
Paper 159-28

- 1 -

Performance Tuning SAS/ACCESS for DB2
Scott Fadden, IBM , Portland, OR

INTRODUCTION

SAS solutions are renowned for their capabilities to access,
transform and analyze data. IBM's DB2 database software is the
worldwide market share leader in the database industry (Gartner
Group, May 2001). Gartner Group recently estimated that by 2004
the average enterprise would be able to successfully manage 100
terabytes of data, a task for which DB2 is ideally suited. When using
SAS with DB2 in today’s complex business environments the goal is
to leverage the capabilities of both products to achieve the best
result

The intent of this paper is to explore the impacts of different SAS
and DB2 configurations by outlining different methods of accessing
your DB2 data with a focus on performance. We look at the
performance trade-offs of choosing different access methods, SAS
System 9 application parameters and DB2 8.1 configuration options.
We also highlight new features in SAS System 9 and DB2 version
8.1.

Throughout this paper we use examples from a test system to help
us measure the performance impact of SAS/ACCESS tuning
options. The test environment consists of SAS System 9 and DB2
version 8.1 running on a single four processor Unix system with
4GB of memory and 40 fibre channel disks.

The performance results in this paper are provided as a
demonstration of the impact of various configuration options. They
are not intended as a method of comparing dissimilar configurations.
Different configurations may yield different results (i.e., your mileage
may vary).

WHAT IS SAS/ACCESS FOR DB2?

SAS and DB2 communicate via the SAS/ACCESS for DB2 product.
SAS/ACCESS for DB2 is a member of a large family of data access
products offered by SAS Institute. SAS/ACCESS allows the power
and flexibility of SAS software to be used for analyzing and
presenting data directly from DB2. Your DB2 data appears native to
the SAS software so you can use SAS features and functionality to
perform extracts of information without having to learn Structured
Query Language (SQL).

SAS/ACCESS for DB2 translates read and write requests from SAS
into the appropriate calls for DB2. The result of these calls is to
surface data in one of the following forms: as logical views to the
native data source or extracts of native data into SAS data set form.

SAS/ACCESS engine functionality ranges from "automatic" behind
the scenes operations with minimal database knowledge to
"completely flexible" allowing a DBA to finely tune the data access
components of a SAS application. The method you use depends on
your infrastructure, database expertise and operational goal. In this
paper we examine the translation process from a SAS application to
the corresponding SQL required to exchange information with DB2.

In the latest versions of SAS/ACCESS for DB2 (SAS System 9)
and DB2 UDB (version 8.1) the joint processing capabilities have
been greatly expanded. These new capabilities include:
SAS/ACCESS threaded reads and expanded load support; DB2
CLI LOAD and improved multi-row fetch performance.

WHAT IS REQUIRED FOR SAS TO ACCESS DATA FROM MY
DB2 DATABASE?

There are many configuration options that provide flexibility in
architecting a unique SAS/DB2 solution. SAS and DB2 may run on
the same server or on different servers. Multiple SAS servers can
access a single database server or one SAS server can access
multiple database servers. SAS and DB2 run on many different
platforms. These platforms need not be the same for these
components to interact. For example, your DB2 data warehouse
could be running on AIX and your SAS server on Windows. For this
paper we concentrate on our test environment configuration with
SAS and DB2 running on the same server.

Required software:

 - DB2 version 7.1 or higher
 - Base SAS version 9.0
 - SAS/Access for DB2

No modifications to your DB2 database are necessary for the
addition of SAS/ACCESS. SAS/ACCESS communicates with the
database server using the DB2 Call Level Interface (CLI) API
included in the DB2 client software. Other SAS application packages
that run atop Base SAS can be added as needed but are not
required for running basic SAS applications. However your
environment is designed, there are a few basic software components
that are required: DB2 version 7.1 or higher, Base SAS System 9
and SAS/ACCESS for DB2.

DATA PROCESSING MODELS

SAS supports many data processing models, which allows you the
flexibility to design a solution that meets your needs. The
performance of each solution can vary greatly. Though every
environment is unique there are some factors to consider when
developing your data processing model:

HOW LONG DOES IT TAKE TO GENERATE THE RESULT?

It is not uncommon to take four, eight, ten hours or more in a
large data warehouse environment to generate a result that is
used for multiple SAS operations. In this case it is best to keep
the result set around so you do not need to re-query the
database each time you want to run another analysis.

WHAT IS THE SIZE OF THE RESULT SET?

If the result set is large consider storing it in a data mart. In
many situations it is a good idea to move this data to a system
separate from the database server.

HOW MANY TIMES ARE THE RESULTS ACCESSED?

If the result set is general enough and you need to run multiple
SAS procedures against the same data then you will want to
maintain a copy of the result set. Even if it only take 1 hour, for
example, to generate the result if 20 people need the data you
could save 19 hours of processing.

SUGI 28 Data Warehousing and Enterprise Solutions

2

HOW MANY USERS WILL BE USING SAS AGAINST THE
RESULT SET?

If your data needs to be accessed by multiple users it would be
best to store the results in an offline data mart.

HOW FAST IS THE COMMUNICATION LINK BETWEEN SAS
AND DB2?

This will determine whether you store the results locally or
remotely. For example, if the database server is in a different city
than the SAS server it may be a good idea to set up a local data
mart so SAS requests do not need to be passed over the WAN.

Fig.1 SAS Server accessing the database directly

Fig.2 SAS Server accessing a data Mart

USAGE SCENARIOS

The following example solutions illustrate the criteria above. These
scenarios assume that the query that generates the result takes
many hours to complete and is very resource intensive. In this case
you may want to save a result set somewhere for reuse.

SCENARIO 1

You are the only one using the data. You only need to access the
database once and you can reuse the result set to complete your
analysis.

In this case, it would probably be best to create a local copy of
the results and use that for your analysis.

SCENARIO 2
Ten to twenty SAS users need access to the data and query it
multiple times using different procedures.

In this case it would be best to save the result of the initial query
in a data mart so all the SAS users can access it.

SCENARIO 3

Your SAS users require input from many different data sources.

In many SAS environments data are collected by one or more
DBA’s, and sent to the SAS user for analysis. You can
streamline this process by retrieving the data directly from the
source. SAS allows you to execute procedures against multiple
data sources in a single step. In this case SAS does all the data
collection for you. You can also use IBM’s federated database
technology in DB2. Federated servers provide a single view to
multiple data sources as if they all existed on a single DB2
server. This allows the DBA to provide a secure central data
access point for the SAS users. Both ways simplify the
collection of information from various sources.

 Fig. 3 Using a gateway to multiple data sources.

SCENARIO 4

You use SAS to analyze the status of your just-in-time inventory
system.

In this case the data need to be up-to-date. Accessing live DB2
data is the answer. To enable this type of evaluation you may
consider using DB2 Automatic Summary Tables (AST) or the
new DB2 version 8.1 Multidimensional Clustering (MDC) feature
to improve query performance.

ACCESSING DB2 DATA USING SAS

To begin, we need to understand how SAS processes data. We look
at an example of how SAS processes data from a SAS data set and
compare it to how SAS processes the same data stored in a DB2
database.

Using Base SAS most analysis procedures require that the input be
from one or more preprocessed SAS data sets. Other procedures
and DATA steps are designed to prepare the data for processing.
For example, we take a look at the execution steps of a print
procedure. To print census data and sort the output by state using a
SAS data set you run sort (proc sort) then print (proc
print).

/*Step 1, Sort the SAS data set */
proc sort data=census.hrecs;
 by state;

SAS Server

DB2

Other
DBMS

Other
Data
Source

LAN

* Same or separate systems

SAS Server
Client

DB2

Data Warehouse

*Same or separate systems

WAN

Client

SAS

DB2

SAS
Server Data

MartData
Warehouse

SUGI 28 Data Warehousing and Enterprise Solutions

3

run;

/* Step 2, Print the results */
proc print data=census.hrecs(keep=State
serialno);
 by state;
run;

Code Example: 1

To process this request in SAS you run proc sort first to order
the data then run proc print to produce the report. Using
SAS/ACCESS to read from DB2 as your data source can make
executing these procedures more efficient. In this example, if your
data source were DB2 you would not need to pre-sort the data for
proc print. SAS/ACCESS automatically generates the SQL
order by clause and the database orders the result. This is
supported through the SAS/ACCESS translation to SQL engine.

DATABASE ACCESS FROM SAS

There are two different ways to connect to your DB2 database from
SAS. You can define a connection using the libname engine or
connect directly to the database.

When accessing the database using the libname engine SAS
automatically translates the SAS application request to SQL.
Translation to SQL means that SAS processes the SAS application
code and generates the appropriate SQL to access the database.
Explicit pass-through is a mechanism that allows you to pass
unaltered SQL directly to the database server. Explicit SQL pass-
through is useful for adding database only operations to your SAS
application and is only accessible using the SQL procedure (proc
sql).

Most SAS procedures and DATA steps use the SAS/ACCESS SQL
translation engine. Code Example: 2 shows an example of SAS to
SQL translation for the print procedure above. When this same
procedure is executed using SAS/ACCESS against a DB2 library
the code is translated into SQL for processing by DB2.

/*SQL Generated or Proc Print */
Select “state”,”serialno”
From hrecs
Order By State;

Code Example: 2

There are various reasons for using each type of access. We take a
look a few examples of each.

WHEN WOULD YOU USE SAS/ACCESS TRANSLATION TO
SQL?

• When you want to use SAS data access functionality
(threaded reads, for example)

• When you are joining data from multiple data sources
• When the application needs to be portable to different

data sources
• When the procedure requires it. (e.g., proc freq,

proc summary)

WHEN WOULD YOU USE EXPLICIT SQL PASS-THROUGH?
• For non-SAS processing.
• When you want to use DB2 specific SQL
• In general, non-SAS processing executed from a SAS

application.

Non-SAS processing means that SAS does not need to manipulate
the data and all the work is done in the DB2 database server. In this
paper we focus on the SAS/ACCESS translation to SQL engine and
how DB2 data are processed.

USING THE SAS/ACCESS LIBNAME ENGINE

SAS provides a standard data access mechanism called the libname
engine. This interface is used by SAS to access data libraries (a
data source). We look at the relational database library and how it
interacts with DB2.

Performance tip:

It is always best to limit the amount of data
transferred between DB2 and SAS. If you only
need a few columns for your analysis list the
columns you need from the source table. In the
example above changing

set census.source1;

to
set census.source1 (keep=state
puma);

tells SAS to only retrieve the columns needed.

The SAS libname engine allows you to easily port applications to run
against different data sources. You can modify a SAS statement
that uses a SAS data set and run it against a table in your DB2
database simply by changing the libname definition. For example,
here is a script that accesses a SAS data set named mylib.data1
to generate frequency statistics.

/* Define the directory /sas/mydata
as a SAS library */

libname mylib data=/sas/mydata;

/* Run frequency statistics against
 the data1 data set */
proc freq data=mylib.data1;
 where state=’01’;

table state tenure yrbuilt yrmoved
msapmsa;

run;

Code Example: 3

To run frequency statistics for the data1 table in your DB2 database
change the libname statement to access the database instead of the
SAS dataset:

libname mylib data=DB2 user=me
using=password;

Code Example: 4

This is the only change necessary to run the freq procedure against
the data in your DB2 database. This method is helpful because it
simplifies your SAS applications by making your code more portable
to different environments. In this example access to the database is
handled by SAS/ACCESS. SAS/ACCESS generates the SQL
required to retrieve the data from the database. For the statement
above (Code Example: 3) SAS generates the SQL (Code Example:

SUGI 28 Data Warehousing and Enterprise Solutions

4

5):

SELECT "STATE", "TENURE", "YRBUILT",
"YRMOVED", "MSAPMSA"
FROM data1
WHERE state = ‘01’;

Code Example: 5

Using the libname engine is the easiest way to access data from
your SAS application because SAS generates the appropriate SQL
for you. To better understand SAS SQL translation let us take a look
at how a SAS DATA step would be processed by SAS.

In this example the DATA step reads and filters the data from the
source table source1 and writes the results to the database table
results1. The result table contains all the housing records for
state id ‘01’.

data census.results1;
 set census.source1;
 where state = ‘01’;
Run;

Code Example: 6

SAS begins by opening a connection to the database to retrieve
metadata and create the results1 table. That connection is then
used to read all the rows for state=’01’ from source1. SAS
opens a second connection to write the rows to the newly created
results1 table. If this were a multi-tier configuration the data
would have to travel over the network twice. First, from the database
server to the SAS server, then from the SAS server back to the
database server. SAS processes the data this way to support data
from multiple sources. For example, you could read data from one
database server and write to the results to a different database. In
this example, since we are using a single data source and SAS does
not need to process the data, we can make this operation more
efficient. To make this operation more efficient we use another
method of data access called explicit SQL pass-through using the
sql procedure. To make this statement explicit we added the
“connect to” and the “execute() as db2” syntax.

proc sql;
 connect to db2 (database=census);

execute(Create Table results1
like source1) as db2;

execute(Insert Into results1
Select *
From source1
Where state = ‘01’) by db2;

disconnect from db2;

quit;

Code Example: 7

On the test system the original DATA step (see Code Example: 6)
executed in 33 seconds, the proc sql version executed in 15
seconds. Changing to explicit processing improved the performance
of the operation by 64%. In this case, since all the work can be done
at the database, explicit SQL is the most efficient way to process the
statement.

You may wonder, since we were using proc sql, why we used

explicit SQL instead of SQL translation (also called implicit SQL
pass-through). We used explicit SQL because an implicit proc
sql statement is processed using the same SQL translation engine
as a DATA step. If we pass this same statement as implicit SQL,
SAS breaks the statement into separate select and insert
statements. In this example the performance gain we realized using
explicit SQL resulted from all the processing being handled by the
database. If we were to develop a general rule of thumb here, it
would be something like: If SAS does not need to process it, let the
database do the work. Explicit SQL is the best way to make sure this
happens.

Performance Tip:

Let the database do as much work as possible if
SAS does not need to process the data. Explicit
SQL is usually the best way to make sure this
happens.

When SAS is executing a procedure it is important to understand
which operations are done in DB2 and which operations the SAS
server is processing.

WHAT FUNCTIONS ARE PASSED TO DB2 FOR PROCESSING?

Most SAS procedures use SAS/ACCESS SQL translation so it is
important to understand what functions are passed to the database
for processing. To enable the most functions to be passed to the
database set the SQL_FUNCTIONS=all libname option. SAS
pushes the following functions down to DB2 for processing:

ABS FLOOR LOWCASE (LCASE)
ARCOS (ACOS) LOG UPCASE (UCASE)
ARSIN (ASIN) LOG10 SUM
ATAN SIGN COUNT
CEILING SIN AVE
COS SQRT MIN
EXP TAN MAX

Applying these functions in the database can improve analysis
performance. Each aggregate (vector) function (examples: AVE,
SUM) that DB2 processes means fewer rows of data are passed to
the SAS server. Processing non-aggregate (scalar) functions
(ABS, UPCASE etc…) takes advantage of DB2 parallel processing.

LOADING AND CREATING DATA

SAS provides powerful extraction, transformation and load (ETL)
capabilities. Therefore it is often used to load data into the database.
SAS supports three methods of loading data into DB2: Import,
Load and CLI LOAD. SAS accesses these load options through
the bulk load interface.

If you have a procedure or DATA step that creates a DBMS table
from flat file data, for example, the default load type is IMPORT. This
option is best for small loads because it is easy to use and the user
requires only insert and select privileges on the table. To enable bulk
load using import you need to set the DATA step option
BULKLOAD=yes (Code Example: 8).

If you need to load large amounts of data quickly you should use the
LOAD or CLI LOAD bulk load options. If you are using DB2 v8.1
CLI LOAD is the recommended method of loading data.

To use the DB2 Load feature you need to add the
BL_REMOTE_FILE=<xxx> DATA step option (Code Example: 9).

SUGI 28 Data Warehousing and Enterprise Solutions

5

The BL_REMOTE_FILE option defines a directory for SAS to use as
temporary file storage for the load operation. To process a load, SAS
reads and processes the input data and writes it to a DB2
information exchange format (IXF) file. The IXF file is then loaded
into the database using DB2 LOAD. Using the LOAD option
requires the BL_REMOTE_FILE directory to have enough space to
store the entire load dataset. It also requires the directory defined by
BL_REMOTE_FILE be accessible to the DB2 server instance. This
means it is on the same machine as DB2, NFS mounted or
otherwise accessible as a file system. This can be an issue if you
are loading large sets of data.

New in DB2 version 8.1 and SAS System 9 is support for DB2 CLI
LOAD. CLI LOAD uses the same high performance LOAD interface
but allows applications to send the data directly to the database
without having to create a temporary load file. CLI LOAD saves
processing time because it does not have to create a temporary file
and eliminates the need for temporary file system space. CLI LOAD
also allows data to be loaded from a remote system. To enable the
CLI LOAD feature using SAS set the BL_LOAD_MODE=CLILOAD
DATA step option instead of BL_REMOTE_FILE (Code Example:
10).

We ran performance comparisons between the different load options
to give you an idea of the performance differences. This test
executes a DATA step that loads 223,000 rows into a single
database table.

/* Method: Import */
data HSET(BULKLOAD=YES);

<…DATA step processing …>
run;

Code Example: 8

/* Method: Load */
data HSET(BULKLOAD=YES
 BL_REMOTE_FILE="/tmp”);

<…DATA step processing …>
run;

Code Example: 9

/* Method: CLI Load */
data HSET(BULKLOAD=YES
 BL_METHOD=CLILOAD);

<…DATA step processing …>
run;

Code Example: 10

Load Method Time

(seconds)
Import
(Code Example: 8)

76.69

Load
(Code Example: 9)

55.93

CLI LOAD
(Code Example: 10)

49.04

As you can see there is a 36% performance gain over import by
using CLI LOAD. All of these load options require that the table does
not exist before the load.

CREATING TABLES

You can create database tables using SAS/ACCESS.
SAS/ACCESS actually creates DB2 tables for you automatically like
it does a SAS dataset. When SAS automatically creates a database
table using the default options it uses three DB2 data types double,
varchar and date. If you would like the table created with different
data types use the DBTYPE= dataset option. In this example the
SERIALNO and PUMA columns are set to DB2 data types when the
table is created.

data census.results1
(dbtype=(SERIALNO=’bigint’ PUMA=’char(25)’));
 set census.source1;
 where state = ‘01’;
Run;

Code Example: 11

To set any DB2 specific table creation options you should use the
CREATE_TABLE_OPTS libname option. CREATE_TABLE_OPTS
appends whatever you include to the end of the create table
statement. Let’s take a look at an example. The following code
creates a table that contains all the rows from source1 where the
state is ‘01’.

data census.results1;
 set census.source1;
 where state = ‘01’;
Run;

Code Example: 12

If this table is being created in a partitioned database you could
specify the partitioning key by adding:

data census.results1

(DBCREATE_TABLE_OPTS=’PARTITIONING
KEY(SERIALNO)’;

 set census.source1;
 where state = ‘01’;
Run;

Code Example: 13

To create the results1 table SAS generates the create table syntax
and adds the DBCREATE_TABLE_OPTS at the end of the
statement.

CREATE TABLE RESULTS1
(SERIALNO double, PUMA varchar(20),[column
list…])
PARTITIONING KEY(SERIALNO);

Code Example: 14

The table results1 is created with the data partitioned across nodes
by serialno.

RETRIEVING THE DATA INTO SAS

SAS/ACCESS provides different ways to retrieve data from your
DB2 database. You can control access to partitioned tables, use
multiple SAS threads to scan the database and utilize CLI multi-row
fetch capabilities. SAS version 9 and DB2 version 8.1 have brought
great improvements in the read performance of SAS applications.

SUGI 28 Data Warehousing and Enterprise Solutions

6

The SAS threaded read is new to SAS System 9. Threaded read
allows SAS to extract data from DB2 in parallel; this can be helpful
with a large or partitioned database. In DB2 version 8.1 the impact of
multi-row fetch has been improved, increasing read performance up
to 45% over a single-row fetch.

WHAT ARE THE PERFORMANCE IMPACTS OF THESE
OPERATIONS?

In this section we test three different SAS tuning parameters which
can improve the speed of data transfer from DB2 to SAS:
READBUFF, DBSLICEPARM and DBSLICE. READBUFF,
DBSLICEPARM and DBSLICE correspond to the DB2 functions
multi-row fetch, mod() and nodenumber respectively.

Functionality Match-up

SAS Function DB2 Function
READBUFF Multi-Row Fetch
DBSLICEPARM mod()
DBSLICE nodenumber

To examine the performance differences between these options we
ran frequency statistics against a database table and measured the
execution time. To generate frequency information SAS needs to
see all the rows in the table. Since the math is not complex this a
good test of I/O performance between SAS and DB2.

The first test was run using the default read options: single-row fetch
and non-threaded read:

libname census db2 db=census user=db2inst1
using=password;

proc freq data=census.hrecs_db

table state tenure yrbuilt yrmoved
msapmsa;

run;

Code Example: 15

This test ran in 72.02 seconds. Using the default options SAS
executes a single thread that reads one row at a time through the
DB2 CLI interface. This is not efficient when you are returning large
result sets. Transfer speed can be greatly improved by sending
multiple rows in each request. DB2 supports this type of batch
request in CLI using the multi-row fetch feature. SAS/ACCESS
supports the DB2 multi-row fetch feature via the libname READBUFF
option. We added READBUFF=100 to the libname statement and ran
the test again.

libname census db2 db=census user=db2inst1
using=password READBUFF=100;

Code Example: 16

This time the frequency procedure took only 43.33 seconds to
process. That is a 40% performance improvement over a single row
fetch. We tested this procedure with some other values of
READBUFF and found the optimal value is somewhere between 200
and 250 which allowed the query to run in 40.97 seconds. So from
here on we leave READBUFF at 200 and test the new multi-threaded
read options.

READBUFF Testing

3000

4000

5000

6000

None 100 200 300

READBUFF Values

R
o

w
s/

S
ec

Row s/Sec

SAS version 9 introduces a new data retrieval performance option
called threaded read. The threaded read option works on the divide
and conquer theory. It breaks up a single select statement into
multiple statements allowing parallel fetches of the data from DB2
into SAS. SAS/ACCESS for DB2 supports the DBSLICEPARM and
DBSLICE modes for threaded reads.

On a single-partition DB2 system you can use the DBSLICE or
DBSLICEPARM option. We started by testing the automatic threaded
read mode by setting DBSLICEPARM. When you use this option,
SAS/ACCESS automatically determines a partitioning scheme for
reading the data using the mod() database function. We tested the
freq procedure using dbsliceparm=(all,2) which creates two
threads that read data from the database.

proc freq data=census.hrecs_db
(dbsliceparm=(all,2));
 table state tenure yrbuilt
yrmoved msapmsa;
run;

Code Example: 17

DBSLICEPARM=(ALL,2)

ALL: Makes all read-only procedures eligible for
threaded reads.

2: Starts two read threads.

When this statement is executed SAS creates two queries to access
the database:

Generated Query 1:

SELECT "STATE", "TENURE", "YRBUILT",
"YRMOVED", "MSAPMSA"
FROM HRECS_DB
WHERE
({FN MOD({FN ABS("SERIALNO")},2)}=0
OR "SERIALNO" IS NULL) FOR READ ONLY

Generated Query 2

SELECT "STATE", "TENURE", "YRBUILT",
"YRMOVED", "MSAPMSA"
FROM HRECS_DB
WHERE
({FN MOD({FN ABS("SERIALNO")},2)}=1
OR "SERIALNO" IS NULL) FOR READ ONLY

SUGI 28 Data Warehousing and Enterprise Solutions

7

Code Example: 18

In this example SAS automatically generates two queries the first
with the mod(serialno,2)=0 predicate and the second with the
mod(serialno,2)=1 predicate. These queries are executed in
parallel. In this test the same statement ran in 36.56 seconds, 10%
faster than using READBUFF alone. If you are running a partitioned
database you can use the DBSLICE threaded read mode.

We set up a two partition database and tested the DBSLICE
threaded read mode. When the DBSLICE option is specified SAS
opens a connection to each partition and retrieves the data directly
from the specified node. To do this you need to tell SAS what
partitions you would like to access and the partitioning key.

We configured a two-logical partition DB2 database on the test
server and added the DBSLICE syntax in place of DBSLICEPARM in
the SAS script.

proc freq data=census.hrecs_db
 (DBSLICE=("NODENUMBER(serialno)=0"
"NODENUMBER(serialno)=1"));
 table state tenure yrbuilt yrmoved
msapmsa;
run;

Code Example: 19

This time the query ran in 35.13 seconds, 14% faster than the
READBUFF option alone. As you can see, these threaded read
options help improve data extraction performance. This was a small
two-partition system. As the database size or number of partitions
increases, these threaded read options should help even more.

Data read performance is most important when using SAS to extract
data from DB2 but it is also important to tune your applications that
add rows to the database.

We started the insert evaluation by testing different values of the
DBCOMMIT DATA step parameter. DBCOMMIT is the number of
rows inserted into the database between transaction commits. To
understand how this works lets look at what is happening behind the
scenes when inserting a row into the database.

To insert one row into a database table there are many operations
that take place behind the scenes to complete the transaction. For
this example we will focus on the transaction logging requirements of
an SQL insert operation to demonstrate the impact of the SAS
DBCOMMIT option.

The DB2 database transaction log records all modifications to the
database to ensure data integrity. During an insert operation there
are multiple records recorded to the database transaction log. For an
insert the first record is the insert itself followed by the commit
record that tells the database the transaction is complete. Both of
these actions are recorded in the database transaction log in
separate log records. For example, if you were to insert 1000 rows
with each row in it’s own transaction it would require 2000 (1000
insert and 1000 commit) transaction log records. If all these inserts
were in a single transaction you could insert all the rows with 1001
transaction log records (1000 insert and 1 commit).

You can see that there is a considerable difference in the amount of
work required to insert the same 1000 rows depending on how the
transaction is structured. By this logic, if you are doing an insert, you
want to set DBCOMMIT to the total number of rows you need to
insert. This requires the least amount of work, right? Not quite, as
with any performance tuning there are tradeoffs.

For example, if you were to insert 1 million rows in a single
transaction, this will work but it requires a lock to be held for each
row. As the numbers of locks required increases the lock
management overhead increases. With this in mind you need to tune
the value of DBCOMMIT to be large enough to limit commit
processing but not so large that you encounter long transaction
issues (locking, running out of log space etc). To test insert
performance we used a DATA step that processed the hrecs table
and created a new hrecs_temp table containing all the rows where
state = ‘01’.

libname census db2 db=census user=db2inst1
using=password;

data census.hrecs_temp (DBCOMMIT=10000);
 set census.hrecs;
 where state = '01';
run;

Code Example: 20

The default for DBCOMMIT is 1000. We started testing with 10 just
to see the impact.

DBCOMMIT Time (seconds)
10 277.80
100 70.61
1,000 (default) 34.29
5,000 29.5
10,000 29.64

As you can see the default works pretty well. In some situations, like
this one, larger values of DBCOMMIT can yield up to a 16%
performance improvement. We found in this test that the best value
was between 1,000 and 5,000 rows per commit.

Performance Tip

Start with DBCOMMIT between 1,000 and 5,000
and tune from there.

We can also see that at some point, increasing the value of
DBCOMMIT no longer improves performance (Compare 5,000 to
10,000).

DBCOMMIT Testing

0
1000
2000
3000
4000

10 10
0

10
00

50
00

10
00

0

DBCOMMIT Value

R
o

w
s/

S
ec

Row s/Sec

In fact, if the dataset were large enough we would probably see a
decrease in performance with extremely high values of DBCOMMIT.
Now that we have DBCOMMIT tuned we take a look at another
parameter that impacts insert performance INSERTBUFF.

SUGI 28 Data Warehousing and Enterprise Solutions

8

INSERTBUFF is another tunable parameter that affects the
performance of SAS inserting rows into a DB2 table. INSERTBUFF
is a CLI parameter similar to READBUFF but for inserts. It tells the
CLI client how many rows at a time to send to the DB2 server. To
enable insert buffering you need to set two libname options:
INSERT_SQL and INSERTBUFF.

libname census db2 db=census user=db2inst1
using=password;

data census.hrecs_temp (INSERT_SQL=’Yes’
INSERTBUFF=10 DBCOMMIT=5000);
 set census.hrecs;
 where state = '01';
run;

Code Example: 21

INSERT_SQL must be set to “Yes”. INSERTBUFF is an integer
ranging from 1 to 2,147,483,648. We did some testing with different
values of INSERTBUFF to see what impact it would have on this
same DATA step.

INSERTBUFF Time (seconds)
1 34.25
10 30.14
25 29.56
50 29.62
100 30.68

Increasing the value of INSERTBUFF from 1 to 10 improved the
performance 12%. Increasing the value over 10 did not have a
significant impact on performance.

THE DBA CORNER

HOW DOES SAS USE MY DATABASE?

As DB2 DBAs we see SAS as a consumer of database resources.
In this section we highlight a few topics of interest to the DB2 DBA.
We look at the way SAS connects to the database and uses other
database resources as well as some debugging tips for SAS
applications in a SAS/ACCESS for DB2 environment.

CONNECTIONS

Each SAS client may open multiple connections to the database
server. When a SAS session is started a single data connection is
opened to the database. This connection is used for most
communication from SAS to DB2. If the SAS application requires a
list of DB2 tables, executing proc datasets for example, a
second, utility connection is created. This utility connection is
designed to allow SAS to collect this information without interfering
with the original data connection. It also allows these utility
operations to exist in a separate transactional context minimizing the
locks required on the database catalogs, for example. Once opened
these two connections remain active until the SAS session is
completed or the libname reference or database connection (opened
using connect to…) is explicitly closed. Other connections may be
opened automatically during a SAS session. These connections are
closed when the operation for which they were opened is completed.
For example, if you read from one table and write to a new table,
SAS opens two connections: The original connection to retrieve the
data and a connection to write the data into the new table. In this
example the connection used to write the data will be closed when
that DATA step is completed.

RESOURCE CONSUMPTION

As DBAs we are always interested in understanding what impact an
application is going to have on the database. SAS workloads can
vary greatly depending on your environment but here are a few
places to start evaluating your situation:

• Each SAS user is the equivalent of a single database
Decision Support (DS) user. Tune the same for SAS as
you would for an equivalent number of generic DS users.

• Tune to the workload. Just like any other DS application,

understanding the customer requirements can help you to
improve system performance. For example, if there is a
demand for quarterly or monthly data, using a
Multidimensional Clustering (MDC) table for the data may
be appropriate.

• SAS is a decision support tool; if you need data from an

operational data store consider the impact on your other
applications. To offload some of the work you may
consider creating a data mart to provide data to your SAS
customers.

• In most environments the SAS server is located on a

separate system from your database. Business analysis
often requires many rows to be retrieved from the
database. Plan to provide the fastest network connection
possible between these systems to provide the greatest
throughput.

RULES OF THUMB
• Try to pass as much where clause and join processing as

you can to DB2.

• Return only the rows and columns you need. Whenever

possible do not use a “select * …” from your SAS
application. Provide a list of the necessary columns, using
keep=(var1, var2…), for example. To limit the
number of rows returned include any appropriate filters in
the where clause.

• Provide Multidimensional Clustering (MDC) tables or

Automatic Summary Tables (AST) where appropriate to
provide precompiled results for faster data access.

• Use SAS threaded read (DBSLICEPARM, DBSLICE)

and multi-row fetch (READBUFF) operations whenever
possible.

• When loading data with SAS use the Bulk Load method

CLI Load.

DEBUGGING

If you want to see what SQL commands SAS is passing to the
database, enable the sastrace option. For example, here is the
syntax to trace SAS/ACCESS SQL calls to DB2:

options sastrace “,,,d” sastraceloc=saslog;

Applying a “d” in the fourth column of the sastrace options tells SAS
to report SQL sent to the database. For example this SAS
procedure:

SUGI 28 Data Warehousing and Enterprise Solutions

9

data a.emp3;
set emp;

run;

Is logged as (the SQL commands are highlighted):

 455 1356046811 rtmdoit 0 DATASTEP
DB2_5: Prepared: 456 1356046811 rtmdoit 0
DATASTEP
SELECT * FROM EMP3 WHERE 0=1 FOR READ ONLY
457 1356046811 rtmdoit 0
DATASTEP
 458 1356046811 rtmdoit 0 DATASTEP
DB2: COMMIT performed on connection 1. 459
1356046812 rtmdoit 0 DATASTEP
DB2: AUTOCOMMIT is NO for connection 2 460
1356046812 rtmdoit 0 DATASTEP
 461 1356046812 rtmdoit 0 DATASTEP
DB2_6: Executed: 462 1356046812 rtmdoit 0
DATASTEP
CREATE TABLE EMP3 (name VARCHAR(5),dept
VARCHAR(3),age FLOAT) 463
1356046812 rtmdoit 0 DATASTEP
 464 1356046812 rtmdoit 0 DATASTEP
DB2: COMMIT performed on connection 2. 465
1356046812 rtmdoit 0 DATASTEP
 466 1356046812 rtmdoit 0 DATASTEP
DB2_7: Prepared: 467 1356046812 rtmdoit 0
DATASTEP
INSERT INTO EMP3 (name,dept,age) VALUES (?
, ? , ?) 468 1356046813
rtmdoit 0 DATASTEP
 469 1356046813 rtmdoit 0 DATASTEP
 470 1356046813 rtmdoit 0 DATASTEP
DB2_8: Executed: 471 1356046813 rtmdoit 0
DATASTEP
Prepared statement DB2_7 472 1356046813
rtmdoit 0 DATASTEP
 473 1356046813 rtmdoit 0 DATASTEP
NOTE: There were 1 observations read from the
data set WORK.EMP.
DB2: COMMIT performed on connection 2. 474
1356046813 rtmdoit 0 DATASTEP
NOTE: The data set A.EMP3 has 1 observations
and 3 variables.
DB2: COMMIT performed on connection 2. 475
1356046813 rtmdoit 0 DATASTEP
DB2: COMMIT performed on connection 2. 476
1356046813 rtmdoit 0 DATASTEP

Code Example: 22

Hint: To find SQL information search
the log for “DB2_”.

Sastrace displays the processing details of the SAS script. The log
includes the exact SQL commands that are submitted to the
database. In the example above we executed a DATA step that SAS
translated it into three SQL statements

SELECT * FROM EMP3 WHERE 0=1 FOR READ ONLY;

CREATE TABLE EMP3

(name VARCHAR(5),
dept VARCHAR(3),
age FLOAT);

INSERT INTO EMP3 (name,dept,age)
VALUES (? , ? , ?);

Code Example: 23

You can see what SAS/ACCESS is requesting on the database by
enabling CLI trace. The DB2 CLI trace feature is useful for
debugging SAS/ACCESS interaction with DB2. There are two ways
to enable CLI trace: the DB2 Command Line Processor (CLP)
command, “update cli cfg” or edit the
sqllib/cfg/db2cli.ini file. To enable tracing using
“update cli” enter

db2 UPDATE CLI config FOR common USING
TraceFileName /tmp/mytracefile

Then

db2 UPDATE CLI config FOR common
USING trace 1

If you choose to edit the db2cli.ini file directly add trace and
TraceFileName in the common section

[COMMON]
trace=1
TraceFileName=/tmp/mytracefile

When you enable CLI tracing DB2 begins tracing all CLI statements
executed on the server. DB2 will continue to trace CLI commands
until you disable CLI tracing by setting trace to 0. Be careful, if this
is a busy server you could collect huge amounts of output. It is best
to run CLI trace on a test server running a single SAS session, if
possible.

The saslog and DB2 log (sqllib/db2dump/sqdb2diag.log) are also
useful places to look for information when you are troubleshooting.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact
the author at:

Scott Fadden
IBM
315 SW 5th Ave
Floor 10
Portland, Oregon 97204
(503) 525-7584
sfadden@us.ibm.com
www.ibm.com

SAS, SAS/ACCCESS and all other SAS Institute Inc. product or
service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA
registration.

DB2 is a registered trademark of IBM in the USA and other
countries.

SUGI 28 Data Warehousing and Enterprise Solutions

10

Other brand and product names are trademarks of their respective
companies.

SUGI 28 Data Warehousing and Enterprise Solutions

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

