
Paper 165-28

1

New Ways and Means to Summarize Files
Curtis A. Smith, Defense Contract Audit Agency, La Mirada, CA

ABSTRACT
Frequently, when creating files for a data warehouse or to be used
within a SAS program, it makes sense to create smaller files to save
space and reduce processing time. Sometimes creating summary
files is the solution. Of course, the SUMMARY procedure is the tool
to use to create a summarized SAS data set. While this procedure
has been available for several version of SAS, version 8 of SAS
gives us some significant new features that we can use to get more
information in our summarized files and to optimize the summary
process. In this paper the author will discuss the techniques and
programming code for creating summary files, where the SAS
programmer collapses a data file into fewer observations and
variables. The author will give special attention to the new version
8 features.

INTRODUCTION
You will probably want to build efficiencies into your data warehouse
and SAS jobs by summarizing SAS data sets where possible. When
you summarize a file you collapse the file by eliminating unneeded
variables and aggregating the numeric values. Compared to the
original detailed file, a summarized file requires less storage space,
less processing time when used, and less I/O operations when used.
In this paper, I will discuss some basic techniques to summarize a
SAS data set using the SUMMARY procedure. But I will concentrate
on new SAS version 8 features in the SUMMARY procedure that
give you more control over the output and can reduce the
processing time needed to create a summarized SAS data set.

PURPOSE OF SUMMARIZE A SAS DATA SET
Summarizing a SAS data set makes sense whether you do it in a job
stream or for permanent storage in your data warehouse.
Summarized SAS data sets are smaller, reducing storage space
requirements, reduce I/O operations, and require less time to
process. Sometimes you may need to convert a large data file into
a lookup table with only one occurrence of a combination of
character variables. Summarizing your file is a way to accomplish
such a task. Consider the following sample master SAS data set:

In this master SAS data set there are four pieces of accounting data
(variables or columns): the division (DIV), account (ACCOUNT),
journal (JOURNAL), and department (DEPT). And, there is an
amount (AMOUNT) and a name (NAME) associated with each
transaction. Our master SAS data set contains ten observations
(rows). Notice that each row is unique, by the combination of the
four pieces of accounting data.

If you are building a data warehouse for your users but your users
never need the transaction detail for the journal, department, or
name, you could drop these variables.

The resulting SAS data sets would look like the what you see in the
following box.

But notice that each
row is no longer
unique, considering the
remaining two pieces of
accounting data. The
first and second row
are both recorded to
division A1 and account 3101. The third and fourth row are both
recorded to division A1 and account 3225. Similarly, the seventh and
eighth rows are recorded to division B2 and account 3225. And the
ninth and tenth rows are recorded to division C3 and account 3225.
This circumstance provides you the opportunity to summarize
(collapse) these records together while accumulating the amounts
(thus preventing any numeric value loss). Once done, your resulting
SAS data sets will look like this:

Eliminating variables
will not always result in
rows that are no longer
unique. So, it is
possible to drop variables but not be able to benefit from
summarizing the SAS data sets. But when you can summarize your
SAS data sets, you can save a substantial amount of storage space
and greatly reduce processing time when using the summarized
SAS data sets.

HOW TO SUMMARIZE
The SUMMARY procedure creates a new SAS data set containing
summary statistics on numeric variables from an existing SAS data
set. Usually, this procedure is used to summarize a SAS data set
into a smaller SAS data set having only one record for each
occurrence of specified variable(s). Summarizing a SAS data set is
very useful when you expect to use a SAS data set more than once
and don’t need the original level of detail. Having the data
summarized into a smaller data set reduces the amount of
processing time and associated cost for each report or other
procedure and reduces the cost of storage. Also, often original SAS
data sets are too large to store on disk, but a summarized SAS data
set can be stored on disk.

PROCEDURE SYNTAX
If you look in the SAS documentation for information about the
SUMMARY procedure, you will find yourself re-directed to the
MEANS procedure. The MEANS and SUMMARY procedure are the
same, except that the SUMMARY procedure creates an output SAS
data set, which is what you want when you need to create a
summary file. Following is the syntax for the SUMMARY procedure.
We will examine each statement below and look at some examples
of code, log, and output.

NAME DIV ACCOUNT JOURNAL DEPT AMOUNT
Al Abaster A1 3101 AAA H100 100.00
Ivan Aikenback A1 3101 BBB H100 550.00
Robin Steele A1 3225 BBB H200 300.00
Sharon B. Good A1 3225 BBB H300 250.00
Patty O’Furniture A1 3225 CCC H300 110.00
Peter Pants B2 3101 AAA H100 450.00
Drew Blanks B2 3225 BBB H100 325.00
Chester Drawers B2 3225 BBB H200 50.00
Hoosier Taylor C3 3225 AAA H100 25.00
Bea Hemoth C3 3225 AAA H300 1050.00

DIV ACCOUNT AMOUNT
A1 3101 100.00
A1 3101 550.00
A1 3225 300.00
A1 3225 250.00
A1 3225 110.00
B2 3101 450.00
B2 3225 325.00
B2 3225 50.00
C3 3225 25.00
C3 3225 1050.00

DIV ACCOUNT AMOUNT
A1 3101 650.00
A1 3225 660.00
B2 3101 450.00
B2 3225 375.00
C3 3225 1075.00

SUGI 28 Data Warehousing and Enterprise Solutions

2

PROC SUMMARY DATA=libref.filename options;
BY (or CLASS) variable-list;
ID variable-list;
VAR variable-list;

 TYPES variable-list;
 WAYS n;
OUTPUT OUT=libref.filename(options)

output statistic=variable-list/options;
RUN;

SPECIFICATIONS
We will begin discussing some old tried and true capabilities within
the SUMMARY procedure. Then, we will explore the new features
available in version 8. Consider the following examples:

PROC SUMMARY DATA=TAPE.BIGGER;
BY DIV ACCOUNT JOURNAL;
ID DESCR;
VAR AMOUNT HOURS;
OUTPUT OUT=DISK.SMALLER SUM=AMOUNT HOURS;

RUN;

PROC SUMMARY DATA=TAPE.BIGGER;
CLASS DIV ACCOUNT JOURNAL;
VAR AMOUNT;
OUTPUT OUT=DISK.SMALLER(DROP= TYPE)
SUM=AMOUNT;

RUN;

BY AND CLASS STATEMENT
These statements are used to control the order or grouping of
selected variables within the SAS data set. In the examples above,
the input libref.filename is 'TAPE.BIGGER' and output libref.filename
is 'DISK.SMALLER'. The output file is summarized on the
combination of DIV, ACCOUNT, and JOURNAL. When you use the
BY statement to identify the variables on which you want to
summarize, the input file must already be sorted or indexed by the
same variables. The CLASS statement can be used in place of the
BY statement and will sort and summarize the input file, eliminating
the need to pre-sort or index the input file. However, the CLASS
statement does require more memory to function than does the BY
statement. Therefore, if the input file is large (hundreds of thousands
of records or more) or if you are including many variables in your
CLASS statement, the SUMMARY procedure may fail for lack of
memory. Also, when the CLASS statement is used, the SUMMARY
procedure will exclude any rows with a missing value in any of the
variables in the CLASS list. This could have disastrous results.
However, losing such rows will be prevented if you use the MISSING
option (more on this later). All variables identified in a BY or CLASS
statement should be character variables, unless they are numeric
variables with few, discrete values.

With the CLASS statement the SUMMARY procedure creates
summary records for each possible combination of variables in the
CLASS list. In the example above the SUMMARY procedure would
produce a summary row for each unique combination of DIV,
ACCOUNT, and JOURNAL, and a summary row for each unique
combination of DIV and ACCOUNT, and a summary row for each
unique combination of DIV and JOURNAL, and so forth. When all
you want to do is to collapsed your input data set by a combination
of variables you want only one row for each unique combination of
all variables in the CLASS list (the highest level of interaction). The
other rows the SUMMARY procedure creates just get in your way.
If you CLASS statement and want rows for only the highest level of
interaction between the variables, there is an option to do this (more
on this later). If you use the BY statement the SUMMARY procedure
will produce rows for only the highest level of interaction between
the variables in the BY list.

ID STATEMENT
The ID statement is used to specify any character variables not
specified in the BY or CLASS variable list that you want to retain in
the output SAS data set. Variables you specify with the ID statement
are not summarized. Rather, the value of the ID variable on the last
row summarized is retained. This is useful when a variable must be
retained in the output file, but whose value is the same for each
combination of the BY or CLASS variable list. Variables listed with
an ID statement could be added to the BY or CLASS variable list to
produce the same result. However, doing so will create a more
complicated summarization sequence that will slow the
summarization process.

VAR STATEMENT
The VAR statement is used to specify the numeric variables that will
be aggregated. Any variable in the input data set not specified with
either a BY, CLASS, ID, or VAR statement will not be included in the
output data set.

OUTPUT STATEMENT
The OUTPUT statement is used to specify the output SAS data set
to be created and to specify the output statistic to aggregate the
numeric variables identified in the VAR list. Within the OUTPUT
statement you specify the output libref.filename with the OUT=
option. Specify the output statistic, followed by an “=” and followed
by the variables in the VAR list. If your goal is to collapse the input
SAS data set into a less detailed output SAS data set, you will use
the SUM output statistic (see the SAS Online Documentation for
other output statistics).

AUTOMATIC VARIABLES
The SUMMARY procedure creates two variables automatically:
FREQ and _TYPE_. A numeric count of the number of rows from
the input SAS data set summarized into each single row in the
output file is stored in the _FREQ_ variable. The _TYPE_ variable
contains a numeric value identifying the level of interaction between
the variables in the CLASS list. When a BY statement is used, the
TYPE variable will always equal
0. When the CLASS statement is
used, the _TYPE_ variable will
contain 0 for a grand total row and
values of 1 through n for various
levels of interaction between the
variables in the CLASS list.

What Do We Have So Far?
Using the statements and options presented so far, let’s summarize
a SAS data set. First, let’s summarize our sugi.master file using a
BY statement. This, of course, requires we first sort the unsorted file
on the same variables on which we plan to summarize. Consider the
following code, SAS log, and results.

In this example, you will notice first a SORT procedure and then a
SUMMARY procedure using the BY statement. First, notice that in
both the SORT and SUMMARY procedures the BY statements are
identical. Then, notice in the log below that the SAS data set
work.master contains 10 rows and the SAS data set SUGI.summary
contains 5 rows.

proc sort data=sugi.master out=work.master;
 by div account;
run;
proc summary data=work.master ;
 By div account;
 var amount;
 output out=sugi.summary sum=AMOUNT;
run;

The SUMMARY
procedure creates two
automatic variables:
FREQ and _TYPE_

SUGI 28 Data Warehousing and Enterprise Solutions

3

Now, take a look at those 5 rows in the output file.

Notice the frequency counts under the automatic variable _FREQ_.

Also, notice the automatic variable _TYPE_ and the values of “0" for
each row. Harkening back to the early portion of this paper, the
output summary rows are the results we expected. Let’s summarize
our file again using the CLASS statement. Notice this time we do not
need to pre-sort our unsorted file because the CLASS statement
takes care of sorting. Consider the following code, SAS log, and
results.

Notice in the log that we now have 11 rows! In this case, that’s more
rows than in the input SAS data set. How could that be? Let’s look
at those 11 rows in detail.

Look at what the CLASS statement provides for you. You get a set
of rows for every combination of variables in the CLASS list. In this
example, that means you get summary rows for every unique DIV,
and every unique ACCOUNT, and every unique combination of DIV
and ACCOUNT, and a grand total. Notice that each combination has
a different _TYPE_ value. For example, each combination of
ACCOUNT is _TYPE_ = 1 and each combination of DIV is _TYPE_
= 2. The SUMMARY procedure behaves this way to provide an
output file with one row for every unique combination of all class
variables. In a later data step or procedure if, for example, you
wanted to analyze the summary file for only every unique
combination of DIV and ACCOUNT, you could use a WHERE
statement for _TYPE_ = 3.

What More Can We Do?
There are two very important options available to alter the way the
SUMMARY procedure behaves when we use the CLASS statement.

OPTIONS
There are two important SUMMARY procedure options: MISSING
and NWAY. The MISSING option instructs the SUMMARY
procedure to considers missing values in a class variable when
creating summary rows. If you omit the MISSING option, the
SUMMARY procedure excludes any rows with a missing value in a
CLASS variable from the resulting output SAS data set. The
MISSING option can either be placed on the PROC SUMMARY
statement or following a “/” at the end of the CLASS statement. The
NWAY options instructs the SUMMARY procedure to only create
rows with a combination of all class variables. These options are
available only when used with the CLASS statement, not with the BY
statement. When the SUMMARY procedure is used with the BY
statement it will produce the same output file as when used with the
CLASS statement combined with the NWAY option.

Let’s take a look at the same code as our previous example but
adding the NWAY and MISSING options and notice the difference
to the log and output.

In the log you will see that the SAS data set work.master contains 10
rows and the SAS data set sugi.summary contains 5 rows.

 Summary with BY
Obs DIV ACCOUNT _TYPE_ _FREQ_ AMOUNT
 1 A1 3101 0 2 650
 2 A1 3225 0 3 660
 3 B2 3101 0 1 450
 4 B2 3225 0 2 375
 5 C3 3225 0 2 1075

209 proc sort data=sugi.master out=work.master;
210 by div account;
211 run;
NOTE: There were 10 observations read from the data
set SUGI.MASTER.
NOTE: The data set WORK.MASTER has 10 observations
and 5 variables.
223 proc summary data=work.master;
224 by div account;
225 var amount;
226 output out=sugi.summary_by sum=AMOUNT;
227 run;

NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_BY has 5

proc summary data=work.master ;
 class div account;
 var amount;
 output out=sugi.summary sum=AMOUNT;
run;

213 proc summary data=sugi.master ;
214 class div account;
215 var amount;
216 output out=sugi.summary sum=AMOUNT;
217 run;

NOTE: There were 10 observations read from the data
set SUGI.MASTER.
NOTE: The data set SUGI.SUMMARY has 11 observations

 Summary with CLASS Only
Obs DIV ACCOUNT _TYPE_ _FREQ_ AMOUNT
 1 0 10 2160
 2 3101 1 3 1100
 3 3225 1 7 1060
 4 A1 2 5 1310
 5 B2 2 3 825
 6 C3 2 2 25
 7 A1 3101 3 2 650
 8 A1 3225 3 3 660
 9 B2 3101 3 1 450
10 B2 3225 3 2 375
11 C3 3225 3 2 1075

proc summary data=work.master nway;
 class div account /missing;
 var amount;
 output out=sugi.summary_nway sum=AMOUNT;
run;

The CLASS statement with
the NWAY option produces a
summary for only the highest

interaction between the
variables in the CLASS list.

SUGI 28 Data Warehousing and Enterprise Solutions

4

Now, take a look at those 5 rows.

These results look like the results we want - only 5 summarized
rows. In fact, at first glance, it looks like the same results as when
we used the BY statement. However, a closer look will reveal that
when we used the BY statement the _TYPE_ values were always
“0". But in this case, the _TYPE_ values are all “3". Why? Looking
at our first example using the CLASS statement (but without the
NWAY option), the rows with all possible combinations of DIV and
ACCOUNT the _TYPE_ value is “3". Thus, the NWAY options
causes the SUMMARY procedure to exclude all _TYPE_
combinations other than the _TYPE_ that results from the
combination of all class variables. In the case of using the BY
statement, the _TYPE_ variable is just filled with “0" as there are no
class variables.

When you use the CLASS statement with the NWAY option to keep
only rows with the highest level of interaction between the class
variables, the _TYPE_ variable will always contain the same value.
Therefore, I don’t find the _TYPE_ variable useful when I use the
NWAY option (or, when using the BY statement). Therefore, I use
the (DROP=_TYPE_) data set option to eliminate the unneeded
TYPE variable from the output file.

Version 8 Goodies
As advertised, there are new features to the SUMMARY procedure
in version 8. Let’s take a look.

OPTIONAL VARIABLES
The LEVELS and WAYS options can be added to the OUTPUT
statement to cause the SUMMARY procedure to include in the
output the _LEVEL_ and _WAY_ variables. The _LEVEL_ variable
contains a value from 1 to n that indicates the combination of class
variables. The _WAY_ variable contains a value from 1 to the
maximum number of class variables that indicates how many class
variables the SUMMARY procedure combines to create a row in the
output SAS data set. To use these options, add them to the
OUTPUT statement after a “/”. (Look for these in all of the upcoming
code and output examples.)

WAYS STATEMENT
The WAYS statement is used to specify the number of ways to make
combinations of class variables. This causes the SUMMARY
procedure to create summary rows for only the combinations
specified. The WAYS statement does not work with the BY
statement. You use this statement by specifying one or more
integers that define the number of class variables to combine. For
example, if you want only the row combination of DIV and
ACCOUNT then use the following WAYS statement:

WAYS 2;

You can also request multiple ways. For example, if you want all the
rows representing a combination of two class variables and you
want the row representing the grand total (no combination of any
class variables), you can use the following WAYS statement:

WAYS 0 2;

Let’s take a look at SAS code, log, and output. Here we will run
three SUMMARY procedures: first with WAYS 0, then WAYS 1, and
then WAYS 2. (Only the example with WAYS 0 is shown in the code
example.)

Now, take a look at the results in the three output files. For
comparison, refer to the output earlier when we used the
SUMMARY procedure with the CLASS statement only, without
using the NWAY option.

Notice in the example above with WAY 0 (the _WAY_ variable will
always contain “0"), we got the same row as the _TYPE_ = 0
because we asked for the combination of none of the class

218 proc summary data=work.master nway;
219 class div account /missing;
220 var amount;
221 output out=sugi.summary_nway sum=AMOUNT;
222 run;

NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_NWAY has 5
observations and 5 variables.

 Summary with CLASS and NWAY Option
Obs DIV ACCOUNT _TYPE_ _FREQ_ AMOUNT
 1 A1 3101 3 2 650
 2 A1 3225 3 3 660
 3 B2 3101 3 1 450
 4 B2 3225 3 2 375
 5 C3 3225 3 2 1075

proc summary data=work.master missing;
 class div account;
 var amount;
 ways 0;
 output out=sugi.summary_ways0 sum=AMOUNT
 /LEVELS WAYS;
run;

228 proc summary data=work.master missing;
229 class div account;
230 var amount;
231 ways 0;
232 output out=SUGI.summary_ways0 sum=AMOUNT
 /LEVELS WAYS;
233 run;
NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_WAYS0 has 1
observations and 7 variables.
234 proc summary data=work.master missing;
235 class div account;
236 var amount;
237 ways 1;
238 output out=SUGI.summary_ways1 sum=AMOUNT
 /LEVELS WAYS;
239 run;
NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_WAYS1 has 5
observations and 7 variables.
240 proc summary data=work.master missing;
241 class div account;
242 var amount;
243 ways 2;
244 output out=SUGI.summary_ways2 sum=AMOUNT
 /LEVELS WAYS;
245 run;
NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_WAYS2 has 5
observations and 7 variables.

 Summary with CLASS and WAYS 0
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 0 0 1 10 3210

SUGI 28 Data Warehousing and Enterprise Solutions

5

variables.

In the case of WAYS 1 above (the _WAY_ variable will always
contain “1"), we got the rows for combinations of any one class
variable. This equates, in our example, to _TYPE_ = 1 and 2. Notice
what the _LEVEL_ variable is doing. Each row within each _TYPE_
is successively incremented.

In the case of WAYS 2 above (the _WAY_ variable will always
contain “2"), we got the rows for combinations of any two class
variables. This equates, in our example, to _TYPE_ = 3. Notice what
the _LEVEL_ variable is doing. In this case all of the rows have the
same _TYPE_ value, so the _LEVEL_ values are simply 1 through
5.

TYPES STATEMENT
The TYPES statement creates summary rows for combinations of
specified class variables. The TYPES statement does not work with
the BY statement. You use this statement by specifying each
combination of class variables you want included in the summary
process by stating the class variables separated by an asterisk. For
example, if you want only the row combination of DIV and
ACCOUNT, and you want the rows for DIV only, then use the
following TYPES statement:

TYPES DIV*ACCOUNT DIV;

If you want the grand total row, use the syntax TYPES (). Sound
confusing? Let’s take a look at SAS code, log, and output. Here we
will run three SUMMARY procedures: first with TYPES DIV, then
TYPES ACCOUNT, and then TYPES DIV*ACCOUNT.

Take a look at the results in the three output files. For comparison,
refer to the output earlier when we used the SUMMARY procedure
with the CLASS statement only, without using the NWAY option.

In the example above we asked for TYPES on DIV only. We got one
row for each value of DIV. Notice the _WAY_ value is “1" because
only variable is combined into the output row.

In the example above we asked for TYPES on ACCOUNT only. We
got one row for each value of ACCOUNT. Notice the _WAY_ value
is “1" because only variable is combined into the output row.

In the example above we asked for TYPES on the combination of
DIV and ACCOUNT. We got one row for each combination of the
value of DIV and ACCOUNT. Notice the _WAY_ value is “2"
because two variables are combined into the output row.

 Summary with CLASS and WAYS 1
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 3101 1 1 1 3 1100
 2 3225 1 1 2 7 1060
 3 A1 1 2 1 5 1310
 4 B2 1 2 2 3 825
 5 C3 1 2 3 2 1075

 Summary with CLASS and WAYS 2
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 A1 3101 2 3 1 2 650
 2 A1 3225 2 3 2 3 660
 3 B2 3101 2 3 3 1 450
 4 B2 3225 2 3 4 2 375
 5 C3 3225 2 3 5 2 1075

proc summary data=work.master missing;
 class div account;
 var amount;
 types div;
 output out=SUGI.summary_types1 sum=AMOUNT
 /LEVELS WAYS;
run;
proc summary data=work.master missing;
 class div account;
 var amount;
 types account;
 output out=SUGI.summary_types2 sum=AMOUNT
 /LEVELS WAYS;
run;
proc summary data=work.master missing;
 class div account;
 var amount;
 types div*account;
 output out=SUGI.summary_types3 sum=AMOUNT
 /LEVELS WAYS;
run;

246 proc summary data=work.master missing;
247 class div account;
248 var amount;
249 types div;
250 output out=SUGI.summary_types1 sum=AMOUNT
/LEVELS WAYS;
251 run;
NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_TYPES1 has 3
observations and 7 variables.
252 proc summary data=work.master missing;
253 class div account;
254 var amount;
255 types account;
256 output out=SUGI.summary_types2 sum=AMOUNT
/LEVELS WAYS;
257 run;
NOTE: There were 10 observations read from the data
set WORK.MASTER.
NOTE: The data set SUGI.SUMMARY_TYPES2 has 2
observations and 7 variables.
258 proc summary data=work.master missing;
259 class div account;
260 var amount;
261 types div*account;
262 output out=SUGI.summary_types3 sum=AMOUNT
/LEVELS WAYS;
263 run;
NOTE: There were 10 observations read from the data

 Summary with CLASS and TYPES on DIV Variable
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 A1 1 2 1 5 1310
 2 B2 1 2 2 3 825
 3 C3 1 2 3 2 1075

 Summary with CLASS and TYPES on ACCOUNT Variable
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 3101 1 1 1 3 1100
 2 3225 1 1 2 7 2110

 Summary with CLASS and TYPES on DIV*ACCOUNT Variable
Obs DIV ACCOUNT _WAY_ _TYPE_ _LEVEL_ _FREQ_ AMOUNT
 1 A1 3101 2 3 1 2 650
 2 A1 3225 2 3 2 3 660
 3 B2 3101 2 3 3 1 450
 4 B2 3225 2 3 4 2 375
 5 C3 3225 2 3 5 2 1075

SUGI 28 Data Warehousing and Enterprise Solutions

6

What’s the Difference?
A careful review of the results using the NWAY option, not using the
NWAY option, using the WAYS statement, and using the TYPES
statement reveal that you can use these in some instances to
achieve the same results. For example, using the CLASS statement
and the NWAY option will result in the same output if you use the
CLASS statement and the WAYS statement specifying the same
number of variables that are in the class list. Likewise, you will get
the same results if you use the CLASS statement with the TYPES
statement while listing the same variables as in the class list each
separated by an “*”. The following three approaches will produce the
same results when wanted just the highest level of interaction.

PROC SUMMARY DATA=SUGI.MASTER NWAY;
CLASS DIV ACCOUNT JOURNAL;
more code...

PROC SUMMARY DATA=SUGI.MASTER;
CLASS DIV ACCOUNT JOURNAL;
WAYS 3;
more code...

PROC SUMMARY DATA=SUGI.MASTER;
CLASS DIV ACCOUNT JOURNAL;
TYPES DIV*ACCOUNT*JOURNAL;
more code...

Similarly, the following three approaches will produce the same
results when wanting all levels of interaction.

PROC SUMMARY DATA=SUGI.MASTER;
CLASS DIV ACCOUNT JOURNAL;
more code...

PROC SUMMARY DATA=SUGI.MASTER;
CLASS DIV ACCOUNT JOURNAL;
WAYS 0 1 2 3;
more code...

PROC SUMMARY DATA=SUGI.MASTER;
CLASS DIV ACCOUNT JOURNAL;
TYPES () DIV ACCOUNT JOURNAL DIV*ACCOUNT
 DIV*JOURNAL ACCOUNT*JOURNAL
 DIV*ACCOUNT*JOURNAL;
more code...

So, why bother with the WAYS and TYPES statements? Well, SAS
must have added them for some reason, right? Well first of all, you
might want some of the combination of rows created by the CLASS
statement without the NWAY option, but not all of the combinations.
The WAYS and TYPES statements let you select specific
combinations to create. Another reason is performance. The SAS
documentation indicates that when the WAYS and TYPES
statements are used they instruct the SUMMARY procedure to
create only the specified combinations of variables. But, apparently,
when the CLASS statement is used without a WAYS or TYPES
statement and is used with the NWAY option the SUMMARY
procedure will create all combinations but only keep the rows for the
highest level of interaction. As a result, using the WAYS or TYPES
statement with the CLASS statement should result in less
processing time and less memory usage. Let’s take a look at some
benchmark results.

I processed a SAS data set containing 996,204 rows (one of my
smaller files) on a Windows 2000 PC running SAS 8.2 with a
Pentium 4 800 MHz chip and 255 MB of RAM. I wanted to
summarize the file with an output of only 1 row for each combination
of 5 character variables and use the SUM statistic on 2 numeric
variables. In try #3 I used WAYS 5 and in try #4 I used TYPES with
the same variables as in the class list, each separated by an “*”.

In each case, the resulting output SAS data set contains 22,229
rows. While the WAYS and TYPES methods only trimmed about 10
seconds off the time of the CLASS statement with the NWAY option,
it’s only about a of the time. If using the WAYS or the TYPES
statement will reduce the time needed for the SUMMARY procedure
to work its magic by about b, then these statements are well worth
using.

CONCLUSION
Reducing the size of your temporary and permanent SAS data sets
can have a tremendous efficiency benefit on storage and
processing. Any time you do not need all the character variables in
a SAS data set, you may be able to collapse your file into a smaller
SAS data set. The SUMMARY procedure is one procedure you
should use often. SAS version 8 enhancements to the SUMMARY
procedure provide new ways and means to more efficiently and
effectively summarize your SAS data sets.

REFERENCES
SAS Online Documentation, version 8, Base SAS Software, SAS
Procedures Guide, Procedures, The MEANS Procedure

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration.

Other brands and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Curtis A. Smith
Defense Contract Audit Agency
P.O. Box 20044
Fountain Valley, CA 92728-0044
Work Phone: 714-896-4277
Fax: 714-896-6915
Email: casmith@mindspring.com

Try #1 Proc Sort 2.57 seconds
Proc Summary w/BY 21.81 seconds
Total 24.38 seconds

Try #2 Proc Summary w/CLASS
 w/NWAY 15.61 seconds

Try #3 Proc Summary w/CLASS
 w/WAYS 5.65 seconds

Try #4 Proc Summary w/CLASS
 w/TYPES 5.64 seconds

SUGI 28 Data Warehousing and Enterprise Solutions

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

