
Paper 155-28

Understanding SAS/Warehouse Administrator

Michael Davis, Bassett Consulting Services, North Haven, Connecticut

1

ABSTRACT

Some firms have looked at SAS/Warehouse
Administrator and decided to continue developing
applications in the traditional way. Why? Reasons
include high investment cost, difficulty of
incorporating legacy code, and the awkwardness of
using terminal emulators when running
SAS/Warehouse Administrator on a server located
in a “glass room” or other remote location.

However, if one can overcome these objections and
let SAS/Warehouse Administrator write the required
SAS code, the advantages of metadata take over.
These advantages include easier maintenance and
more rapid development of new data warehouse
applications. Another advantage includes quickly
determining the impact of changing columns and
rows. Last, SAS/Warehouse Administrator
automatically publishes HTML documentation and
process diagrams.

This paper will illustrate how a data mart is modeled
in SAS/Warehouse Administrator, drawing upon a
prototype that the author recently created. The
example will highlight how conditional processing
can be accommodated by CASE expressions. A
technique to work around the limitations of terminal
emulation will also be demonstrated.

WHAT IS DATA WAREHOUSING ?

Before one can make the case for selecting
SAS/Warehouse Administrator as the tool to use
when creating a data warehouse or data mart, it is
important to define what data warehousing means.

The author defines data warehousing as the process
of making operational data available to decision
support applications, such as SAS. Data
warehousing involves extracting, transforming,
joining, sorting, summarizing, and consolidating
operational data.

INTRODUCTION TO DATA WAREHOUSING

The skeptical reader might ask, “Why undertake this
activity?” To address the concerns of such readers,
one might offer the following common computer
programming [SAS] activities that are performed in
the cause of data warehousing:

• Raw operational data is filtered into a sub-set to
remove columns and rows that are not required
for typical decision support activities. Filtering
raw data down to the essential items can
improve the speed of subsequent decision
support activities.

• “Header” and “Detail” files need to be joined. In

operational data files, common information such
as a client’s physical address is removed from
the transactional detail files and placed into a
header file to save disk space. To analyze the
transactions, it is often necessary to re-join the
header information with the transactions in the
detail file.

• Tables need to be sorted and indexed.

Operational data is often sorted by the keys
necessary to quickly find a customer
transaction. It would be a lucky accident to find
that this order is also the best sort sequence to
support decision support reporting. Because
tables often need to be accessed by multiple
keys, it is often necessary to create multiple
indexes to promote efficient information
retrieval.

• Tables need to be summarized. Decision

support activities often require summarized
data, collapsed by the analysis categories.
Rather than going through the effort and
expense of summarizing the detailed
information each time a report is run, a better
strategy is to pre-summarize the detailed tables
once into the summaries that may be needed.

• OLAP. When multiple summaries of the same

detail information is required, disk space and
retrieval performance can often be improved by
storing the summarized information in OLAP
(On-Line Analytical Processing) structures, often
known as “cubes”.

• Standardize code schemes. As an example, a

customer’s sex might be denoted in one table as
either “M” or “F”. In another table, the
information may be stored as 0 or 1. To
facilitate enterprise-wide reporting, it is desirable
to transform disparate code schemes to
common ones.

• Cleanse “dirty” data. Consider the previous

example. If the customer (patient) is coded as

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

2

“M” (male) and pregnant, then it appears that an
effort to correct this and other logical
inconsistencies should be mounted. Edit-check
programs can identify elements that require
cleansing and can perhaps correct some errors
without manual intervention.

• Standardize physical file structures. Some data

may be in flat files, some in SAS data sets, and
others in third-party data base management
systems (DBMSs) such as Oracle, Microsoft
SQL Server, and DB2. To facilitate reporting,
the data should be transformed into tables of
same physical format. If the reporting is to be
done with SAS tools, then the data should be
stored in SAS tables, MDDB cubes, or views
created by SAS/ACCESS.

BENEFITS OF DATA WAREHOUSING

At this point, the skeptical reader might exclaim, “I
can see the value of data warehousing but how do I
justify the cost and effort to my management?”
Here are some common benefits that data
warehousing can yield:

• Reduce intra-organization discrepancies. When

each department or division undertakes the
preparation of raw data for reporting, different
assumptions and techniques can yield different
results. This can lead to more effort being spent
on reconciling the differences than on what the
results mean.

• Reproducible results. Operational data often

changes. If one runs the same report later, the
results may differ from the first run. When the
data source for a report is a data warehouse or
mart table that represents a “snapshot” taken at
a specified interval, the report’s users can count
on consistent results.

• Document data repository. Much effort is

consumed in answering questions such as
“Where does that number come from?” and
“What does that code represent?” One common
benefit of data warehousing is that the process
and resulting data stores of the data warehouse
and marts are documented for the benefit of the
potential users.

• Improve performance of operational systems.

Transaction systems are often designed to give
best performance when a few records are to be
retrieved. By contrast, decision support
applications typically read entire tables. When

transaction and decision support systems share
the same data sources, performance of the
transaction systems can suffer. A better
solution may be to create or update data
warehouse and mart tables from the operational
systems during off-peak hours.

• Save human resources. In organizations where

data warehousing is not well organized, multiple
persons often duplicate efforts to transform
operational data for reporting. Some of these
persons may not have the appropriate skills or
tools to perform this task. One of the benefits to
data warehousing is to save human effort and
costs in creating and maintaining data
warehouses and data marts.

WHY SAS/WAREHOUSE ADMINISTRATOR ?

Some readers might exclaim at this point, “Yes, we
see the value to data warehousing. But why should
we try to convince management to license yet
another SAS product? Can’t we do data
warehousing with Base SAS?” Of course
organizations can create data warehouses and data
marts with Base SAS and other tools.

However, it is this author’s proposition that when
one considers the total cost and effort required to
create, maintain, schedule, and document data
warehouses and data marts, licensing
SAS/Warehouse Administrator may be the least
expensive alternative. Consider the following
benefits that may be gained by using this product:

• “point and click” interface

• ability to accumulate, maintain, and report on

the warehouse’s metadata

• control processes across multiple platforms

• changes are automatically posted to generated

SAS code

• process flowcharts can be generated

• HTML document can be generated and posted

to a web server

• Dependent job scheduling and load-sharing can

be accomplished via the LSF JobScheduler

• Process libraries and other features are

available to structure the warehousing process

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

3

WHAT IS METADATA AND WHY IS IT NEEDED ?

Metadata is information that defines sources, data
stores, code libraries, and other resources. It is
used to write the actual SAS code. Technical
metadata defines where the data lives and how to
access it. Business metadata defines what the data
means and who is responsible for it.

Perhaps the major advantage of using
SAS/Warehouse Administrator is that it facilitates
the creation and maintenance of metadata.
Consider the following example. It is decided to
change the logic used to transform a column of
intermediate information? How do we find all of the
places affected by the change and make sure that
they use the new logic?

Without a tool such as SAS/Warehouse
Administrator, making changes to an existing data
warehouse or mart can be a nightmare. Metadata
gives us a single point of control, even when
warehousing occurs across multiple computer
platforms.

SAS/Warehouse Administrator facilitates changes to
programs that create and maintain data warehouses
and marts because it actually generates the SAS
code to be run. It also provides tools to search,
report, and document the metadata. Finally,
SAS/Warehouse Administrator can import and
export metadata to other applications. This opens
the possibility of using additional tools to create and
maintain a data warehouse or mart.

DATA WAREHOUSING VOCABULARY

The term “data warehouse” is commonly used to
describe all outputs of data warehousing. However,
it is the author’s conclusion that many repositories
created by data warehousing are more accurately
described as “data marts”. Data marts are
distinguished from data warehouses in that they are
organized to support a specialized, specific
application and a finite set of reports.

The acronym “ETL” stands for extract, transform,
and load. ETL processes represent the major
activity associated with data warehousing and the
use of SAS/Warehouse Administrator.

The SAS web site lists other data warehousing
vocabulary that may be helpful to the uninitiated. It
can be found on the SAS web site, in the Data
Warehousing Community at:

http://www.sas.com/rnd/warehousing/glossary.html

Another feature of the Data Warehousing
Community section of the SAS web site that is well
worth exploring is the “Getting Started with
SAS/Warehouse Administrator”. Also supplied with
the software, it can be found at:

http://www.sas.com/service/tutorials/v8/warehous/index.html

This tutorial is invaluable to those attempting to set
up their first project in SAS/Warehouse
Administrator.

STARTING SAS/WAREHOUSE ADMINISTRATOR

The current version of SAS/Warehouse
Administrator is run within a SAS session as a SAS
desktop application. The SAS desktop is a
graphical interface to tools and files. It is supplied
with Base SAS. However, the SAS desktop is more
commonly used to access features of SAS/EIS and
other SAS products.

To start SAS/Warehouse Administrator, one can
select -> Solutions -> Development and
Programming -> Warehouse Administrator.
However, the author finds it more convenient to
issue the command “DW” from the command bar.
This will open up a window similar to the one shown
in Figure 1:

Figure 1

To open an existing warehouse environment, one
merely double-clicks on the icon representing that
environment. To create a new warehouse
environment, right-click on white space within the
SAS/Warehouse Administrator window.

Environment Hierarchy

One of the confusing aspects of SAS/Warehouse
Administrator that confronts new users is the
hierarchy of warehouse elements. The hierarchy is
illustrated in Figure 2, shown on the next page. The
following limited hierarchy description may help
those beginning to use this product.

Within a typical warehouse environment, there are
usually Data Warehouses and Operational Data
Definition Groups. Data Warehouses are further

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

4

organized into Subjects, which may contain Data
Groups, Infomarts, and OLAP Groups. Operational
Data Groups Definition Groups include one or more
Operational Data Definitions. Figure 2 shows the
hierarchy of groups and data stores when our
“demo” environment is opened:

Figure 2

This demo environment was created to illustrate
how data from telephone calls made to customer
service centers in multiple countries might be
periodically consolidated and summarized.

In our demo environment, we see the HASUG demo
warehouse environment icon at the top of the
hierarchy. Next in the hierarchy, we see
HASUG_demo data warehouse icon and the
Country Input ODD (Operational Data Definition)
Group icon.

Under the HASUG_demo data warehouse icon is
the Call Center Data Group, the Temporary Files
data group, and the MDDBs subject. In Figure 2,
the icons for the history tables and input errors
tables are shown under the Call Center Data Group.

Under the MDDBs subject icon, there is a single
MDDBS OLAP group. Under this group are the
three MDDB OLAP cubes created by the demo
environment.

The Count Input ODD Group defines all of the input
sources to our warehouse. In addition to the files
received periodically from three countries (France,
Italy, and Netherlands), the Call Center History table
also appears. This icon refers to the same physical
table that the Call Center History data table. This is
because the inputs to warehouse processes must be
defined as ODDs and output tables must defined as
data tables.

GLOBAL METADATA

In our demo, there is just a single warehouse.
However, in practice, we may wish to create
multiple warehouses. It would be a nuisance at best
if we had to define global parameters for each
warehouse. So SAS/Warehouse Administrator
allows us to define in one place all of the metadata
that may be shared across multiple warehouses in
the same environment.

To get to the global metadata in SAS/Warehouse
Administrator, one selects -> File -> Setup… A
window similar to the one illustrated in Figure 3
appears:

Figure 3

One can create, examine update, and delete
different categories of metadata by selecting a radio
station in the Type window, selecting the metadata
item in the window below it (SAS Libraries as shown
in Figure 3), and clicking on the Add, Edit, or
Remove buttons.

SAS library metadata is largely self-explanatory.
However, one of the author’s tricks is to use
SAS/ACCESS Libname engines to define data
sources in DBMSs as SAS libraries rather than
DBMS Connections. This trick seems to work better
when the DBMS options are embedded in the Path
text box instead of the Options text box on the
Details tab.

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

5

In our demo, only the computer on which
SAS/Warehouse Administrator is defined as a host
computer. However, in a distributed computing
environment, remote hosts can be defined to and
can be controlled by SAS/Warehouse Administrator.

All elements of a data warehouse have an owner
and an administrator as attributes. The contact
information for all individuals who serve in these
roles is defined in a single place. This makes
updating this information much more convenient.

Last, the information about the scheduling servers is
entered as global metadata. SAS/Warehouse
Administrator allows users to define CRON, AT, and
null scheduling servers. The null scheduling server
writes a file that is used by the LSF JobScheduler
and other third-party scheduling servers.

TYPICAL SAS LIBRARIES

The libraries (librefs) that should be entered into the
SAS/Warehouse Administrator will vary with each
project. Some of the libraries defined as global
metadata will be assigned by SAS/Warehouse
Administrator. Other libraries may be assigned
externally, either when the SAS session is started,
or as part of user-written SAS code.

The following libraries are typically assigned as part
of a warehouse environment’s metadata:

• DBMS engine librefs
• Detail Data
• Source Code
• Metalib (_DWMD)
• Process Library (_SASWA)
• Warehouses

The _DWMD and _SASWA are required by
SAS/Warehouse Administrator. The requirements
of add-in tools make it a good idea to assign the
_SASWA externally through the autoexec.sas
program.

The author often defines the Work libref as part of
the metadata so it can be used when defining
temporary tables that should disappear when the
SAS session ends. If MDDBs are to be used
outside of SAS/Warehouse Administrator, such as
with AppDev Studio or WebHound software,
then it may be useful to define an MDDB libref in
the global metadata and assign it through the
autoexec.sas program.

OPERATIONAL DATA DEFINITIONS

Operational Data Definitions are metadata records
that provide the instructions to access data sources.
Figure 4 illustrates an Operational Data Definition
Properties Window.

Figure 4

The General tab allows one to enter a description
and indicate the table’s owner and administrator.
The Data tab allows one to specify the host, library,
and table name. The Columns tab, illustrated in
Figure 5, shows the type information about the
table’s variables (columns) that one would see in a
“contents” listing.

Figure 5

Two tips can be shared about the Columns tab. It
can take a bit of time to key in the required
information for a new table. If a similar table
already exists or can be generated by running some
legacy SAS code, it is much faster and easier to
“import” the required information from that table.
Also, after moving rows up or down with the
arrowhead buttons at the bottom of the window,
right-click on a row and select Save Order to retain
the new order after the properties window is closed.

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

6

At this point, it might be a good idea to define any
additional ODDs required. After all the ODDs have
been defined, the next logical step is usually to
define the required output structures.

These include data tables, MDDB cubes, and other
output files. These typically include flat files,
comma-separated value (CSV), and various Output
Delivery System (ODS) destinations. Then it is time
to start defining the transformation of input tables
into target outputs from the Process Editor.

USING THE PROCESS EDITOR

The Process Editor is used to manage jobs, job
flows, and process flows. These properties must be
defined in order for SAS/Warehouse Administrator
to generate the source code for the transformation
jobs.

There are multiple ways to bring up the Process
Editor. One method is to select Tools -> Process
Editor from the pull-down menus. Figure 6 shows a
sample Process Editor window.

Figure 6

The Process Editor window consists of two panes.
In Figure 6, the left pane shows the Job Hierarchy
after it has been partly expanded. Under the jobs
are the output tables and files produced by the jobs.

The right pane shows the part of process flow for the
job, output table, or file currently selected in the Job
Hierarchy pane. The direction of flow is from
bottom to top, left to right.

The author recommends adding the process
output(s) first. This is done by right-clicking in the
Process View pane and selecting Add Output

Table… This brings up the selector shown in
Figure 7. Select the category of output table to be
added and click on the Show button to display the
output tables available to be added.

Figure 7

Next, for each output table, define the input data
source(s). This is done from a selector similar to
the one shown in Figure 7. Again the same physical
table can be an output table and an input table
within the same process flow.

MAPPING STEPS

Experienced SAS users may ask, “How do I
transform the information contained in an ODD into
an output table or MDDB cube?” “How do I embed
these transformations within the metadata?” This is
done through mapping steps.

As one might anticipate, mapping steps define how
columns and rows from the input tables are mapped
to output tables or MDDB cubes. Mapping steps
can specify one-to-one, one-to-many, or many-to-
one mappings. SAS/Warehouse Administrator uses
the metadata in the mapping steps to generate
PROC SQL code to effect the transformations.
However, add-in-tools can be used to customize the
behavior of the mapping steps.

An example of the dialog box that sets the mapping
step is shown in Figure 8 on the following page.
The contents of the General tab are displayed. On
this tab, and through SAS/Warehouse Administrator,
one can add annotations by clicking on the Notes
button, which brings up a notepad window. The
notes are saved in a catalog source entry.

An example of the Source Code tab is shown in
Figure 9 on the following page. This tab allows one
to select whether the SAS transformation code is

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

7

generated by SAS/Warehouse Administrator or is
written by the user.

Figure 8

Figure 9

In mapping step illustrated in Figure 9, a two input
table SQL join has been specified. When an add-
in-tool has been specified, the Source Code Library
selector will show “Process Library – SASWA” and
the Catalog Entry Name selector will show the name
of the catalog entry of the add-in tool.

The Execution tab specifies the computer on which
the process is to execute. The Output Data tab
specifies the location of the output table. An
example of the Column Mapping table is shown in
Figure 10.

One advanced use of the Output Data tab is to
specify which rows are written to each of multiple
output tables. This is done by first selecting the
appropriate target table by clicking on the down
arrow. Then while the desired target table is
displayed, click on the Generation Options button.
Then on the Row Selection tab, specify “Row
Selection Conditions” or “User Defined Statements”
to direct the rows to be output to the target table.

Mapping can be either 1 to 1 (1:1) or derived. If any
of the column names are shared between the input
and output tables, clicking on the button labeled
“1 to 1 Mappings…” automatically sets mapping
relationships for those columns whose names
match.

While mapping relationships are often 1:1, SAS
veterans will want to know how they can embed
conditional mapping assignments. Those familiar
with SQL (Structured Query Language) will
recognize the solution, which are CASE
expressions.

Figure 10

Case expressions follow the format CASE…
WHEN… ELSE… END. Consider the following
example used to flag missing values.

case when picktwo_fr.= '' then 'X' else '' end

One derived mapping requirement that tested the
author’s creativity was how to code a “left” join. Left
joins are often required when updating a master
table. They are required because we only want to
replace (update) information in the master table
when a valid transaction has occurred.

The trick to accomplishing this feat is the Coalesce
function. Consider the following example:

coalesce(fr.city, history.city)

This expression replaces the value in the master
(history) table for city with the value of city in the
transaction (country) table only when city is a non-
missing value in the transaction table (and when the
WHERE keys match).

As noted earlier, one of the advantages of using
SAS/Warehouse Administrator is that many
expressions can be built using a “point and click”

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

8

interface in lieu of typing, illustrated by Figure 11 on
the following page.

Figure 11

While almost everyone appreciates the reduction in
typing offered by “point and click” interfaces, the
reduction of the potential for typing errors is
probably their greatest advantage.

The last feature of mapping steps is the
specification of filtering on the WHERE tab.
WHERE expressions may also be built in a “point
and click” fashion in the Expression Builder. Use
the WHERE tab to specify the merge keys when
constructing a join process and to set filtering when
sub-setting a table.

LOAD STEPS

Load steps are where one can place user-written
code to override WA-generated SAS load code. To
specify a load step, right-click on a output table or
file in the Process View pane in the Process Editor
and select Edit Load Step. The dialog box similar to
the one illustrated in Figure 12 should appear.

Figure 12

Select “User Written” and specify the catalog source
entry that contains the load code. Click on the Edit
button to create or modify the load step.

While there are many valid occasions where a user-
written load step must be specified, there is a

temptation to supply user-written load steps when
the same result could be accomplished by the
appropriate specifications to the warehouse
metadata. This temptation should be strenuously
avoided!

User-written code becomes a “black box”. If other
parts of the warehouse are changed or updated, the
user-written load step will not automatically reflect
those changes. The goal in using SAS/Warehouse
Administrator is to model the process within the
metadata and let the SAS/Warehouse Administrator
generate the SAS code.

One last tip about load steps is not to forget to
specify the host on which the load step is to run. It
is very easy to forget this requirement.

EXECUTING THE JOB

There are two different ways to directly execute jobs
entered into SAS/Warehouse Administrator. From
the Job Hierarchy pane in the Process Editor, right-
click on the job to be run and select Run… A dialog
box similar to Figure 13 will appear.

Figure 13

Click on the Edit button to generate the SAS code
for the job in a Preview window and to edit it before
submitting it. This is similar to selecting
“View Code >” when right-clicking on a job.

Click on the Save button to generate the code
associated with a job and save it to a catalog source
entry or external file. This feature is very useful
when the job is large and static. Once generated,
an external job scheduler can launch the job. The
Submit button causes a job to be generated and
executed directly.

To schedule a job through SAS/Warehouse
Administrator, it is necessary to set up a scheduling
server as part of the global metadata and a job
information library. If only a single host computer is

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

9

used to run jobs, an ordinary libref allocation for the
job information library will suffice. However, if
multiple hosts run jobs, then SAS/SHARE should be
used.

SCHEDULING JOBS

SAS/Warehouse Administrator can natively send
jobs to CRON (Unix hosts) and AT (Windows hosts).
The null scheduler generates a “stub” file that
external job schedulers can read for scheduling
information. To use the null scheduler, right-click on
a job and select Properties. On the Date/Time tab,
as illustrated by Figure 14, select when the job is to
be run. Then on the Server tab, specify the null
scheduler server.

Figure 14

One external scheduler that takes advantage of the
null scheduler feature via an add-in tool is the LSF
JobScheduler. LSF JobScheduler is a product of
Platform Computing. An OEM license for LSF
JobScheduler is supplied as part of SAS/Warehouse
Administrator. To use LSF JobScheduler, it is
necessary to request software keys from Platform
Computing. LSF JobScheduler should be
considered when dependent job scheduling or load-
sharing is desired.

ADD-IN TOOLS

Add-in tools are programs written by the SAS
warehouse developers (or users) to extend the
functionality of SAS/Warehouse Administrator.
They are installed on top of SAS/Warehouse
Administrator and used to help load external data,
model processes, schedule jobs, and to analyze,
search, and report on metadata.

Add-in tools are usually accessed by right-clicking
on an item in the Process Editor and selecting Add-
Ins… The link to the information on add-in tools on
the SAS web site is:

http://www.sas.com/rnd/warehousing/wa/addins.html

The list of add-in tools changes periodically and new
versions of existing tools are often available for
download. The application interface to
SAS/Warehouse Administrator is documented so
one can create their own add-in tools if they can
code in SAS Component Language (SCL).

It is the author’s understanding the add-in tools will
disappear in a future version of SAS/Warehouse
Administrator although the functionality that they
provide should remain.

GENERATING HTML DOCUMENTATION

One of the author’s favorite add-in tools is the one
that automatically generates HTML documentation.
To bring up this particular add-in, get out of the
Process Editor and select Tools -> Add-Ins ->
Publish metadata to HTML page from the pull-down
menu. A dialog box similar to the one illustrated in
Figure 15 should appear.

Figure 15

The resulting HTML generates a header and table of
contents similar to what is shown in Figure 16.

Figure 16

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

10

SEARCHING AND MIGRATING METADATA

One of the big advantages of entering all of the
warehouse details as metadata is that one can
search it. From the pull-down menu, select Tools ->
Search Metadata… The dialog box similar to
Figure 17 should appear.

Figure 17

Enter the search string. Because the search is
conducted on metadata, it can be restricted by
warehouse element type. To go directly to an item
shown in the results window, just double-click on the
Warehouse Element Type.

Another useful tool is the Metadata Copy wizard. If
one needs to move metadata to a different directory
path, go to the SAS/Warehouse Administrator
desktop. Right-click on the warehouse environment
to be copied and select Copy… Follow the
instructions given by the wizard.

One of the author’s tricks when modeling
warehouses on his laptop is to map a project to the
same drive letter and path as is used on the client’s
host computer. To migrate the warehouse to host
computer, he merely copies the metadata physical
directory to a CD-ROM or Zip disk and then copies it
to the host computer.

FUTURE CHANGES AND ENHANCEMENTS

At SUGI 27, the author visited with some of SAS
staff responsible for future versions of
SAS/Warehouse Administrator. Among some of the
improvements anticipated for future releases were:

• Multiple-table join tools
• Enhancements to take advantage of

multi-threading in SAS Version 9
• Integration of the File Import Wizard

Also on the horizon was a new version of the
product called Data Builder. Data Builder provides

a Java interface so it will no longer be necessary to
be sitting in front of the host computer or to operate
it via terminal emulation software. The Java
interface will communicate to a metadata repository
and server.

There will be a one-way conversion tool to migrate
SAS/Warehouse Administrator metadata into Data
Builder. However, existing SAS/Warehouse
Administrator users can continue to use the product
as in the past.

CONCLUSION

The author hopes this paper has explained his
passion for using SAS/Warehouse Administrator
over traditional methods for creating and
maintaining data warehouses and marts. He also
hopes that this paper clearly illustrated how data
warehouses are modeled in SAS/Warehouse
Administrator and highlighted how metadata is
created and managed. Last, the author hopes that
the tips passed by this paper will reduce the learning
curve by other users of this product.

ACKNOWLEDGEMENTS

AppDev Studio, SAS, SAS/ACCESS, SAS/SHARE,
SAS/Warehouse Administrator, and WebHound are
trademarks of SAS Institute Inc. Microsoft, SQL
Server, and Microsoft Windows are trademarks of
the Microsoft Corporation. Oracle is a registered
trademark of Oracle Corporation.

The author would like to thank the Hartford Area
SAS User Group Steering Committee, which
encouraged him to prepare this paper. Special
thanks also go to Jon Schiltz and Tina Hobbs, SAS
Technical Support Department, and to the author’s
colleagues at The Nash Engineering Company and
Pfizer Inc.

CONTACT INFORMATION

The author may be contacted as follows:

Michael L. Davis
Bassett Consulting Services, Inc.
10 Pleasant Drive
North Haven CT 06473-3712
E-Mail: michael@bassettconsulting.com
Web: http://www.bassettconsulting.com
Telephone: (203) 562-0640
Facsimile: (203) 498-1414

SUGI 28 Hands-on WorkshopsSUGI 28 Data Warehousing and Enterprise Solutions

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

