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ABSTRACT 
 

This paper covers the new data warehousing and management 
services available in Version 9 and shows how they help manage 
large, real-world ETL development environments. Topics covered 
include multi-user planning and administration, security 
management, the development–to-production lifecycle, deployment 
issues and scheduling, and the integration of data quality 
management.  

 
INTRODUCTION 
 
Data warehousing is the foundational layer of data upon which 
business intelligence processes can be built.  Without a data mart or 
data warehouse that has a documented structure and the ability to 
accommodate updated data, analytic consistency over time cannot 
be achieved.  After all, a data warehouse is typically thought of as 
the means to achieve one version of the truth for an organization.  As 
advanced analytics are used more broadly to get a competitive edge, 
the data warehousing process becomes even more important.  
Furthermore, the structured and documented approach required to 
correctly do data warehousing is an important area to understand so 
its principles can be adopted in higher-level functions as well. 
 
This paper takes the general view that data warehousing is more 
than just an ETL (Extract, Transform, and Load) process for a data 
collection, and additionally includes the infrastructure upon which 
this layer is built.  In other words, it includes the technical 
information (or metadata) about all the sources to extract, how to 
manipulate and transform them, and the structure of the data model 
upon which higher-level functions such as analytic analysis are 
performed.  This will take us into the area of infrastructure 
configuration, to include information about the users of the 
infrastructure, how a development lifecycle should be approached, 
and how groups of people can work together on these types of 
projects.  Finally, moving from a development to a deployment 
methodology, we will discuss how to safely and reliably 
operationalize the processes for regularly-scheduled use.   
 
METADATA 
 
Warehousing, like many other computer-based operations, has a lot 
to do with metadata, or data that describes basic tabular data as well 
as processes executed upon the basic data.  In order to make 
infrastructure plans for a large-scale warehouse, metadata needs 
are important to consider as a first step in the planning process.   
 
Version 9 of the SAS ETL Server is highly dependent on metadata 
services.  These services can be thought of as storage repositories 
for metadata, and are built into collections of repositories that service 
a particular function.  As an example, the typical warehousing 
development methodology calls for a three-level model for 
Development, Testing, and Production use.  These are typically 
called DEV, TEST, and PROD, respectively.  This terminology will 
be used in the remainder of this paper. 
 
Each level is represented as a collection of repositories that 
comprise the warehouse operation for that level.  As will be covered 
next, these collections have their own needs for interoperation with 
minimal extra administrative overhead.  Within a level, such as the 

DEV environment, multiple ETL developers may be working on 
various aspects of a larger project, and each of these projects can 
benefit from metadata independence during the early development 
phase.  Called Change Management, this allows for separation of 
independent projects so that work can proceed in parallel.  Without 
change management, an ill-considered change could effectively stop 
all work since all users would be subjected to all changes as soon as 
they’re made. 
 
Change management is key for real-world development of any type, 
and is especially important for ETL development environments 
where interdependence of data elements can be difficult to assess 
on the surface.  As we’ll see, change management allows 
developers to check out a particular object (such as a table 
definition), experiment with the impact of changes in a protected 
environment (a project workspace), and after its safety has been 
determined, check it back into a shared work area for other users to 
see. 
 
Version 9 of the SAS ETL Server fully supports multi-level and 
change-managed development environments.  Components of the 
suite include the following core components: 

- SAS Metadata Server, the core metadata services layer 
for SAS applications 

- SAS Management Console, the administrative 
workbench for SAS applications 

- SAS ETL Studio, the ETL developer’s workbench 
- The SAS System for advanced application processing 

 
Additional requirements can be met by other components that 
interoperate with the core suite, and are also part of the Version 9 
product suite: 

- SAS Data Quality Server for data cleansing, 
householding, and other matching 

- SAS OLAP Server to build cubes 
- SAS Scalable Performance Data Server for high-

performance data access 
- SAS/Access products for DBMS access 
- SAS Data Surveyors for Enterprise Application access 

 
Integrating all of these components to meet real-world warehousing 
needs is possible with Version 9 of the SAS ETL Server suite, and is 
shown in more detail in the remainder of this paper. 
 
 
MULTI-LEVEL PLANNING 
 
Some forethought is required when multiple developers, 
administrators, or end-users are brought into the picture.  For 
starters, having multiple developers involved in the warehouse 
design and implementation process requires that a common 
approach be taken for the storage of documentation and 
implementation materials.  This is important so that the work of these 
multiple warehouse developers can be integrated into a consistent 
and maintainable structure. 
 
In addition to multi-tier metadata considerations, the full power of the 
SAS System to utilize client/server and n-tier configurations for 
application processing as well.  This means that analytics and data 
management can be distributed across the enterprise to meet 
processing needs. 
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Figure 1: Multi-level environment to isolate the effects of change from the 
production warehousing environment.  The promotion process is managed 
by administrative tools. 
 
 
In addition to handling multi-level migration, the core metadata may 
need to be available for multiple distributed sites and have support 
for backup and restore to mitigate against hardware failure.  These 
capabilities are supported with the general names of Replication, 
whereby a repository can be copied to another location.  A topology 
of metadata servers can be created to support this operation in a 
straightforward fashion. 

 
 
MULTI-USER ADMINISTRATION 
 
The large number of people that might be involved in an enterprise-
wide warehousing project means it is important that the tools used 
be aware of the roles of these individuals and help administrators 
make consistent choices throughout.  This includes: 

- creating project work areas for each ETL developer 
- setting group permissions easily for all the ETL 

developers 
- sharing common information as needed 
- enforcing that updates are done with an audit trail 
- using a check-out/check-in approach to keep overwrites 

from occurring 
 
SAS Management Console is a single point of control for SAS 
administrative tasks.  It is a Java-based application that provides a 
common user interface that can be extended through a Java plug-in 
interface to meet future needs as well as be customized by end-
users to meet site-specific needs.  As a basic application, it is 
provides access to metadata about various aspects of SAS System 
operation, and of applications such as SAS ETL Studio.   
 
Its components include: 
 

 
 
Figure 2. The general user interface of the SAS Management Console. 

1. A menu bar for access to all functions 
2. A toolbar for shortcuts to common functions 
3. Context bar to indicate the active metadata repository 
4. Navigation tree to show major functional areas 
5. Main display area for work tasks 
6. Status line to indicate connection status, userid 

 
 

Looking more closely at the Navigation tree, the functional 
areas covered by the basic SAS Management Console are 
shown below.  Additional plug-ins would register on this tree as 
well. 

 
Figure 3. The main navigation tree of the SAS Management Console 
 
 
The value of storing information in a common metadata repository is 
clear when the re-use of this information through the SAS 
Management Console is shown below.  An administrator can define 
complex definitions for all data and application servers just once, and 
then share that information with the user community. 
 

 
 
Figure 4. Common definitions are entered once and can be re-used by 
many users. 
 
 
Putting all of the information in one place makes it easy for 
administrators to manage large-scale enterprises, but also requires 
authorization management to ensure that each user has permission 
to see just what they’re supposed to see.  In SAS Management 
Console, this is easy to manage through the Authorization Manager.  
In the figure below, specific users or groups of users can be allowed 
to use specific pieces of information in the repository. 
 

 
 
Figure 5. By denying access to metadata, such as a server definition, an 
administrator can control access to who can use the server. 

 
This is a very powerful feature, since in the metadata repository, 
each object can be administered in this way.  That means that not 
just servers can have authorization rights set, but also things like 
tables, columns in tables or reports. 
 

Promotion Promotion 

DEV TEST PROD 
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THE ETL DESIGN PROCESS 
 
After administrative tasks have been completed, the actual ETL 
design process can get underway.  ETL, after all, is about 
Extraction, Transformation, and Loading to support business 
intelligence needs, the real reason we’re doing all this.  SAS ETL 
Studio is the environment in which this is performed.  This is the 
same basic user interface as is used in SAS Management Console. 
 

 
 
Figure 6. The basic layout of SAS ETL Studio.  Multiple panels on the left 
provide work areas for repositories, projects, and processes. 
 
 
Initial tasks in ETL Studio will revolve around defining sources to 
extract and targets to load.  In the example here, the ETL developer 
has a simple task to perform: transform basic warehouse and 
transactional data into a weekly summary table.  This would typically 
be done in a project area to contain the risk and scope of work, and 
then would be checked into a common area for others to use.  
Further, a grouping would be defined to keep the pieces together 
and help avoid confusion with components of other projects.  Next, 
we will walk through the steps to create a project to accomplish this 
task. 
 

 
 
Figure 7. A close-up on the project tab.  In this example, the user (Gary) is 
working in a project area with source tables to generate a weekly summary 
target table.  The job that will do this is indicated as well. 
 
 
To see how this project was constructed, we will go through a high 
level walk-through showing how the main portions are done.   
 
Sources 
An ETL process starts by extracting data from some external 
location, such as a database, SAS storage, or flat files.  The ETL 
Studio component that focuses on this area is a source designer 
wizard.  The wizard will walk us through each step of defining our 
source in metadata so it can be documented and re-used.  The 
source designer presents the user with the listing of supported 
source types, including a large number for ODBC-based data.  As 
with many operations in ETL Studio, a wizard-based interface helps 
the user make step-by-step decisions on how to complete their task.  

Below we see an extract from the Source Designer wizard showing 
some sources to choose from. 
 

 
 
Figure 8. Selecting a source designer.  Several ODBC types are specifically 
supported. 
 
 
After the SQL Server ODBC type is selected, the user can specify 
the specific data source name (or the ODBC DSN) to use.  Once 
specified, ETL Studio uses that information to help determine which 
tables to import.  For this example, we can select a collection of 
source tables that we’ll access via ODBC in our ETL job. 
 
In the case of this example, the source data used is from a sample 
database in SQL Server.  The wizard helps the user fill in the right 
answers to fully describe the source being defined. The figure below 
shows how we choose the tables of interest from the complete set of 
tables available from the database. 
 

 
 
Figure 9. Selecting a group of tables to import metadata about. 
 
 
Understanding the data is vital when determining how to design the 
job to meet the ETL objective.  In ETL Studio, a wide array of 
assistance is available to do this.  A common way to understand how 
the data model is constructed is to understand whether keys or 
indexes are present for source data.  Below is how a user would 
understand how keys associate the grouping of tables together.  
This is a panel of the properties stored for any table registered in the 
repository. 
 
The sources (or other elements such as targets or processing 
steps) can execute on any platform on which the SAS System is 
present and configured for remote processing.  ETL Studio takes full 
advantage of multi-tier computing by making use of SAS Integration 
Technologies and SAS/CONNECT software.  SAS code generation 
makes implicit use of metadata describing data locations to generate 
the appropriate code to execute at runtime for multi-tier deployment. 
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Figure 10. Properties of the Customers source table showing that the 
CustomerID column is a primary key.  It also shows the table Orders is 
associated via this key. 
 
 
In addition to keys and indexes, other properties of tables are 
available as well in metadata and can be viewed here as well.  This 
includes the type of database, SAS library and schema.  In addition, 
table-specific options can be set and retained.  In the case in which 
the source table uses non-standard characters in column names, for 
example, options can be set to ensure that these are handled 
properly. 
 

 
 
Figure 11. Details of how the Customers table is physically stored.  In this 
example, we’re seeing a table access via ODBC from SQL Server.  Full 
information about its schema and other details are available to view or edit 
if needed. 
 
 
By this point, we’ve seen how to register source tables from an 
external source like a database or ODBC source.  Once registered, 
the metadata about those tables can be reused for many purposes.  
One use of this metadata is in constructing ETL jobs, which have a 
dependence on the type of information in these tables (such as 
column names and types).  Another use of this metadata is to define 
new tables with similar characteristics.  This is common when 
defining new target tables that are built from known source table 
elements. 
 
Targets 
The steps to add a new object to a project, in this case a Target 
table definition are aided through a wizard.  ETL Studio uses wizards 
to assist with many common operations.  This provides a powerful 
way to handle a range or ways to load targets, from default settings 
of UPDATE or APPEND, and whether DROP or TRUNCATE load 
steps are required.  The New Object wizard is an example flow we’ll 
see below. 

 
 
Figure 12. The New Object wizard is used to add a target table definition to 
a project.  Other object types can be added in the same way. 
 
 
Creating a target table definition based on existing columns is easy 
since the user can re-use column definitions from source tables.  In 
this example, we’re merging columns from the source tables we’re 
going to use in our process.  Below we see how a user was able to 
select columns from multiple input tables to construct the desired 
collection of columns for the new target table.  This is a way that 
metadata can be re-used instead of requiring the user to re-enter 
data from memory. 
 

 
 
Figure 13. The Target Table Designer helps create new table definitions 
based on existing tables and columns.  In this example, we chose the 
desired columns from tables used in the process to be designed next. 
 
 
Transformation Jobs 
After having studied our sources to know how to proceed, we can 
create the job to transform the sources into the desired target.  To do 
this, the ETL Studio process Designer is used.  In this simple 
example, the bulk of processing revolves around joining the source 
tables into the summary target table.  Choosing the Join 
transformation, we simply drag and drop it onto the Process 
Designer canvas.  After doing so, it helps us by showing the 
connections it needs to effectively do its work.  In this case, a 
minimal join takes two source tables and joins them into a third 
target table.  Templates show how this needs to be done. 
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In the example shown below, we will build a simple SQL join using 
the built-in Join transformation.  This built-in transformation is a very 
powerful tool for specifying just about any part of the SQL syntax in a 
straightforward GUI as we’ll see below. 
 

 
 
Figure 14. The basic Process Designer canvas showing a Join 
transformation that has been dropped onto it.  Template placeholders 
indicate next steps to the user.  If dropped into an existing job, this 
transformation could be dropped onto a template place-holder to link into 
the existing jobflow. 
 
 
Filling in the blanks, we build the desired job as required to put the 
right data pieces together.  Dragging and dropping tables into the 
Process Designer canvas is easy to do and gives visual feedback on 
how the ETL Developer is doing. 
 

 
 
Figure 15.  The ETL Developer has specified two input sources and the 
target output table on the Process Designer canvas by filling the template 
slots provided by the Join transformation. 
 
 
Specifying details of how the central Join is going to work is possible 
through property settings for the Join.  As with everything else, right 
clicking on the Join transformation gives access to its Properties 
panel.  In it, we can review a number of SQL-oriented settings. 
 

 
 
Figure 16. SQL Join properties for the Process.  As expected, the auto-
mapping of the primary keys makes joining multiple tables straightforward. 
 
 
In our example, we need to filter on recent dates.  That can be done 
with a data filter (a WHERE clause for SQL experts).  Each part of 
the SQL language is handled through property tabs in a graphical 
form.  Other parameters that can be specified include: ordering, 
having, and more complex mappings based on column-level 
expressions.  Below we see how this can be done visually by 
building a filter. 
 

 
 
Figure 17. Building data filters visually. 
 
 
Of course, the goal is to execute this efficiently, so ETL Studio is 
really writing SAS code to accomplish this, and we can review it in 
several ways.  While adjusting the join properties, the user can 
switch to the SQL tab to review the syntax for accuracy.  While 
viewing the syntax, the SQL code can be modified in-place, and the 
visual elements will reflect the updated SQL for the user.   Below is 
the SAS SQL code generated to perform the join that was visually 
constructed for this example. 
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Figure 18. The integrated Source Editor shows the generated SAS code to 
perform the process. 
 
 
As our example evolves, we find that we need to amend our data to 
include additional information from another table.  This is easy to do 
visually by just dropping another table onto the Process Designer 
canvas. 
 

 
 
Figure 19. Multi-way Joins shown visually. 
 
 
In addition to adding more tables to transformations like Join or Split 
by dropped them onto the process node, existing jobs can be 
modified in other ways as well.  To insert a process step in an 
existing job, the user can drop it on one of the connector lines to 
insert it at that point.  In addition, multiple flows can be connected by 
dragging an endpoint onto an open template slot or a transformation 
that can be extended (like Join or Split). 
 
As the join is extended to accommodate the third table, properties of 
the join are extended as well.  This means that when we return to the 
table join properties, we will see the third table reflected as well as its 
default column mappings indicated.  Elements like the join 
transformation are limited only by the upper bounds present in the 
SAS System on which the code will eventually be executed, so the 
join transformation can accommodate up to 32 tables as input into a 
single Join.   
 
Although this is a simple example, very large configurations can be 
created by combining basic transformations into larger, complex 
process flows.  Transformations can feed right into other 
transformations without having to store data in an intermediate table.  
In most cases, a SAS View is used when propagating data across 
process steps. 
 

 
 
Figure 20.  Table mapping specifics are visually shown, this time for three 
tables.  They are joined on their primary keys by default. 
 
 
If more complex parameters need to be set, that is possible by 
editing advanced properties for the join.  Below we see that we could 
specify advanced join types (such as left, right, inner, or outer).  As 
more tables are added to the join, the panel on the left shows the 
order in which the operations are performed.  For ordered joins such 
as left and right, this is important to visualize, especially when larger 
numbers of tables are combined. 
 

 
 
Figure 21. Specifying advanced join types to obtain the required results. 
 
 
EXTENDING ETL STUDIO 
 
What this paper has covered so far is the administrative 
configuration and basic ETL Studio operation to define sources, 
targets, and intervening transformations required to manipulate the 
data as required.  Using the powerful set of basic transformations 
provided in ETL Studio, many things can be accomplished.  
 
However, in the event that the pre-packaged transformations in ETL 
Studio don’t meet all of the transformation requirements for your 
needs, they can be extended in a number of ways: user-written code, 
user-written transformations, and Java-based transformation plug-
ins. 
 
 
User-Written code 
For cases in which a custom algorithm is needed for a single time of 
use, the full power of the SAS language can be called up to achieve 
the objective.  If the algorithm is needed as part of a data flow (as in 
a transformation step), there is a basic transformation type called 
“User Written Code” that can be used.  Just like any other 
transformation, it can be dropped onto the Process Designer canvas 
and linked into ETL processes.  The use can then specify the SAS 
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language code to run as that process step.  The code can reside in 
an external program file, or be stored in the SAS metadata 
repository, as shown in the following figure.  For external files, host-
specific path information is stored so that the code can be located 
and executed on any remote host. 
 
 

 
 
Figure 22.  In a user-written code transformation, the user inputs 
information about how to locate the provided SAS language code.  In this 
case, the user specifies a file location using a filesystem path that is 
relative to the execution host.   
 
 
Another type of single-use user-provided extension can be done 
through pre-processing or post-processing steps for any entire 
process.  In the figure below, we see that the user can store, edit, 
and maintain this code through the metadata server storage facility. 
 
 

 
 
Figure 23. Pre- and post-processing steps for a complete process.  In this 
figure, clicking on the Edit button allows SAS code to be entered through an 
embedded SAS language-aware editor and subsequently stored in the 
metadata repository. 
 
 
User-Written transformations 
In the event that user-written extensions need to be re-used as 
transformation steps generally, this can be done through the ETL 
Studio Transformation Generator.  The generator helps the user 
specify SAS language or SAS macro code that can be stored as the 
internal steps to execute as part of a reusable transformation.  This 
allows the great power of the SAS language to be reused by many 
users.  In addition to reusability, the reader will recall that metadata 
information is real documentation that can help sites develop a 
library of documented, reusable SAS code modules. 
 
As an example, we will walk through the process of adding a new 
transformation into our ETL Studio environment.  This starts by 
naming and describing the new transformation step as well as 
determine a grouping location for the new transformation.  For 
complex grouping structures, a format of Level1.Level2 can be used.  
For example, entering: “Data Profiling.Summary 
Statistics” would place the new transformation in  the process 
folder “Summary Statistics” under “Data Profiling”. 
 

 
 
Figure 24.  Beginning the transformation generation process.  The user 
names the new transformation, assigns it to a grouping folder, and provides 
a place for documentation for the new item. 
 
 
After naming the transformation, the user-written code can be added 
with the embedded SAS-syntax editor.  This code can be SAS Data 
Step or SAS Macro code as required.  Macro variables used in the 
transformation can be replaced later by specifying options to define 
each variable.  For this simple example, we’re just writing diagnostic 
code with PROC PRINT.  %BYVAR will be an option to be specified 
when the transformation is dropped onto the Process Designer 
canvas later. 
 
 

 
 
Figure 25. Entering the SAS language code for the new transformation. 
 
 
After the SAS language code has been entered, the user has the 
opportunity to define the external names and descriptions that will be 
used by the ETL developer when the transformation is used.  Below 
we see how any number of input or output variables can be defined. 
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Figure 26. Specifying options for the transformation.  Through SAS macro 
variable handling, external parameters can be passed to user-written 
transformation code. 
 
 
After specifying the option parameters, we can specify whether this 
new transformation fits anywhere in a flow (has input and output 
tables), or belongs in some endpoint.  As an endpoint, it either 
wouldn’t have a template for its input or its output. 
 
 

 
 
Figure 27. Additional options; the sample transformation won’t have an 
output, so we can turn off the output template to guide the user. 
 
 
When finished with the Transformation Generator, the new 
transformation is added to the library of transformations available to 
the ETL developer.  So, in the scheme of what is being 
accomplished, the Transformation Generator lets an ETL developer 
actually design program components of ETL Studio that others can 
use and re-use.  In this capacity the user of this Generator is more 
of an ETL process leader who can define new templated transforms 
for other ETL developers to re-use. 

 
Figure 28. The user-provided transformation shows up as a reusable 
component. 
 
 
When using the new transformation, it can be dragged onto the 
Process Designer canvas like any other transformation.  In this 
example, our transformation requires an input, but doesn’t generate 
output, so it shows the appropriate template areas on the canvas. 
 

 
 
Figure 29. A reusable transformation in use.  This transformation on asks 
the user to fill in an input table template. 
 
 
If adding to an existing flow, the user can simply drag an existing 
node (such as a table) onto this template area to link it into the 
existing flow. 
 
 
Java Plug-In Transformations 
For more complex operations, ETL Studio can be extended in a 
number of ways by writing Plug-ins in the Java programming 
language.  A user would choose this route if there were more 
complex operations required than could easily be represented in the 
SAS programming language, or if more complex visual elements 
were required to guide the user through the design and run-time 
environment of using the transformation.   
 
Many SAS-provided pieces of the ETL Studio suite are provided 
using the plug-in interface, and there are several ways in addition to 
transformation plug-ins to extend ETL Studio.  It supports a number 
of different points at which it can be extended through Java plug-ins.  
These include: 
 

• Shortcut bad and the Tools menu 
• General application menu and pop-up menus 
• Adding items to ETL Studio display trees 
• Transformations in the Process Library 
• Adding tabs to property sheets for objects 
• Source and Target designers 
• Any other object that the user can create. 
• Source code overrides for transformations and jobs  
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OLAP 
 
OLAP cubes are a powerful way to represent dimensionally 
structured data for quick analysis.  The Cube Designer plug-in to 
SAS ETL Studio provides a wizard-based way to define new OLAP 
definitions and actual cubes based on existing data.  Below we see a 
sample screen from the Cube Designer. 
 

 
 
Figure 30. The Cube Designer helps the user build OLAP cubes in SAS 
ETL Studio. 
 
 
 
DATA QUALITY 
 
No discussion of advanced data warehousing would be complete 
without considering the need to understand and manage quality 
issues.  Whenever data is assembled from a variety of sources, 
minimizing the effect of defective data is a major concern.  In 
addition, reducing data redundancies and standardizing data 
elements increases the accuracy of the data, making it more usable. 
 
SAS Data Quality Server can handle the task of removing erroneous 
data and match common data when merging data from previously 
disparate sources.  Cleansed data leads to more usable results, so 
consideration of cleansing in your ETL processes delivers a good 
return on investment for the resultant warehouse. 
 
SAS Data Quality Server can be used in many ways: 
- to generate match codes for transformation, reporting, and 

analysis.  This is done through the DQMATCH procedure, 
which is available as a transformation plug-in to ETL Studio 

- to generate and apply schemes (DQSCHEME) that transform 
data sets, which can be done through another ETL Studio 
transformation. 

- Data values can be case standardized (upper or lower case) 
using the SAS language function DQCASE, available in the 
ETL Studio’s expression builder library. 

- Other functions to determine gender or locale are also surfaced 
in the ETL Studio expression builder.  

 
Used in conjunction with dfPower Studio software from DataFlux 
Corporation, the SAS ETL Server can help leverage the full power of 
data quality in ETL processes. 
 
 
COMMON WAREHOUSE METAMODEL (CWM) 
 
SAS Version 9 products are fully compliant with the open standard 
that supports common metadata interchange.  This important 
standard allows for the sharing of metadata information across 
applications.  In a typical large enterprise, a corporate or 
departmental data model is managed by a data architect.  This data 

model describes how various pieces interrelate and helps prevent 
multiple versions of the truth from confusing a data warehousing 
environment.  Using standard data modeling tools like ErWin or 
Rational Rose, large-scale data models are defined for use.  These 
can be imported directly into ETL Studio. 
 
In cooperation with Metaintegration Technologies Incorporated (see 
http://www.metaintegration.com), advanced capabilities for importing 
metadata model definitions from a wide range of products is 
supported.  Below we see an example use of ETL Studio’s Metadata 
Import wizard. 
 

 
 
Figure 31. Among the wide range of metadata import types supported, the 
user can select the needed type. 
 
The outcome of a CWM import are all the table definitions that 
comprise the model.  In this way, a large number of target definitions 
can be transported from the data model design environment into the 
ETL design studio for implementation. 
 
 
OTHER SOURCES 
 
In addition to simple storage like DBMS or SAS tables for which it 
can be straightforward to understand the metadata such as column 
names and types, other types of data require a different approach.  A 
few that we will discuss here include external flat files and enterprise 
applications (such as ERP or CRM operational systems).  While a 
lot of information resides in these other systems and formats,  a 
different approach is needed to understand the infomration.  In the 
example below, the user is searching for a string present in table 
descriptions in their SAP R/3 system. 
 
 
External Flat Files 
External text files require special handling as well since their format 
includes useful information.  Typical formats like comma separate 
files or tab separated files are a standard data interchange that 
includes column names in the first line of the file, but no other format 
or type infomration as metadata.  The External File Interface in SAS 
ETL Studio takes this into account and reads some portion of the file 
to make educated guesses about the type and format of data in it. 
 
Below we see an example comma separated file of company 
information.  The External File wizard reads some portion of the file 
to determine the type of data in it to register as metadata. 
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Figure 32. The Import External File Interface helps understand the format of 
external delimited or fixed width files. 
 
 
Operational Systems 
Operational systems like SAP R/3, SAP BW, Siebel, PeopleSoft, 
and Oracle Applications can be rich sources of information, but can 
be more challenging to understand since in many cases their 
metadata isn’t stored in a standard form.  In other words, while a 
DBMS makes heavy use of keys, indexes, and descriptive 
infomration in individual tables, operational systems can tend to 
place their metadata in yet more DBMS tables.  Understanding the 
structure can be difficult and error-prone.   
 
SAS ETL Studio provide plug-ins for the sources listed above that 
provide access to data from these operational systems and provides 
ways to search and navigate through them.  These plug-ins are 
called SAS Data Surveyors for each type of system, and provide an 
easier way to find the needed content.  In the figure below, the user 
can use a simple search string to help find the desired content. 
 
 

 
 
Figure 33. Using the SAS Data Surveyor for SAP R/3 plug-in to ETL Studio.  
The search string “Invoice receipt” is found in the descriptive text for tables.  
In this system, descriptive text bears very little resemblance to the actual 
tables names. 
 
 
DEPLOYMENT 
 
The preceding has described the administration and design of a 
warehouse processes.  The real use of these processes occurs 
when the processes are deployed into the real world and scheduled 
for regular use.  The standard scheduling package supported by 

ETL Studio is the LSF Scheduler from Platform Computing.  The 
first part of the operation is to register a job for scheduling in ETL 
Studio. 
 

 
 
Figure 34. Actions that can be performed on a Job, showing deployment. 
 
 
SAS Management Console handles the scheduling of actual jobs 
with the scheduler.  When the job is registered with the Scheduling 
server, it is ready for deployment in a regularly scheduled production 
environment. 

 

 
 
Figure 35. Job scheduling that takes place in SAS Management Console. 
 
 
CONCLUSION 
 
Version 9 of the SAS System provides infrastructure and 
warehousing products to meet the challenges of developing and 
deploying a next generation warehouse or data mart.  Administrator- 
and developer-centric tools.  An end-to-end solution encompassing 
data quality, deployment, and powerful analytics helps with any 
advanced ETL design and implementation requirements. 
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