

1

Next Generation Warehousing with Version 9
 Gary Mehler, SAS Institute Inc., Cary North Carolina

ABSTRACT

This paper covers the new data warehousing and management
services available in Version 9 and shows how they help manage
large, real-world ETL development environments. Topics covered
include multi-user planning and administration, security
management, the development–to-production lifecycle, deployment
issues and scheduling, and the integration of data quality
management.

INTRODUCTION

Data warehousing is the foundational layer of data upon which
business intelligence processes can be built. Without a data mart or
data warehouse that has a documented structure and the ability to
accommodate updated data, analytic consistency over time cannot
be achieved. After all, a data warehouse is typically thought of as
the means to achieve one version of the truth for an organization. As
advanced analytics are used more broadly to get a competitive edge,
the data warehousing process becomes even more important.
Furthermore, the structured and documented approach required to
correctly do data warehousing is an important area to understand so
its principles can be adopted in higher-level functions as well.

This paper takes the general view that data warehousing is more
than just an ETL (Extract, Transform, and Load) process for a data
collection, and additionally includes the infrastructure upon which
this layer is built. In other words, it includes the technical
information (or metadata) about all the sources to extract, how to
manipulate and transform them, and the structure of the data model
upon which higher-level functions such as analytic analysis are
performed. This will take us into the area of infrastructure
configuration, to include information about the users of the
infrastructure, how a development lifecycle should be approached,
and how groups of people can work together on these types of
projects. Finally, moving from a development to a deployment
methodology, we will discuss how to safely and reliably
operationalize the processes for regularly-scheduled use.

METADATA

Warehousing, like many other computer-based operations, has a lot
to do with metadata, or data that describes basic tabular data as well
as processes executed upon the basic data. In order to make
infrastructure plans for a large-scale warehouse, metadata needs
are important to consider as a first step in the planning process.

Version 9 of the SAS ETL Server is highly dependent on metadata
services. These services can be thought of as storage repositories
for metadata, and are built into collections of repositories that service
a particular function. As an example, the typical warehousing
development methodology calls for a three-level model for
Development, Testing, and Production use. These are typically
called DEV, TEST, and PROD, respectively. This terminology will
be used in the remainder of this paper.

Each level is represented as a collection of repositories that
comprise the warehouse operation for that level. As will be covered
next, these collections have their own needs for interoperation with
minimal extra administrative overhead. Within a level, such as the

DEV environment, multiple ETL developers may be working on
various aspects of a larger project, and each of these projects can
benefit from metadata independence during the early development
phase. Called Change Management, this allows for separation of
independent projects so that work can proceed in parallel. Without
change management, an ill-considered change could effectively stop
all work since all users would be subjected to all changes as soon as
they’re made.

Change management is key for real-world development of any type,
and is especially important for ETL development environments
where interdependence of data elements can be difficult to assess
on the surface. As we’ll see, change management allows
developers to check out a particular object (such as a table
definition), experiment with the impact of changes in a protected
environment (a project workspace), and after its safety has been
determined, check it back into a shared work area for other users to
see.

Version 9 of the SAS ETL Server fully supports multi-level and
change-managed development environments. Components of the
suite include the following core components:

- SAS Metadata Server, the core metadata services layer
for SAS applications

- SAS Management Console, the administrative
workbench for SAS applications

- SAS ETL Studio, the ETL developer’s workbench
- The SAS System for advanced application processing

Additional requirements can be met by other components that
interoperate with the core suite, and are also part of the Version 9
product suite:

- SAS Data Quality Server for data cleansing,
householding, and other matching

- SAS OLAP Server to build cubes
- SAS Scalable Performance Data Server for high-

performance data access
- SAS/Access products for DBMS access
- SAS Data Surveyors for Enterprise Application access

Integrating all of these components to meet real-world warehousing
needs is possible with Version 9 of the SAS ETL Server suite, and is
shown in more detail in the remainder of this paper.

MULTI-LEVEL PLANNING

Some forethought is required when multiple developers,
administrators, or end-users are brought into the picture. For
starters, having multiple developers involved in the warehouse
design and implementation process requires that a common
approach be taken for the storage of documentation and
implementation materials. This is important so that the work of these
multiple warehouse developers can be integrated into a consistent
and maintainable structure.

In addition to multi-tier metadata considerations, the full power of the
SAS System to utilize client/server and n-tier configurations for
application processing as well. This means that analytics and data
management can be distributed across the enterprise to meet
processing needs.

SUGI 28 Data Warehousing and Enterprise Solutions

sasszz
Paper 169-28

2

Figure 1: Multi-level environment to isolate the effects of change from the
production warehousing environment. The promotion process is managed
by administrative tools.

In addition to handling multi-level migration, the core metadata may
need to be available for multiple distributed sites and have support
for backup and restore to mitigate against hardware failure. These
capabilities are supported with the general names of Replication,
whereby a repository can be copied to another location. A topology
of metadata servers can be created to support this operation in a
straightforward fashion.

MULTI-USER ADMINISTRATION

The large number of people that might be involved in an enterprise-
wide warehousing project means it is important that the tools used
be aware of the roles of these individuals and help administrators
make consistent choices throughout. This includes:

- creating project work areas for each ETL developer
- setting group permissions easily for all the ETL

developers
- sharing common information as needed
- enforcing that updates are done with an audit trail
- using a check-out/check-in approach to keep overwrites

from occurring

SAS Management Console is a single point of control for SAS
administrative tasks. It is a Java-based application that provides a
common user interface that can be extended through a Java plug-in
interface to meet future needs as well as be customized by end-
users to meet site-specific needs. As a basic application, it is
provides access to metadata about various aspects of SAS System
operation, and of applications such as SAS ETL Studio.

Its components include:

Figure 2. The general user interface of the SAS Management Console.

1. A menu bar for access to all functions
2. A toolbar for shortcuts to common functions
3. Context bar to indicate the active metadata repository
4. Navigation tree to show major functional areas
5. Main display area for work tasks
6. Status line to indicate connection status, userid

Looking more closely at the Navigation tree, the functional
areas covered by the basic SAS Management Console are
shown below. Additional plug-ins would register on this tree as
well.

Figure 3. The main navigation tree of the SAS Management Console

The value of storing information in a common metadata repository is
clear when the re-use of this information through the SAS
Management Console is shown below. An administrator can define
complex definitions for all data and application servers just once, and
then share that information with the user community.

Figure 4. Common definitions are entered once and can be re-used by
many users.

Putting all of the information in one place makes it easy for
administrators to manage large-scale enterprises, but also requires
authorization management to ensure that each user has permission
to see just what they’re supposed to see. In SAS Management
Console, this is easy to manage through the Authorization Manager.
In the figure below, specific users or groups of users can be allowed
to use specific pieces of information in the repository.

Figure 5. By denying access to metadata, such as a server definition, an
administrator can control access to who can use the server.

This is a very powerful feature, since in the metadata repository,
each object can be administered in this way. That means that not
just servers can have authorization rights set, but also things like
tables, columns in tables or reports.

Promotion Promotion

DEV TEST PROD

SUGI 28 Data Warehousing and Enterprise Solutions

3

THE ETL DESIGN PROCESS

After administrative tasks have been completed, the actual ETL
design process can get underway. ETL, after all, is about
Extraction, Transformation, and Loading to support business
intelligence needs, the real reason we’re doing all this. SAS ETL
Studio is the environment in which this is performed. This is the
same basic user interface as is used in SAS Management Console.

Figure 6. The basic layout of SAS ETL Studio. Multiple panels on the left
provide work areas for repositories, projects, and processes.

Initial tasks in ETL Studio will revolve around defining sources to
extract and targets to load. In the example here, the ETL developer
has a simple task to perform: transform basic warehouse and
transactional data into a weekly summary table. This would typically
be done in a project area to contain the risk and scope of work, and
then would be checked into a common area for others to use.
Further, a grouping would be defined to keep the pieces together
and help avoid confusion with components of other projects. Next,
we will walk through the steps to create a project to accomplish this
task.

Figure 7. A close-up on the project tab. In this example, the user (Gary) is
working in a project area with source tables to generate a weekly summary
target table. The job that will do this is indicated as well.

To see how this project was constructed, we will go through a high
level walk-through showing how the main portions are done.

Sources
An ETL process starts by extracting data from some external
location, such as a database, SAS storage, or flat files. The ETL
Studio component that focuses on this area is a source designer
wizard. The wizard will walk us through each step of defining our
source in metadata so it can be documented and re-used. The
source designer presents the user with the listing of supported
source types, including a large number for ODBC-based data. As
with many operations in ETL Studio, a wizard-based interface helps
the user make step-by-step decisions on how to complete their task.

Below we see an extract from the Source Designer wizard showing
some sources to choose from.

Figure 8. Selecting a source designer. Several ODBC types are specifically
supported.

After the SQL Server ODBC type is selected, the user can specify
the specific data source name (or the ODBC DSN) to use. Once
specified, ETL Studio uses that information to help determine which
tables to import. For this example, we can select a collection of
source tables that we’ll access via ODBC in our ETL job.

In the case of this example, the source data used is from a sample
database in SQL Server. The wizard helps the user fill in the right
answers to fully describe the source being defined. The figure below
shows how we choose the tables of interest from the complete set of
tables available from the database.

Figure 9. Selecting a group of tables to import metadata about.

Understanding the data is vital when determining how to design the
job to meet the ETL objective. In ETL Studio, a wide array of
assistance is available to do this. A common way to understand how
the data model is constructed is to understand whether keys or
indexes are present for source data. Below is how a user would
understand how keys associate the grouping of tables together.
This is a panel of the properties stored for any table registered in the
repository.

The sources (or other elements such as targets or processing
steps) can execute on any platform on which the SAS System is
present and configured for remote processing. ETL Studio takes full
advantage of multi-tier computing by making use of SAS Integration
Technologies and SAS/CONNECT software. SAS code generation
makes implicit use of metadata describing data locations to generate
the appropriate code to execute at runtime for multi-tier deployment.

SUGI 28 Data Warehousing and Enterprise Solutions

4

Figure 10. Properties of the Customers source table showing that the
CustomerID column is a primary key. It also shows the table Orders is
associated via this key.

In addition to keys and indexes, other properties of tables are
available as well in metadata and can be viewed here as well. This
includes the type of database, SAS library and schema. In addition,
table-specific options can be set and retained. In the case in which
the source table uses non-standard characters in column names, for
example, options can be set to ensure that these are handled
properly.

Figure 11. Details of how the Customers table is physically stored. In this
example, we’re seeing a table access via ODBC from SQL Server. Full
information about its schema and other details are available to view or edit
if needed.

By this point, we’ve seen how to register source tables from an
external source like a database or ODBC source. Once registered,
the metadata about those tables can be reused for many purposes.
One use of this metadata is in constructing ETL jobs, which have a
dependence on the type of information in these tables (such as
column names and types). Another use of this metadata is to define
new tables with similar characteristics. This is common when
defining new target tables that are built from known source table
elements.

Targets
The steps to add a new object to a project, in this case a Target
table definition are aided through a wizard. ETL Studio uses wizards
to assist with many common operations. This provides a powerful
way to handle a range or ways to load targets, from default settings
of UPDATE or APPEND, and whether DROP or TRUNCATE load
steps are required. The New Object wizard is an example flow we’ll
see below.

Figure 12. The New Object wizard is used to add a target table definition to
a project. Other object types can be added in the same way.

Creating a target table definition based on existing columns is easy
since the user can re-use column definitions from source tables. In
this example, we’re merging columns from the source tables we’re
going to use in our process. Below we see how a user was able to
select columns from multiple input tables to construct the desired
collection of columns for the new target table. This is a way that
metadata can be re-used instead of requiring the user to re-enter
data from memory.

Figure 13. The Target Table Designer helps create new table definitions
based on existing tables and columns. In this example, we chose the
desired columns from tables used in the process to be designed next.

Transformation Jobs
After having studied our sources to know how to proceed, we can
create the job to transform the sources into the desired target. To do
this, the ETL Studio process Designer is used. In this simple
example, the bulk of processing revolves around joining the source
tables into the summary target table. Choosing the Join
transformation, we simply drag and drop it onto the Process
Designer canvas. After doing so, it helps us by showing the
connections it needs to effectively do its work. In this case, a
minimal join takes two source tables and joins them into a third
target table. Templates show how this needs to be done.

SUGI 28 Data Warehousing and Enterprise Solutions

5

In the example shown below, we will build a simple SQL join using
the built-in Join transformation. This built-in transformation is a very
powerful tool for specifying just about any part of the SQL syntax in a
straightforward GUI as we’ll see below.

Figure 14. The basic Process Designer canvas showing a Join
transformation that has been dropped onto it. Template placeholders
indicate next steps to the user. If dropped into an existing job, this
transformation could be dropped onto a template place-holder to link into
the existing jobflow.

Filling in the blanks, we build the desired job as required to put the
right data pieces together. Dragging and dropping tables into the
Process Designer canvas is easy to do and gives visual feedback on
how the ETL Developer is doing.

Figure 15. The ETL Developer has specified two input sources and the
target output table on the Process Designer canvas by filling the template
slots provided by the Join transformation.

Specifying details of how the central Join is going to work is possible
through property settings for the Join. As with everything else, right
clicking on the Join transformation gives access to its Properties
panel. In it, we can review a number of SQL-oriented settings.

Figure 16. SQL Join properties for the Process. As expected, the auto-
mapping of the primary keys makes joining multiple tables straightforward.

In our example, we need to filter on recent dates. That can be done
with a data filter (a WHERE clause for SQL experts). Each part of
the SQL language is handled through property tabs in a graphical
form. Other parameters that can be specified include: ordering,
having, and more complex mappings based on column-level
expressions. Below we see how this can be done visually by
building a filter.

Figure 17. Building data filters visually.

Of course, the goal is to execute this efficiently, so ETL Studio is
really writing SAS code to accomplish this, and we can review it in
several ways. While adjusting the join properties, the user can
switch to the SQL tab to review the syntax for accuracy. While
viewing the syntax, the SQL code can be modified in-place, and the
visual elements will reflect the updated SQL for the user. Below is
the SAS SQL code generated to perform the join that was visually
constructed for this example.

SUGI 28 Data Warehousing and Enterprise Solutions

6

Figure 18. The integrated Source Editor shows the generated SAS code to
perform the process.

As our example evolves, we find that we need to amend our data to
include additional information from another table. This is easy to do
visually by just dropping another table onto the Process Designer
canvas.

Figure 19. Multi-way Joins shown visually.

In addition to adding more tables to transformations like Join or Split
by dropped them onto the process node, existing jobs can be
modified in other ways as well. To insert a process step in an
existing job, the user can drop it on one of the connector lines to
insert it at that point. In addition, multiple flows can be connected by
dragging an endpoint onto an open template slot or a transformation
that can be extended (like Join or Split).

As the join is extended to accommodate the third table, properties of
the join are extended as well. This means that when we return to the
table join properties, we will see the third table reflected as well as its
default column mappings indicated. Elements like the join
transformation are limited only by the upper bounds present in the
SAS System on which the code will eventually be executed, so the
join transformation can accommodate up to 32 tables as input into a
single Join.

Although this is a simple example, very large configurations can be
created by combining basic transformations into larger, complex
process flows. Transformations can feed right into other
transformations without having to store data in an intermediate table.
In most cases, a SAS View is used when propagating data across
process steps.

Figure 20. Table mapping specifics are visually shown, this time for three
tables. They are joined on their primary keys by default.

If more complex parameters need to be set, that is possible by
editing advanced properties for the join. Below we see that we could
specify advanced join types (such as left, right, inner, or outer). As
more tables are added to the join, the panel on the left shows the
order in which the operations are performed. For ordered joins such
as left and right, this is important to visualize, especially when larger
numbers of tables are combined.

Figure 21. Specifying advanced join types to obtain the required results.

EXTENDING ETL STUDIO

What this paper has covered so far is the administrative
configuration and basic ETL Studio operation to define sources,
targets, and intervening transformations required to manipulate the
data as required. Using the powerful set of basic transformations
provided in ETL Studio, many things can be accomplished.

However, in the event that the pre-packaged transformations in ETL
Studio don’t meet all of the transformation requirements for your
needs, they can be extended in a number of ways: user-written code,
user-written transformations, and Java-based transformation plug-
ins.

User-Written code
For cases in which a custom algorithm is needed for a single time of
use, the full power of the SAS language can be called up to achieve
the objective. If the algorithm is needed as part of a data flow (as in
a transformation step), there is a basic transformation type called
“User Written Code” that can be used. Just like any other
transformation, it can be dropped onto the Process Designer canvas
and linked into ETL processes. The use can then specify the SAS

SUGI 28 Data Warehousing and Enterprise Solutions

7

language code to run as that process step. The code can reside in
an external program file, or be stored in the SAS metadata
repository, as shown in the following figure. For external files, host-
specific path information is stored so that the code can be located
and executed on any remote host.

Figure 22. In a user-written code transformation, the user inputs
information about how to locate the provided SAS language code. In this
case, the user specifies a file location using a filesystem path that is
relative to the execution host.

Another type of single-use user-provided extension can be done
through pre-processing or post-processing steps for any entire
process. In the figure below, we see that the user can store, edit,
and maintain this code through the metadata server storage facility.

Figure 23. Pre- and post-processing steps for a complete process. In this
figure, clicking on the Edit button allows SAS code to be entered through an
embedded SAS language-aware editor and subsequently stored in the
metadata repository.

User-Written transformations
In the event that user-written extensions need to be re-used as
transformation steps generally, this can be done through the ETL
Studio Transformation Generator. The generator helps the user
specify SAS language or SAS macro code that can be stored as the
internal steps to execute as part of a reusable transformation. This
allows the great power of the SAS language to be reused by many
users. In addition to reusability, the reader will recall that metadata
information is real documentation that can help sites develop a
library of documented, reusable SAS code modules.

As an example, we will walk through the process of adding a new
transformation into our ETL Studio environment. This starts by
naming and describing the new transformation step as well as
determine a grouping location for the new transformation. For
complex grouping structures, a format of Level1.Level2 can be used.
For example, entering: “Data Profiling.Summary
Statistics” would place the new transformation in the process
folder “Summary Statistics” under “Data Profiling”.

Figure 24. Beginning the transformation generation process. The user
names the new transformation, assigns it to a grouping folder, and provides
a place for documentation for the new item.

After naming the transformation, the user-written code can be added
with the embedded SAS-syntax editor. This code can be SAS Data
Step or SAS Macro code as required. Macro variables used in the
transformation can be replaced later by specifying options to define
each variable. For this simple example, we’re just writing diagnostic
code with PROC PRINT. %BYVAR will be an option to be specified
when the transformation is dropped onto the Process Designer
canvas later.

Figure 25. Entering the SAS language code for the new transformation.

After the SAS language code has been entered, the user has the
opportunity to define the external names and descriptions that will be
used by the ETL developer when the transformation is used. Below
we see how any number of input or output variables can be defined.

SUGI 28 Data Warehousing and Enterprise Solutions

8

Figure 26. Specifying options for the transformation. Through SAS macro
variable handling, external parameters can be passed to user-written
transformation code.

After specifying the option parameters, we can specify whether this
new transformation fits anywhere in a flow (has input and output
tables), or belongs in some endpoint. As an endpoint, it either
wouldn’t have a template for its input or its output.

Figure 27. Additional options; the sample transformation won’t have an
output, so we can turn off the output template to guide the user.

When finished with the Transformation Generator, the new
transformation is added to the library of transformations available to
the ETL developer. So, in the scheme of what is being
accomplished, the Transformation Generator lets an ETL developer
actually design program components of ETL Studio that others can
use and re-use. In this capacity the user of this Generator is more
of an ETL process leader who can define new templated transforms
for other ETL developers to re-use.

Figure 28. The user-provided transformation shows up as a reusable
component.

When using the new transformation, it can be dragged onto the
Process Designer canvas like any other transformation. In this
example, our transformation requires an input, but doesn’t generate
output, so it shows the appropriate template areas on the canvas.

Figure 29. A reusable transformation in use. This transformation on asks
the user to fill in an input table template.

If adding to an existing flow, the user can simply drag an existing
node (such as a table) onto this template area to link it into the
existing flow.

Java Plug-In Transformations
For more complex operations, ETL Studio can be extended in a
number of ways by writing Plug-ins in the Java programming
language. A user would choose this route if there were more
complex operations required than could easily be represented in the
SAS programming language, or if more complex visual elements
were required to guide the user through the design and run-time
environment of using the transformation.

Many SAS-provided pieces of the ETL Studio suite are provided
using the plug-in interface, and there are several ways in addition to
transformation plug-ins to extend ETL Studio. It supports a number
of different points at which it can be extended through Java plug-ins.
These include:

• Shortcut bad and the Tools menu
• General application menu and pop-up menus
• Adding items to ETL Studio display trees
• Transformations in the Process Library
• Adding tabs to property sheets for objects
• Source and Target designers
• Any other object that the user can create.
• Source code overrides for transformations and jobs

SUGI 28 Data Warehousing and Enterprise Solutions

9

OLAP

OLAP cubes are a powerful way to represent dimensionally
structured data for quick analysis. The Cube Designer plug-in to
SAS ETL Studio provides a wizard-based way to define new OLAP
definitions and actual cubes based on existing data. Below we see a
sample screen from the Cube Designer.

Figure 30. The Cube Designer helps the user build OLAP cubes in SAS
ETL Studio.

DATA QUALITY

No discussion of advanced data warehousing would be complete
without considering the need to understand and manage quality
issues. Whenever data is assembled from a variety of sources,
minimizing the effect of defective data is a major concern. In
addition, reducing data redundancies and standardizing data
elements increases the accuracy of the data, making it more usable.

SAS Data Quality Server can handle the task of removing erroneous
data and match common data when merging data from previously
disparate sources. Cleansed data leads to more usable results, so
consideration of cleansing in your ETL processes delivers a good
return on investment for the resultant warehouse.

SAS Data Quality Server can be used in many ways:
- to generate match codes for transformation, reporting, and

analysis. This is done through the DQMATCH procedure,
which is available as a transformation plug-in to ETL Studio

- to generate and apply schemes (DQSCHEME) that transform
data sets, which can be done through another ETL Studio
transformation.

- Data values can be case standardized (upper or lower case)
using the SAS language function DQCASE, available in the
ETL Studio’s expression builder library.

- Other functions to determine gender or locale are also surfaced
in the ETL Studio expression builder.

Used in conjunction with dfPower Studio software from DataFlux
Corporation, the SAS ETL Server can help leverage the full power of
data quality in ETL processes.

COMMON WAREHOUSE METAMODEL (CWM)

SAS Version 9 products are fully compliant with the open standard
that supports common metadata interchange. This important
standard allows for the sharing of metadata information across
applications. In a typical large enterprise, a corporate or
departmental data model is managed by a data architect. This data

model describes how various pieces interrelate and helps prevent
multiple versions of the truth from confusing a data warehousing
environment. Using standard data modeling tools like ErWin or
Rational Rose, large-scale data models are defined for use. These
can be imported directly into ETL Studio.

In cooperation with Metaintegration Technologies Incorporated (see
http://www.metaintegration.com), advanced capabilities for importing
metadata model definitions from a wide range of products is
supported. Below we see an example use of ETL Studio’s Metadata
Import wizard.

Figure 31. Among the wide range of metadata import types supported, the
user can select the needed type.

The outcome of a CWM import are all the table definitions that
comprise the model. In this way, a large number of target definitions
can be transported from the data model design environment into the
ETL design studio for implementation.

OTHER SOURCES

In addition to simple storage like DBMS or SAS tables for which it
can be straightforward to understand the metadata such as column
names and types, other types of data require a different approach. A
few that we will discuss here include external flat files and enterprise
applications (such as ERP or CRM operational systems). While a
lot of information resides in these other systems and formats, a
different approach is needed to understand the infomration. In the
example below, the user is searching for a string present in table
descriptions in their SAP R/3 system.

External Flat Files
External text files require special handling as well since their format
includes useful information. Typical formats like comma separate
files or tab separated files are a standard data interchange that
includes column names in the first line of the file, but no other format
or type infomration as metadata. The External File Interface in SAS
ETL Studio takes this into account and reads some portion of the file
to make educated guesses about the type and format of data in it.

Below we see an example comma separated file of company
information. The External File wizard reads some portion of the file
to determine the type of data in it to register as metadata.

SUGI 28 Data Warehousing and Enterprise Solutions

10

Figure 32. The Import External File Interface helps understand the format of
external delimited or fixed width files.

Operational Systems
Operational systems like SAP R/3, SAP BW, Siebel, PeopleSoft,
and Oracle Applications can be rich sources of information, but can
be more challenging to understand since in many cases their
metadata isn’t stored in a standard form. In other words, while a
DBMS makes heavy use of keys, indexes, and descriptive
infomration in individual tables, operational systems can tend to
place their metadata in yet more DBMS tables. Understanding the
structure can be difficult and error-prone.

SAS ETL Studio provide plug-ins for the sources listed above that
provide access to data from these operational systems and provides
ways to search and navigate through them. These plug-ins are
called SAS Data Surveyors for each type of system, and provide an
easier way to find the needed content. In the figure below, the user
can use a simple search string to help find the desired content.

Figure 33. Using the SAS Data Surveyor for SAP R/3 plug-in to ETL Studio.
The search string “Invoice receipt” is found in the descriptive text for tables.
In this system, descriptive text bears very little resemblance to the actual
tables names.

DEPLOYMENT

The preceding has described the administration and design of a
warehouse processes. The real use of these processes occurs
when the processes are deployed into the real world and scheduled
for regular use. The standard scheduling package supported by

ETL Studio is the LSF Scheduler from Platform Computing. The
first part of the operation is to register a job for scheduling in ETL
Studio.

Figure 34. Actions that can be performed on a Job, showing deployment.

SAS Management Console handles the scheduling of actual jobs
with the scheduler. When the job is registered with the Scheduling
server, it is ready for deployment in a regularly scheduled production
environment.

Figure 35. Job scheduling that takes place in SAS Management Console.

CONCLUSION

Version 9 of the SAS System provides infrastructure and
warehousing products to meet the challenges of developing and
deploying a next generation warehouse or data mart. Administrator-
and developer-centric tools. An end-to-end solution encompassing
data quality, deployment, and powerful analytics helps with any
advanced ETL design and implementation requirements.

TRADEMARKS

SAS and all other SAS Institute, Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.  indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
The author may be contacted at:

 Gary Mehler
 SAS Institute, Inc.
 100 SAS Campus Drive
 Cary, North Carolina 27513
 Gary.Mehler@sas.com

SUGI 28 Data Warehousing and Enterprise Solutions

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

