
Paper 173-28

XML? We do that!
Anthony Friebel, SAS Institute, Inc., Cary, NC

ABSTRACT
This paper is a tour of what's new in the development arenas for
SAS® XML support. The features detailed include new options,
new native support types, a demo of the SAS XML Mapper (a new
XMLMap syntax generator GUI), new SAS ODS tagsets, and a
preview of upcoming output generation enhancements to the SAS
XML LIBNAME Engine.

INTRODUCTION
One of the most difficult things for me to deal with development-
wise, aside from already being involved in XML’s constantly
changing usage and standards environment, is keeping track of
the growing list of features and support items tending to blend
together in a continuum that doesn’t (necessarily) reflect the ship
dates of a product. I cannot recall the last time that I spoke
simultaneously of three different releases of SAS. The goal of this
particular paper is to display the entire spectrum of Base SAS
XML support, and to delineate the features available, as well as
some caveats, across multiple product releases in the field.

Publication deadlines being what they are, it was nearing
Christmas time when the finishing touches were put on this paper.
Any coincidental references or organizational similarities to “A
Christmas Carol” should be given the season’s nod and
summarily dismissed.

THE GHOSTS OF SXLE PAST (8.2)

SXLE
I think we’ve done a good job to date addressing the issues that
arise in the field. The open mailing list1 has provided a direct
communication level with you in the trenches, and it has also
proved to be a valuable resource for the next feature addition.
There were some “all star” candidates in SAS 8.2 which I want to
specifically mention and discuss.

TYPE RECOGNITION TIGHTENED
SXLE, in its native operating mode, is a two-pass engine. It
makes one scan to determine the general construction details and
detect data types; primary metadata considerations. The second
scan extracts data content from the XML stream. There are a set
of heuristics involved in that first pass used to determine what
particular data element content “felt” like. Was it an integer? float?
date? time? string?

Composite cases proved troublesome as delimiters became
suspect. Phone numbers, SSN’s, part numbers, etc. delimited by
dots instead of dashes combined with a loose internal floating
point check produced unexpected results. Dates not conforming
to ISO-8601 standards were not recognized as dates. Those sorts
of loopholes have been addressed and the native mode
recognition is now much more robust. This should be welcome
news for generic mode processing users.

ACCESS VIOLATIONS FROM UNSUPPORTED TYPES
SXLE was also very narrow-minded in the level of supported input
types. Feeding it a non-supported type was usually met with a
generic “DESCRIBE ERROR” at best, and at times, a general
crash because things just weren’t the way they were supposed to

be constructed. We’ve made a concerted effort to diagnose
improper constructions and become more fault-tolerant in the
upcoming releases. If an input stream doesn’t seem to be
constructed properly, you should now see a log message
indicating such. And if not, I should see an e-Mail in the engine
folder1.

PARSER
Parsing of the XML stream is often taken pretty much for granted,
but there are, inevitably, the rule bending, mind numbing,
imagination stretching cases that crop up from real world
scenarios. We’ve consolidated support of XML parsing “under the
covers” and now use a new, improved version which other internal
applications also rely upon. This will provide operation more
consistent with other XML-based offerings and a sound base
upon which to continue to build our functionality.

LONG LINES WITHOUT A CARRIAGE RETURN
Why would some applications generate a 2M (megabyte) stream
of brackets and characters, but never emit a single carriage return
in the entire wide swath? XML was (originally) intended to be
human-readable which tends to mean white space and line
breaks to cue the human through the document. However,
human-readable has evolved to mean machine-readable, and
those same visual elements are now simply a nicety, rather than a
necessity. Likewise, we’ve made that internal processing
adjustment.

ESCAPE SEQUENCES
Special characters are always problematic in computerized data
processing. But, at times, it seems to be more a problem for the
operators, than the actual machines. According to the XML
specification, certain characters have specific escape sequences
which are to be substituted in their place should they occur.
Shortcuts like “#x27;” aren’t expected when a single quote (') is to
be replaced with the specification dictated string “'” The
humans responsible saved one byte per occurrence in a stream
how many megabytes long with that clever little trick. We have
likewise become more clever, and have evolved the parsing
mechanisms to accept the variant specifications.

CDATA SECTIONS
The ultimate special character handling avoidance mechanism is
supported by the parser. ‘nuff said.

INTERNATIONAL CHARACTER SETS
The parser also now recognizes and is sensitive to national
characters contained in an XML stream. One additional caution is
required here. While we’re much more aware of encoding issues
than in prior incarnations, documents containing national
characters should always begin with an XML declaration line
which includes the encoding= attribute.

XMLMAP
A first quarter 2003 re-release of the XMLMap extension to SXLE,
provides production status for the XMLMap input extension
functionality.

SUGI 28 Emerging Technologies

2

EQUIVALENT V9 FUNCTIONALITY
A hybrid of the original and new, added functionality, the
production extension provides a SAS 9.0 equivalent feature set to
the 8.2 XML product.

As support levels have evolved, so too has the XMLMap syntax.
We have decided on a version controlled parsing mechanism as
the vehicle for new feature functionality introduction. Each version
level dictates what feature set is available.

 1.0 SAS 8.2 (and prior)
 1.1 SAS 9
 1.2 SAS 9.1

The original XMLMap version was dubbed “1.0” and represents
primarily the SAS 8.2 capabilities. An updated release, the “1.1”
represents 9.0 level capabilities. There are XML markup
differences between the two versions and, as expected, one
version syntax is mutually exclusive of other versions. Since it did
not originally correspond, we chose not to use SAS software
release numbers as syntax versions. We’ll talk more about the
new “1.1” features in the Future section to follow.

NEW SYNTAX
There are some fundamental changes in the “1.1” XMLMap
markup that will be noticed immediately by users. The first, is a
change to more generic terminology which is void of syntax
dependency.

(X)PATH
The tags denoting paths (locations) in the XML stream are
generic, and now indicate only PATH, rather than Xpath (the W3C
standard upon which they are built). An optional syntax= attribute
has been likewise added to indicate the particular specification to
which the PATH conforms.

Old form :

<XPATH>
/NHL/CONFERENCE/DIVISION/TEAM@NAME</XPATH>

New form :
<PATH syntax=”Xpath”>
/NHL/CONFERENCE/DIVISION/TEAM@NAME</PATH>

or, simply
<PATH>/NHL/CONFERENCE/DIVISION/TEAM@NAME
</PATH>

“OLD-TIMER” UNDERSCORES
The second change is younger inclinations having prevailed and
the underscores in tags have thus given way to the currently
preferred XML markup trends using the dash character. OK. I
admit it. I can still spell M-V-S. Please see Appendix A for a side-
by-side comparison of syntax elements and release levels.

Old form :

<TABLE_XPATH>/NHL/CONFERENCE/DIVISION/TEAM
</TABLE_XPATH>

New form :
<TABLE-PATH>/NHL/CONFERENCE/DIVISION/TEAM
</TABLE-PATH>

THE GHOSTS OF SXLE PRESENT (9.0)

SXLE
Limited availability played down the changes that the product

offerings had undergone for SAS 9. The 8.2 bumps in the road
had been smoothed and new functionality was added to address
the growing field requirements of XML processing.

OIM XMLTYPE DEPRECATED
Mergers, acquisitions, abdications, are the way of the business
world. The Metadata Coalition and its Open Information Model
have also gone the way of bobby socks, hula hoops, and the
Slinky, replaced by bigger, better, and improved offerings from
new parent companies or consortiums. While it will continue (for a
time) to be available as an XMLtype= operand, support for the
OIM is being discontinued. Focus will shift to newer, more current
offerings and users should begin to move away from the OIM
XMLtype. There are also updates to other native XMLtypes
coming (see below) which may provide equivalent or better
functionality.

XMLSCHEMA OPTION RENAMED XMLMETA
The XMLSchema LIBNAME option was introduced when the W3C
XML Schema was a draft proposal, but even then was probably a
slight misnomer. SXLE users recognize the option as a way to
control generation of additional metadata markup in supporting
XMLtypes; format and informat information from OIM, header
columns from HTML, etc. In an effort to separate the current
functionality from upcoming support, the XMLSchema option has
been renamed to a more corollary XMLMeta moniker. In SAS 9
programs, the old XMLSchema option is no longer accepted on
the LIBNAME statement and will generate a warning in the SAS
log. The functionality of the option remains the same.

NEW TAGSETS
The conversion to utilize Output Delivery System (ODS) tagsets
for generated engine output was one of the fundamental
architecture changes introduced to SXLE in SAS 8.2. Tagset
customization permits user control of generated XML markup
within a tabular construction constraint. It is possible to completely
change the markup generated by SXLE via a custom ODS tagset.
The following examples, taken from field experience, were
common requests and are now available tagsets in SAS 9.

DTD AND SCHEMA GENERATION
It may be necessary to describe XML markup content generated
by SXLE to other XML-enabled applications. A popular field
request, these two tagsets produce an elementary embedded
DTD2 (Document Type Definition) or XSD (W3C XML Schema) in
the body of the data markup. The elementary forms produced
should be digestible by most XML-accepting applications. For
DTD generation, on the LIBNAME statement, specify

LIBNAME myxml xml ‘path-to-my-xml-data’
tagset=tagsets.sasxmdtd ;

For XSD generation, on the LIBNAME statement, specify

LIBNAME myxml xml ‘path-to-my-xml-data’
tagset=tagsets.sasxmxsd ;

NO WHITESPACE IN PCDATA
If I had a dollar for every time someone has tried to wave a “non-
conforming” finger at the engine for this particular markup
behaviour, I’d be singing harmony with Steven Page and the rest
of the BNL crew, and wearing a fur coat. But, not a real fur coat,
that’s cruel. Fact is, the problem most often lies with conflicting
definitions of “default” behaviour among applications, and not
specification conformance, and I’ll make only footnote comment to
the specification verbiage3. If you are thusly victimized by

SUGI 28 Emerging Technologies

3

application incompatibility, this tagset may prove of some benefit.
On the LIBNAME statement, specify

LIBNAME myxml xml ‘path-to-my-xml-data’
tagset=tagsets.sasxmnsp ;

MISSING TAG GENERATION (OR NOT)
SXLE changed the generated markup for a MISSING value
between SAS 8.1 and 8.2 in favour of the shorthand notation <tag
/> which had come into vogue. However, some application
parsers might still expect the old open-close element <tag></tag>
form. You can return to yester-year (and the open-close markup),
by specifying

LIBNAME myxml xml ‘path-to-my-xml-data’
tagset=tagsets.sasxmiss ;

on the LIBNAME statement. To remove generation of tags for
MISSING values entirely, specify

LIBNAME myxml xml ‘path-to-my-xml-data’
tagset=tagsets.sasxmnmis ;

on the LIBNAME statement. The latter does not generate an
element occurrence at all in the target markup if the column
contains a MISSING value.

XMLMAP
Limited availability played down the changes that the product
offerings had undergone for SAS 9. The 8.2 bumps in the road
had been smoothed and new functionality was added to address
the growing field requirements of XML processing.

CONDITIONAL SELECTION
The conditional selection syntax of the column PATH element has
been expanded in the version 1.1 specification. You can now
select pcdata or an attribute value based on attribute value. This
enhancement rounds outs the total selection criteria; pcdata,
conditional pcdata, attribute value, and conditional attribute value.
All selections must be based on, and terminate with, the “current”
element.

Accepted forms of PATH and conditional selections

<PATH>/LEVEL/ITEM</PATH>
<PATH>/LEVEL/ITEM[@attr2=”value”]</PATH>
<PATH>/LEVEL/ITEM@attr</PATH>
<PATH>/LEVEL/ITEM@attr[@attr2=”value”]</PATH>

NTH OCCURRENCE
The column PATH element expression also supports the
position() function for accessing recurring element content of the
same named element. Parallel to GENERIC mode generating
suffixed element names for recurring elements, the expression
enhancement allows creating multiple distinct columns for
recurring elements in your XML input stream.

<PATH>/LEVEL/RECURS[position()=2]</PATH>

It should be noted that the recurring position() expression must
based on, and terminate with the “current” element. Position() is
only supported for extraction of pcdata content.

ORDINAL GENERATION
Generation of sequential valued columns is now possible.
Incrementing (and decrementing), as well as reset to zero

operations are available to a special column type we call an
ordinal. These “computed” columns can be useful for
discriminating values selected from recurring patterns in an XML
input stream, creating distinct key values, or for any other
situation where a counted value is desired. An ordinal is defined
by the presence of an ordinal= attribute on the COLUMN
element.

<COLUMN name=”foo” ordinal=”yes”> …

New INCREMENT-PATH, DECREMENT-PATH, and RESET-
PATH elements are available in the COLUMN syntax group.
INCREMENT and DECREMENT are mutually exclusive controls.

ATLAS (BETA)
Atlas is an XMLMap support tool introduced in SAS 9. It can be
found on the client-side installation CD-ROM for SAS 9. Atlas is a
Java-based, stand-alone application designed to remove tedium
from the generation of XMLMap syntax, as well as provide a level
of data exploration via its graphical user interface construction.
The Atlas tool is considered a BETA in this release.

ASSIST TOOL FOR XMLMAP GENERATION
Atlas’ primary task is the generation of XMLMap syntax. It
displays the input XML sample in a text pane, as well as, in an
Explorer-like graphical tree. Additionally, Atlas offers a
“condensed” graphical tree pane, an XMLMap construction
progress display pane, and a sample SAS program display pane.

The “condensed” pane is a tree display of data patterns occurring
within the sample XML content. It tracks detected data type,
maximum lengths, and unique occurrences for data values.

GRAPHICAL INTERFACE, DRAG-N-DROP MOTIF
XMLMap generation is accomplished via a familiar drag-n-drop
motif. Data elements desired to be extracted from the XML
sample are dragged directly from the input tree and dropped onto
the XMLMap target tree. The target tree is organized, not
remarkably, in table column precedence. Multiple table
extractions are supported. Atlas also provides control dialogues
that adjust the properties of the extracted columns. You can
manipulate the detected data type, length, format, informat, as
well as provide enumeration constraints on the column.

THE GHOSTS OF SXLE FUTURE (9.1)

SXLE
Scheduled for mass shipment, SAS 9.1 is the next evolutionary

SUGI 28 Emerging Technologies

4

step for our XML support in the field. We have augmented our
success with new functionality and updated familiar tools with
requested enhancements.

MS-ACCESS SUPPORT
Market presence is always a driving force behind any movement,
whether it be a change of headache remedy or a preferred XML
markup standard4. The newest native support XMLtype is the
markup standard emitted by the Microsoft Access data base
product. This markup is quite similar to the existing GENERIC
XMLtype. MS-Access also supports inclusion of XML Schema as
either embedded or separate file content.

NO SCHEMA OR SCHEMA OUTBOARD
To process MS-Access generated markup, on the LIBNAME
statement specify the MSAccess option.

LIBNAME myxml xml ‘path-to-my-xml-data’
xmltype=’MSAccess’ ;

If there is no embedded XML Schema content, the processing is
exactly as with XMLtype=GENERIC. A first pass of the data is
made to glean metadata, and data is extracted during the second
pass. Note: Without the XML Schema content the results will be
similar to, but may not match exactly, the database schema
information.

SCHEMA EMBEDDED
With XML Schema content embedded in the file, the metadata is
read directly from the information contained in the file. Data types
are recognized as defined by the XML Schema – Datatypes
specification. See the table below for supported types and type
coercion.

XMLMETA OPTION VALUES CHANGED
Prior incarnations of the XMLmeta option enumeration values
used somewhat cryptic forms like “yes”, “full”, “no”, etc. We have
made an effort in SAS 9.1 to use more meaningful names for
these values, and match those in use in web applications. In the
future, we will refer only to these new enumerations.

XMLMeta=DATA produces only data content in the XML output
file. XMLMeta=SCHEMA produces only XML Schema content in
the XML output file. So, one might safely assume that,
XMLMeta=SCHEMADATA produces both XML Schema and data
content in the XML output file(s). These are logically the
successors of the values NONE, ONLY5, and FULL, respectively.

XMLSCHEMA OPTION RE-INTRODUCED
The XMLSchema option has been re-introduced in SAS 9.1, and
now specifies either a file reference or file path where generated
XML Schema content is to reside. Initially, this option is restricted
to output only.

With upcoming future releases, this is the location for references
to generalized XML Schema content as support for the XML
Schema specification is added to the engine and expanded.

PARSER
Parsing issues continue to arise as applications push the
envelope and we have responded in several arenas of contention.

ALLOW “DIRTY” XML CHARACTERS
“True” XML is more than tossing a few angle brackets around
existing data and calling it good. But, in direct conflict with the
written specification, we see more and more occurrences of non-
escaped character sequences in open XML fields. This sort of
faux pas causes a conforming parser to stop processing at the

point of the offending character. We realize that this can be a
frustrating experience for those tasked with processing third-party
generated, non-conforming streams.

We now support a “relaxed” mode of processing that allows un-
escaped special characters to be processed without error when
they would not normally be accepted. The angle brackets in open
text are still forbidden, but the other special characters
(apostrophe, double quote, and ampersand) are processor
pacified. On the LIBNAME statement, specify the XMLProcess
option

LIBNAME myxml xml ‘path-to-my-xml-data’
XMLProcess=Conform;

The option takes values of either Conform or Relax. The default
is XMLProcess=Conform.

FASTER, SMALLER, SMARTER
Many improvements in the parser itself have streamlined the
processing of XML inputs. Users should (continue to) expect good
performance and resource usage with even the largest of
streams.

XMLMAP
In keeping with a strict version control on syntax levels, SAS 9.1
introduces a new version “1.2” syntax level.

DATATYPE ENUMERATION CHANGE
Fundamentally compatible with version “1.1” the content of the
DATATYPE enumeration has been changed to conform directly to
the XML Schema – Datatypes specification. The old values are
NOT accepted by the “1.2” version. Please refer to the table
below

Schema type Version 1.2
Version 1.0
Version 1.1

string string STRING
integer integer INT
float double FLOAT
double double FLOAT
dateTime dateTime DT-8601
time time TIM-8601
date date DAT-8601

Previous :

<DATATYPE>DT-8601</DATATYPE>

New in 1.2:
<DATATYPE>dateTime</DATATYPE>

THE SAS XML MAPPER (ATLAS)
Atlas was an XMLMap support tool introduced as beta software in
SAS 9. The application has now been officially dubbed the SAS
XML Mapper, and is production status in SAS 9.1.

SCHEMA SUPPORT
The production application now supports extraction from an XML-
Schema, as well as, from more traditional XML data markup.

SUGI 28 Emerging Technologies

5

Element organization and content is displayed in a tree format as
described by the schema definition.

BETTER TYPE RECOGNITION
The data type recognition has been expanded to include SAS-
centric dates/times/datetimes in addition to ISO-standard forms.
Recognition now parallels SXLE GENERIC mode operation.

TABBED DISPLAY
The application also now displays the source and generation text
panes in a tabbed display format.

SAS DATA STEP XML PARSER OBJECT
Also new in SAS 9.1 is the Data Step XML Parser Object. This
extension to the SAS Data Step permits direct access to the same
XML parsing mechanics used by SXLE, in a non-engine
environment.

SAX MODEL
The initial release of the object offers a SAX (Simple API for XML)
model parser interface, and supplies the fundamental methods
expected in a reference implementation.

CONCLUSION
The promise of XML uniting all IT departments under a common
umbrella is still a pipedream. In this presentation we've taken a
look at new technology to help you leverage the power of the SAS
system and the new XML-based environments, specifically the
new enhancements to the XML LIBNAME engine which extend
functionality beyond the specific supported forms.

Examples have shown only basic code and related contextual
fragments. For more in-depth coverage, please refer to the
release documentation. There is also a SAS Theater Session
being conducted during this SUGI which will deal with SXLE
issues and examples more exhaustively.

ACKNOWLEDGEMENTS
1 Thomas Cox, David Phillips, Karen Hoffman, Base SAS

Software Research & Development, XML
2 Eric Gebhart, Dan O’Connor, Base SAS Software

Research & Development, ODS
3 Joe Mudd, Terri Angeli, Base SAS Software Research

& Development, PFS

FOOTNOTES
1 xmlengine@sas.com
2 DTD’s are obsolete and XML Schema will be the only

fully supported form in future releases. These tagsets
produce output-only rendering support for application
compatibility and are not intended for input to SXLE.
There are many tools are available to convert an
existing DTD to XML Schema notation.

3 http://www.w3.org/TR/REC-xml#sec-white-space
4 sometimes the two go hand-in-hand
5 ONLY was never formally documented prior, as it was

an internal use option only. Use of ONLY in prior
versions may lead to undesirable results. Offer void
where prohibited. Your mileage may vary. See your
dealer to see if you qualify.

REFERENCES
Resources: http://www.sas.com/rnd/base/index-xml-
resources.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact me and the XML team at:

Anthony Friebel
XML Development Manager, SXLE architect

 SAS Institute, Inc.
 One SAS Circle
 Cary, NC 27513
 Email: XMLEngine@sas.com
 Web: http://www.sas.com

COPYRIGHT INFORMATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand or product names are registered trademarks or
trademarks of their respective companies.

SUGI 28 Emerging Technologies

6

APPENDIX A.

XMLMAP SYNTAX ELEMENTS
The following are the XML tag names for the XMLMap syntax
elements arranged by SXLE version. The tag names are listed in
the order in which you would typically code them in your XMLMap
file:

v0.9944 v1.0 v1.1 v1.2

XMLMAP SXLEMAP SXLEMAP SXLEMAP

 version= version= version=

 name= name=

 description= description=

TABLE TABLE TABLE TABLE

NAME

 name= name= name=

TABLE_LABEL TABLE_LABEL

 TABLE-
DESCRIPTION

TABLE-
DESCRIPTION

TABLE_XPATH TABLE_XPATH TABLE-PATH TABLE-PATH

 syntax= syntax=

 TABLE_END_XPATH TABLE-END-
PATH

TABLE-END-
PATH

 syntax= syntax=

 beginend= beginend=

COLUMN COLUMN COLUMN COLUMN

NAME

 name= name= name=

 retain= retain= retain=

 replace=

 ordinal= ordinal=

LABEL LABEL

 DESCRIPTION DESCRIPTION

XPATH XPATH PATH PATH

 syntax= syntax=

COLUMN COLUMN COLUMN COLUMN

 INCREMENT-
PATH

INCREMENT-
PATH

 syntax= syntax=

 beginend= beginend=

 RESET-PATH RESET-PATH

 syntax= syntax=

 beginend= beginend=

XMLTYPE DATATYPE DATATYPE DATATYPE

SASTYPE TYPE TYPE TYPE

LENGTH LENGTH LENGTH LENGTH

 FORMAT FORMAT FORMAT

 width= width= width=

 ndec= ndec= ndec=

 INFORMAT INFORMAT INFORMAT

 width= width= width=

 ndec= ndec= ndec=

 ENUM ENUM ENUM

 VALUE VALUE VALUE

 DEFAULT DEFAULT DEFAULT

The v0.9944 level syntax was not officially documented and was
fairly soon after supplanted by the introduction of v1.0 syntax.

SUGI 28 Emerging Technologies

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

