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ABSTRACT 
 
Some firms have looked at SAS/Warehouse 
Administrator and decided to continue developing 
applications in the traditional way.  Why?  Reasons 
include high investment cost, difficulty of 
incorporating legacy code, and the awkwardness of 
using terminal emulators when running 
SAS/Warehouse Administrator on a server located 
in a “glass room” or other remote location. 
  
However, if one can overcome these objections and 
let SAS/Warehouse Administrator write the required 
SAS code, the advantages of metadata take over.  
These advantages include easier maintenance and 
more rapid development of new data warehouse 
applications.  Another advantage includes quickly 
determining the impact of changing columns and 
rows.  Last, SAS/Warehouse Administrator 
automatically publishes HTML documentation and 
process diagrams.   
 
This paper will illustrate how a data mart is modeled 
in SAS/Warehouse Administrator, drawing upon a 
prototype that the author recently created.  The 
example will highlight how conditional processing 
can be accommodated by CASE expressions.  A 
technique to work around the limitations of terminal 
emulation will also be demonstrated.   
 
 
WHAT IS DATA WAREHOUSING ? 
 
Before one can make the case for selecting 
SAS/Warehouse Administrator as the tool to use 
when creating a data warehouse or data mart, it is 
important to define what data warehousing means.   
 
The author defines data warehousing as the process 
of making operational data available to decision 
support applications, such as SAS.  Data 
warehousing involves extracting, transforming, 
joining, sorting, summarizing, and consolidating 
operational data. 
 
 
INTRODUCTION TO DATA WAREHOUSING 
 
The skeptical reader might ask, “Why undertake this 
activity?”  To address the concerns of such readers, 
one might offer the following common computer 
programming [SAS] activities that are performed in 
the cause of data warehousing: 

• Raw operational data is filtered into a sub-set to 
remove columns and rows that are not required 
for typical decision support activities.  Filtering 
raw data down to the essential items can 
improve the speed of subsequent decision 
support activities. 

 
• “Header” and “Detail” files need to be joined.  In 

operational data files, common information such 
as a client’s physical address is removed from 
the transactional detail files and placed into a 
header file to save disk space.  To analyze the 
transactions, it is often necessary to re-join the 
header information with the transactions in the 
detail file.   

 
• Tables need to be sorted and indexed.  

Operational data is often sorted by the keys 
necessary to quickly find a customer 
transaction. It would be a lucky accident to find 
that this order is also the best sort sequence to 
support decision support reporting.  Because 
tables often need to be accessed by multiple 
keys, it is often necessary to create multiple 
indexes to promote efficient information 
retrieval.   

 
• Tables need to be summarized.  Decision 

support activities often require summarized 
data, collapsed by the analysis categories.  
Rather than going through the effort and 
expense of summarizing the detailed 
information each time a report is run, a better 
strategy is to pre-summarize the detailed tables 
once into the summaries that may be needed.   

 
• OLAP.  When multiple summaries of the same 

detail information is required, disk space and 
retrieval performance can often be improved by 
storing the summarized information in OLAP 
(On-Line Analytical Processing) structures, often 
known as “cubes”. 

 
• Standardize code schemes.  As an example, a 

customer’s sex might be denoted in one table as 
either “M” or “F”.  In another table, the 
information may be stored as 0 or 1.  To 
facilitate enterprise-wide reporting, it is desirable 
to transform disparate code schemes to 
common ones.   

 
• Cleanse “dirty” data.  Consider the previous 

example.  If the customer (patient) is coded as 
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“M” (male) and pregnant, then it appears that an 
effort to correct this and other logical 
inconsistencies should be mounted.  Edit-check 
programs can identify elements that require 
cleansing and can perhaps correct some errors 
without manual intervention.   

 
• Standardize physical file structures.  Some data 

may be in flat files, some in SAS data sets, and 
others in third-party data base management 
systems (DBMSs) such as Oracle, Microsoft 
SQL Server, and DB2.  To facilitate reporting, 
the data should be transformed into tables of 
same physical format.  If the reporting is to be 
done with SAS tools, then the data should be 
stored in SAS tables, MDDB cubes, or views 
created by SAS/ACCESS.   

 
 
BENEFITS OF DATA WAREHOUSING 
 
At this point, the skeptical reader might exclaim, “I 
can see the value of data warehousing but how do I 
justify the cost and effort to my management?”   
Here are some common benefits that data 
warehousing can yield: 
 
• Reduce intra-organization discrepancies.  When 

each department or division undertakes the 
preparation of raw data for reporting, different 
assumptions and techniques can yield different 
results.  This can lead to more effort being spent 
on reconciling the differences than on what the 
results mean.   

 
• Reproducible results.   Operational data often 

changes.  If one runs the same report later, the 
results may differ from the first run.  When the 
data source for a report is a data warehouse or 
mart table that represents a “snapshot” taken at 
a specified interval, the report’s users can count 
on consistent results.   

 
• Document data repository.  Much effort is 

consumed in answering questions such as 
“Where does that number come from?” and 
“What does that code represent?”  One common 
benefit of data warehousing is that the process 
and resulting data stores of the data warehouse 
and marts are documented for the benefit of the 
potential users. 

 
• Improve performance of operational systems.  

Transaction systems are often designed to give 
best performance when a few records are to be 
retrieved.  By contrast, decision support 
applications typically read entire tables.  When 

transaction and decision support systems share 
the same data sources, performance of the 
transaction systems can suffer.  A better 
solution may be to create or update data 
warehouse and mart tables from the operational 
systems during off-peak hours. 

 
• Save human resources.  In organizations where 

data warehousing is not well organized, multiple 
persons often duplicate efforts to transform 
operational data for reporting.  Some of these 
persons may not have the appropriate skills or 
tools to perform this task.  One of the benefits to 
data warehousing is to save human effort and 
costs in creating and maintaining data 
warehouses and data marts.   

 
 
WHY SAS/WAREHOUSE ADMINISTRATOR ? 
 
Some readers might exclaim at this point, “Yes, we 
see the value to data warehousing.  But why should 
we try to convince management to license yet 
another SAS product?  Can’t we do data 
warehousing with Base SAS?”  Of course 
organizations can create data warehouses and data 
marts with Base SAS and other tools.   
 
However, it is this author’s proposition that when 
one considers the total cost and effort required to 
create, maintain, schedule, and document data 
warehouses and data marts, licensing 
SAS/Warehouse Administrator may be the least 
expensive alternative.  Consider the following 
benefits that may be gained by using this product: 
 
• “point and click” interface 
 
• ability to accumulate, maintain, and report on 

the warehouse’s metadata 
 
• control processes across multiple platforms 
 
• changes are automatically posted to generated 

SAS code 
 
• process flowcharts can be generated 
 
• HTML document can be generated and posted 

to a web server 
 
• Dependent job scheduling and load-sharing can 

be accomplished via the LSF JobScheduler 
 
• Process libraries and other features are 

available to structure the warehousing process 
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WHAT IS METADATA AND WHY IS IT NEEDED ? 
 
Metadata is information that defines sources, data 
stores, code libraries, and other resources.  It is 
used to write the actual SAS code.  Technical 
metadata defines where the data lives and how to 
access it.  Business metadata defines what the data 
means and who is responsible for it.   
 
Perhaps the major advantage of using 
SAS/Warehouse Administrator is that it facilitates 
the creation and maintenance of metadata.  
Consider the following example.  It is decided to 
change the logic used to transform a column of 
intermediate information?  How do we find all of the 
places affected by the change and make sure that 
they use the new logic?   
 
Without a tool such as SAS/Warehouse 
Administrator, making changes to an existing data 
warehouse or mart can be a nightmare.  Metadata 
gives us a single point of control, even when 
warehousing occurs across multiple computer 
platforms.   
 
SAS/Warehouse Administrator facilitates changes to 
programs that create and maintain data warehouses 
and marts because it actually generates the SAS 
code to be run.  It also provides tools to search, 
report, and document the metadata.  Finally, 
SAS/Warehouse Administrator can import and 
export metadata to other applications.  This opens 
the possibility of using additional tools to create and 
maintain a data warehouse or mart.   
 
DATA WAREHOUSING VOCABULARY 
 
The term “data warehouse” is commonly used to 
describe all outputs of data warehousing.  However, 
it is the author’s conclusion that many repositories 
created by data warehousing are more accurately 
described as “data marts”.  Data marts are 
distinguished from data warehouses in that they are 
organized to support a specialized, specific 
application and a finite set of reports. 
 
The acronym “ETL” stands for extract, transform, 
and load.  ETL processes represent the major 
activity associated with data warehousing and the 
use of SAS/Warehouse Administrator.   
 
The SAS web site lists other data warehousing 
vocabulary that may be helpful to the uninitiated.  It 
can be found on the SAS web site, in the Data 
Warehousing Community at: 
 
http://www.sas.com/rnd/warehousing/glossary.html 

Another feature of the Data Warehousing 
Community section of the SAS web site that is well 
worth exploring is the “Getting Started with 
SAS/Warehouse Administrator”.  Also supplied with 
the software, it can be found at: 
 
http://www.sas.com/service/tutorials/v8/warehous/index.html 
 
This tutorial is invaluable to those attempting to set 
up their first project in SAS/Warehouse 
Administrator.   
 
 
STARTING SAS/WAREHOUSE ADMINISTRATOR 
 
The current version of SAS/Warehouse 
Administrator is run within a SAS session as a SAS 
desktop application.  The SAS desktop is a 
graphical interface to tools and files.  It is supplied 
with Base SAS.  However, the SAS desktop is more 
commonly used to access features of SAS/EIS and 
other SAS products.   
 
To start SAS/Warehouse Administrator, one can  
select -> Solutions -> Development and 
Programming -> Warehouse Administrator.  
However, the author finds it more convenient to 
issue the command “DW” from the command bar.  
This will open up a window similar to the one shown 
in Figure 1: 
 

 
 

Figure 1 
 
To open an existing warehouse environment, one 
merely double-clicks on the icon representing that 
environment.  To create a new warehouse 
environment, right-click on white space within the 
SAS/Warehouse Administrator window.   
 
 
Environment Hierarchy 
 
One of the confusing aspects of SAS/Warehouse 
Administrator that confronts new users is the 
hierarchy of warehouse elements.  The hierarchy is 
illustrated in Figure 2, shown on the next page.  The 
following limited hierarchy description may help 
those beginning to use this product. 
 
Within a typical warehouse environment, there are 
usually Data Warehouses and Operational Data 
Definition Groups.  Data Warehouses are further 
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organized into Subjects, which may contain Data 
Groups, Infomarts, and OLAP Groups.  Operational 
Data Groups Definition Groups include one or more 
Operational Data Definitions.  Figure 2 shows the 
hierarchy of groups and data stores when our 
“demo” environment is opened: 

 
 

Figure 2 
 
This demo environment was created to illustrate 
how data from telephone calls made to customer 
service centers in multiple countries might be 
periodically consolidated and summarized.   
 
In our demo environment, we see the HASUG demo 
warehouse environment icon at the top of the 
hierarchy.  Next in the hierarchy, we see 
HASUG_demo data warehouse icon and the 
Country Input ODD (Operational Data Definition) 
Group icon. 
 
Under the HASUG_demo data warehouse icon is 
the Call Center Data Group, the Temporary Files 
data group, and the MDDBs subject.  In Figure 2, 
the icons for the history tables and input errors 
tables are shown under the Call Center Data Group.   
 
Under the MDDBs subject icon, there is a single 
MDDBS OLAP group.  Under this group are the 
three MDDB OLAP cubes created by the demo 
environment. 

The Count Input ODD Group defines all of the input 
sources to our warehouse.  In addition to the files 
received periodically from three countries (France, 
Italy, and Netherlands), the Call Center History table 
also appears.  This icon refers to the same physical 
table that the Call Center History data table.  This is 
because the inputs to warehouse processes must be 
defined as ODDs and output tables must defined as 
data tables.   
 
 
GLOBAL METADATA 
 
In our demo, there is just a single warehouse.  
However, in practice, we may wish to create 
multiple warehouses.  It would be a nuisance at best 
if we had to define global parameters for each 
warehouse.  So SAS/Warehouse Administrator 
allows us to define in one place all of the metadata 
that may be shared across multiple warehouses in 
the same environment.   
 
To get to the global metadata in SAS/Warehouse 
Administrator, one selects -> File -> Setup…  A 
window similar to the one illustrated in Figure 3 
appears: 
 

 
 

Figure 3 
 
One can create, examine update, and delete 
different categories of metadata by selecting a radio 
station in the Type window, selecting the metadata 
item in the window below it (SAS Libraries as shown 
in Figure 3), and clicking on the Add, Edit, or 
Remove buttons.   
 
SAS library metadata is largely self-explanatory.  
However, one of the author’s tricks is to use 
SAS/ACCESS Libname engines to define data 
sources in DBMSs as SAS libraries rather than 
DBMS Connections.  This trick seems to work better 
when the DBMS options are embedded in the Path 
text box instead of the Options text box on the 
Details tab.    
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In our demo, only the computer on which 
SAS/Warehouse Administrator is defined as a host 
computer.  However, in a distributed computing 
environment, remote hosts can be defined to and 
can be controlled by SAS/Warehouse Administrator.   
 
All elements of a data warehouse have an owner 
and an administrator as attributes.  The contact 
information for all individuals who serve in these 
roles is defined in a single place.  This makes 
updating this information much more convenient. 
 
Last, the information about the scheduling servers is 
entered as global metadata.  SAS/Warehouse 
Administrator allows users to define CRON, AT, and 
null scheduling servers.  The null scheduling server 
writes a file that is used by the LSF JobScheduler 
and other third-party scheduling servers.   
 
 
TYPICAL SAS LIBRARIES 
 
The libraries (librefs) that should be entered into the 
SAS/Warehouse Administrator will vary with each 
project.  Some of the libraries defined as global 
metadata will be assigned by SAS/Warehouse 
Administrator.  Other libraries may be assigned 
externally, either when the SAS session is started, 
or as part of user-written SAS code.   
 
The following libraries are typically assigned as part 
of a warehouse environment’s metadata: 
 
• DBMS engine librefs 
• Detail Data 
• Source Code 
• Metalib (_DWMD) 
• Process Library (_SASWA) 
• Warehouses  
 
The _DWMD and _SASWA are required by 
SAS/Warehouse Administrator.  The requirements 
of add-in tools make it a good idea to assign the 
_SASWA externally through the autoexec.sas 
program.   
 
The author often defines the Work libref as part of 
the metadata so it can be used when defining 
temporary tables that should disappear when the 
SAS session ends.  If MDDBs are to be used 
outside of SAS/Warehouse Administrator, such as 
with AppDev Studio or WebHound software, 
then it may be useful to define an MDDB libref in 
the global metadata and assign it through the 
autoexec.sas program.   
 
 

OPERATIONAL DATA DEFINITIONS 
 
Operational Data Definitions are metadata records 
that provide the instructions to access data sources.  
Figure 4 illustrates an Operational Data Definition 
Properties Window. 
 

 
 

Figure 4 
 
The General tab allows one to enter a description 
and indicate the table’s owner and administrator.  
The Data tab allows one to specify the host, library, 
and table name.  The Columns tab, illustrated in 
Figure 5, shows the type information about the 
table’s variables (columns) that one would see in a 
“contents” listing. 
 

 
 

Figure 5 
 
Two tips can be shared about the Columns tab.  It 
can take a bit of time to key in the required 
information for a new table.  If a similar table 
already exists or can be generated by running some 
legacy SAS code, it is much faster and easier to 
“import” the required information from that table.  
Also, after moving rows up or down with the 
arrowhead buttons at the bottom of the window, 
right-click on a row and select Save Order to retain 
the new order after the properties window is closed.   
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At this point, it might be a good idea to define any 
additional ODDs required.  After all the ODDs have 
been defined, the next logical step is usually to 
define the required output structures.   
 
These include data tables, MDDB cubes, and other 
output files.  These typically include flat files, 
comma-separated value (CSV), and various Output 
Delivery System (ODS) destinations.  Then it is time 
to start defining the transformation of input tables 
into target outputs from the Process Editor.  
 
 
USING THE PROCESS EDITOR 
 
The Process Editor is used to manage jobs, job 
flows, and process flows.  These properties must be 
defined in order for SAS/Warehouse Administrator 
to generate the source code for the transformation 
jobs.   
 
There are multiple ways to bring up the Process 
Editor.  One method is to select Tools -> Process 
Editor from the pull-down menus.  Figure 6 shows a 
sample Process Editor window. 
  

 
 

Figure 6 
 
The Process Editor window consists of two panes.  
In Figure 6, the left pane shows the Job Hierarchy 
after it has been partly expanded.  Under the jobs 
are the output tables and files produced by the jobs.   
 
The right pane shows the part of process flow for the 
job, output table, or file currently selected in the Job 
Hierarchy pane.  The direction of flow is from 
bottom to top, left to right.   
 
The author recommends adding the process 
output(s) first.  This is done by right-clicking in the 
Process View pane and selecting Add Output 

Table…  This brings up the selector shown in 
Figure 7.  Select the category of output table to be 
added and click on the Show button to display the 
output tables available to be added. 
 

 
 

Figure 7 
 
Next, for each output table, define the input data 
source(s).  This is done from a selector similar to 
the one shown in Figure 7.  Again the same physical 
table can be an output table and an input table 
within the same process flow.   
 
MAPPING STEPS 
 
Experienced SAS users may ask, “How do I 
transform the information contained in an ODD into 
an output table or MDDB cube?”  “How do I embed 
these transformations within the metadata?”   This is 
done through mapping steps.   
 
As one might anticipate, mapping steps define how 
columns and rows from the input tables are mapped 
to output tables or MDDB cubes.  Mapping steps 
can specify one-to-one, one-to-many, or many-to-
one mappings.  SAS/Warehouse Administrator uses 
the metadata in the mapping steps to generate 
PROC SQL code to effect the transformations.  
However, add-in-tools can be used to customize the 
behavior of the mapping steps.   
 
An example of the dialog box that sets the mapping 
step is shown in Figure 8 on the following page.  
The contents of the General tab are displayed.  On 
this tab, and through SAS/Warehouse Administrator, 
one can add annotations by clicking on the Notes 
button, which brings up a notepad window.  The 
notes are saved in a catalog source entry.   
 
An example of the Source Code tab is shown in 
Figure 9 on the following page.  This tab allows one 
to select whether the SAS transformation code is 
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generated by SAS/Warehouse Administrator or is 
written by the user.   
 

 
 

Figure 8 
 

 
 

Figure 9 
 
In mapping step illustrated in Figure 9, a two input 
table SQL join has been specified.   When an add-
in-tool has been specified, the Source Code Library 
selector will show “Process Library – SASWA” and 
the Catalog Entry Name selector will show the name 
of the catalog entry of the add-in tool.   
 
The Execution tab specifies the computer on which 
the process is to execute.  The Output Data tab 
specifies the location of the output table.  An 
example of the Column Mapping table is shown in 
Figure 10.   
 
One advanced use of the Output Data tab is to 
specify which rows are written to each of multiple 
output tables.  This is done by first selecting the 
appropriate target table by clicking on the down 
arrow.  Then while the desired target table is 
displayed, click on the Generation Options button.  
Then on the Row Selection tab, specify “Row 
Selection Conditions” or “User Defined Statements” 
to direct the rows to be output to the target table.   
 

Mapping can be either 1 to 1 (1:1) or derived.  If any 
of the column names are shared between the input 
and output tables, clicking on the button labeled 
“1 to 1 Mappings…” automatically sets mapping 
relationships for those columns whose names 
match.   
 
While mapping relationships are often 1:1, SAS 
veterans will want to know how they can embed 
conditional mapping assignments.  Those familiar 
with SQL (Structured Query Language) will 
recognize the solution, which are CASE 
expressions.   
 

 
 

Figure 10 
 
Case expressions follow the format CASE… 
WHEN… ELSE… END.  Consider the following 
example used to flag missing values. 
 
case when picktwo_fr.= '' then 'X' else '' end 

 
One derived mapping requirement that tested the 
author’s creativity was how to code a “left” join.  Left 
joins are often required when updating a master 
table.  They are required because we only want to 
replace (update) information in the master table 
when a valid transaction has occurred.    
 
The trick to accomplishing this feat is the Coalesce 
function.  Consider the following example: 
 

coalesce(fr.city, history.city) 

 
This expression replaces the value in the master 
(history) table for city with the value of city in the 
transaction (country) table only when city is a non-
missing value in the transaction table (and when the 
WHERE keys match).   
 
As noted earlier, one of the advantages of using 
SAS/Warehouse Administrator is that many 
expressions can be built using a “point and click” 
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interface in lieu of typing, illustrated by Figure 11 on 
the following page. 
 

 
 

Figure 11 
 
While almost everyone appreciates the reduction in 
typing offered by “point and click” interfaces, the 
reduction of the potential for typing errors is 
probably their greatest advantage.   
 
The last feature of mapping steps is the 
specification of filtering on the WHERE tab.  
WHERE expressions may also be built in a “point 
and click” fashion in the Expression Builder.  Use 
the WHERE tab to specify the merge keys when 
constructing a join process and to set filtering when 
sub-setting a table.   
 
 
LOAD STEPS 
 
Load steps are where one can place user-written 
code to override WA-generated SAS load code.  To 
specify a load step, right-click on a output table or 
file in the Process View pane in the Process Editor 
and select Edit Load Step.  The dialog box similar to 
the one illustrated in Figure 12 should appear. 
 

 
 

Figure 12 
 
Select “User Written” and specify the catalog source 
entry that contains the load code.  Click on the Edit 
button to create or modify the load step. 
 
While there are many valid occasions where a user-
written load step must be specified, there is a 

temptation to supply user-written load steps when 
the same result could be accomplished by the 
appropriate specifications to the warehouse 
metadata.  This temptation should be strenuously 
avoided!   
 
User-written code becomes a “black box”.  If other 
parts of the warehouse are changed or updated, the 
user-written load step will not automatically reflect 
those changes.  The goal in using SAS/Warehouse 
Administrator is to model the process within the 
metadata and let the SAS/Warehouse Administrator 
generate the SAS code.   
 
One last tip about load steps is not to forget to 
specify the host on which the load step is to run.  It 
is very easy to forget this requirement. 
 
 
EXECUTING THE JOB 
 
There are two different ways to directly execute jobs 
entered into SAS/Warehouse Administrator.  From 
the Job Hierarchy pane in the Process Editor, right-
click on the job to be run and select Run…  A dialog 
box similar to Figure 13 will appear. 
 

 
 

Figure 13 
 
Click on the Edit button to generate the SAS code 
for the job in a Preview window and to edit it before 
submitting it.  This is similar to selecting 
“View Code >” when right-clicking on a job.   
 
Click on the Save button to generate the code 
associated with a job and save it to a catalog source 
entry or external file.  This feature is very useful 
when the job is large and static.  Once generated, 
an external job scheduler can launch the job.  The 
Submit button causes a job to be generated and 
executed directly.   
 
To schedule a job through SAS/Warehouse 
Administrator, it is necessary to set up a scheduling 
server as part of the global metadata and a job 
information library.  If only a single host computer is 
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used to run jobs, an ordinary libref allocation for the 
job information library will suffice.  However, if 
multiple hosts run jobs, then SAS/SHARE should be 
used.   
 
SCHEDULING JOBS 
 
SAS/Warehouse Administrator can natively send 
jobs to CRON (Unix hosts) and AT (Windows hosts).  
The null scheduler generates a “stub” file that 
external job schedulers can read for scheduling 
information.  To use the null scheduler, right-click on 
a job and select Properties.  On the Date/Time tab, 
as illustrated by Figure 14, select when the job is to 
be run.  Then on the Server tab, specify the null 
scheduler server.   
 

 
 

Figure 14 
 
One external scheduler that takes advantage of the 
null scheduler feature via an add-in tool is the LSF 
JobScheduler.  LSF JobScheduler is a product of 
Platform Computing.  An OEM license for LSF 
JobScheduler is supplied as part of SAS/Warehouse 
Administrator.  To use LSF JobScheduler, it is 
necessary to request software keys from Platform 
Computing.  LSF JobScheduler should be 
considered when dependent job scheduling or load-
sharing is desired.   
 
ADD-IN TOOLS 
 
Add-in tools are programs written by the SAS 
warehouse developers (or users) to extend the 
functionality of SAS/Warehouse Administrator.  
They are installed on top of SAS/Warehouse 
Administrator and used to help load external data, 
model processes, schedule jobs, and to analyze, 
search, and report on metadata. 
 
Add-in tools are usually accessed by right-clicking 
on an item in the Process Editor and selecting Add-
Ins…  The link to the information on add-in tools on 
the SAS web site is: 

http://www.sas.com/rnd/warehousing/wa/addins.html 
 
The list of add-in tools changes periodically and new 
versions of existing tools are often available for 
download.  The application interface to 
SAS/Warehouse Administrator is documented so 
one can create their own add-in tools if they can 
code in SAS Component Language (SCL).   
 
It is the author’s understanding the add-in tools will 
disappear in a future version of SAS/Warehouse 
Administrator although the functionality that they 
provide should remain.   
 
 
GENERATING HTML DOCUMENTATION 
 
One of the author’s favorite add-in tools is the one 
that automatically generates HTML documentation.  
To bring up this particular add-in, get out of the 
Process Editor and select Tools -> Add-Ins -> 
Publish metadata to HTML page from the pull-down 
menu.  A dialog box similar to the one illustrated in 
Figure 15 should appear. 
 

 
 

Figure 15 
 
The resulting HTML generates a header and table of 
contents similar to what is shown in Figure 16. 

 
Figure 16 
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SEARCHING AND MIGRATING METADATA 
 
One of the big advantages of entering all of the 
warehouse details as metadata is that one can 
search it.  From the pull-down menu, select Tools -> 
Search Metadata…  The dialog box similar to 
Figure 17 should appear. 
 

 
 

Figure 17 
 
Enter the search string.  Because the search is 
conducted on metadata, it can be restricted by 
warehouse element type.  To go directly to an item 
shown in the results window, just double-click on the 
Warehouse Element Type.   
 
Another useful tool is the Metadata Copy wizard.  If 
one needs to move metadata to a different directory 
path, go to the SAS/Warehouse Administrator 
desktop.  Right-click on the warehouse environment 
to be copied and select Copy…  Follow the 
instructions given by the wizard.   
 
One of the author’s tricks when modeling 
warehouses on his laptop is to map a project to the 
same drive letter and path as is used on the client’s 
host computer.  To migrate the warehouse to host 
computer, he merely copies the metadata physical 
directory to a CD-ROM or Zip disk and then copies it 
to the host computer.   
 
 
FUTURE CHANGES AND ENHANCEMENTS 
 
At SUGI 27, the author visited with some of SAS 
staff responsible for future versions of 
SAS/Warehouse Administrator.  Among some of the 
improvements anticipated for future releases were: 
 
• Multiple-table join tools 
• Enhancements to take advantage of 

multi-threading in SAS Version 9 
• Integration of the File Import Wizard 
 
Also on the horizon was a new version of the 
product called Data Builder.  Data Builder provides 

a Java interface so it will no longer be necessary to 
be sitting in front of the host computer or to operate 
it via terminal emulation software.  The Java 
interface will communicate to a metadata repository 
and server.   
 
There will be a one-way conversion tool to migrate 
SAS/Warehouse Administrator metadata into Data 
Builder.  However, existing SAS/Warehouse 
Administrator users can continue to use the product 
as in the past. 
 
CONCLUSION 
 
The author hopes this paper has explained his 
passion for using SAS/Warehouse Administrator 
over traditional methods for creating and 
maintaining data warehouses and marts.  He also 
hopes that this paper clearly illustrated how data 
warehouses are modeled in SAS/Warehouse 
Administrator and highlighted how metadata is 
created and managed.  Last, the author hopes that 
the tips passed by this paper will reduce the learning 
curve by other users of this product.   
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