAT-8601 

 
 
Previous : 

<DATATYPE>DT-8601</DATATYPE> 
 

New in 1.2: 
<DATATYPE>dateTime</DATATYPE> 

 
 

THE SAS XML MAPPER (ATLAS) 
Atlas was an XMLMap support tool introduced as beta software in 
SAS 9. The application has now been officially dubbed the SAS 
XML Mapper, and is production status in SAS 9.1. 
 

SCHEMA SUPPORT 
The production application now supports extraction from an XML-
Schema, as well as, from more traditional XML data markup. 
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Element organization and content is displayed in a tree format as 
described by the schema definition.  
 
 
 

BETTER TYPE RECOGNITION 
The data type recognition has been expanded to include SAS-
centric dates/times/datetimes in addition to ISO-standard forms. 
Recognition now parallels SXLE GENERIC mode operation. 
 

TABBED DISPLAY 
The application also now displays the source and generation text 
panes in a tabbed display format. 
 

 

 

SAS DATA STEP XML PARSER OBJECT 
Also new in SAS 9.1 is the Data Step XML Parser Object. This 
extension to the SAS Data Step permits direct access to the same 
XML parsing mechanics used by SXLE, in a non-engine 
environment.  
 

SAX MODEL 
The initial release of the object offers a SAX (Simple API for XML) 
model parser interface, and supplies the fundamental methods 
expected in a reference implementation. 
 

 

CONCLUSION  
The promise of XML uniting all IT departments under a common 
umbrella is still a pipedream. In this presentation we've taken a 
look at new technology to help you leverage the power of the SAS 
system and the new XML-based environments, specifically the 
new enhancements to the XML LIBNAME engine which extend 
functionality beyond the specific supported forms. 
 
Examples have shown only basic code and related contextual 
fragments. For more in-depth coverage, please refer to the 
release documentation. There is also a SAS Theater Session 
being conducted during this SUGI which will deal with SXLE 
issues and examples more exhaustively. 

 

ACKNOWLEDGEMENTS  
1 Thomas Cox, David Phillips, Karen Hoffman, Base SAS 

Software Research & Development, XML 
2 Eric Gebhart, Dan O’Connor, Base SAS Software 

Research & Development, ODS 
3 Joe Mudd, Terri Angeli, Base SAS Software Research 

& Development, PFS 
 
 

FOOTNOTES 
1 xmlengine@sas.com 
2 DTD’s are obsolete and XML Schema will be the only 

fully supported form in future releases. These tagsets 
produce output-only rendering support for application 
compatibility and are not intended for input to SXLE. 
There are many tools are available to convert an 
existing DTD to XML Schema notation. 

3 http://www.w3.org/TR/REC-xml#sec-white-space 
4 sometimes the two go hand-in-hand  
5 ONLY was never formally documented prior, as it was 

an internal use option only. Use of ONLY in prior 
versions may lead to undesirable results. Offer void 
where prohibited. Your mileage may vary. See your 
dealer to see if you qualify. 
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CONTACT INFORMATION  
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Contact me and the XML team at: 

Anthony Friebel 
XML Development Manager, SXLE architect 

 SAS Institute, Inc. 
 One SAS Circle 
 Cary, NC  27513 
 Email: XMLEngine@sas.com 
  Web: http://www.sas.com 
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APPENDIX A.  

XMLMAP SYNTAX ELEMENTS  
The following are the XML tag names for the XMLMap syntax 
elements arranged by SXLE version. The tag names are listed in 
the order in which you would typically code them in your XMLMap 
file:  
 
 

v0.9944 v1.0 v1.1 v1.2 

XMLMAP SXLEMAP SXLEMAP SXLEMAP 

 version= version= version= 

  name= name= 

  description= description= 

    

TABLE TABLE TABLE TABLE 

NAME    

  name= name= name= 

    

TABLE_LABEL TABLE_LABEL   

  TABLE-
DESCRIPTION 

TABLE-
DESCRIPTION 

TABLE_XPATH TABLE_XPATH TABLE-PATH TABLE-PATH 

  syntax= syntax= 

 TABLE_END_XPATH TABLE-END-
PATH 

TABLE-END-
PATH 

  syntax= syntax= 

  beginend= beginend= 

 
 
    

COLUMN COLUMN COLUMN COLUMN 

NAME    

 name= name= name= 

 retain= retain= retain= 

 replace=   

  ordinal= ordinal= 

LABEL LABEL   

  DESCRIPTION DESCRIPTION 

XPATH XPATH PATH PATH 

  syntax= syntax= 

 
 
 
 

 
 
 
 
    

COLUMN COLUMN COLUMN COLUMN 

  INCREMENT-
PATH 

INCREMENT-
PATH 

  syntax= syntax= 

  beginend= beginend= 

  RESET-PATH RESET-PATH 

  syntax= syntax= 

  beginend= beginend= 

XMLTYPE DATATYPE DATATYPE DATATYPE 

SASTYPE TYPE TYPE TYPE 

LENGTH LENGTH LENGTH LENGTH 

 FORMAT FORMAT FORMAT 

 width= width= width= 

 ndec= ndec= ndec= 

 INFORMAT INFORMAT INFORMAT 

 width= width= width= 

 ndec= ndec= ndec= 

 ENUM ENUM ENUM 

 VALUE VALUE VALUE 

 DEFAULT DEFAULT DEFAULT 

 

The v0.9944 level syntax was not officially documented and was 
fairly soon after supplanted by the introduction of v1.0 syntax. 
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