

Paper 147-28

It's All in the Presentation
Jeff Cartier, SAS Institute Inc., Cary, NC

ABSTRACT
In Version 9, ODS styles have been extended to include elements
that affect graphical procedure output as well as tabular output.
This paper will show how to easy it is to apply any of the new
supplied style definitions to SAS/GRAPH, SAS/STAT, SAS/ETS
output. You will also see how SAS/GRAPH coding and supplied
STATGRAPH templates interact with information supplied by a
style. By adjusting source programs, you can control exactly the
level of style information that contributes to final output.

INTRODUCTION
Today, most SAS users are taking advantage of ODS to produce
documents containing output from SAS procedures. Users are
aware of the existence of ODS styles and how a style can be
specified to alter the fonts, colors, and other appearance aspects
of their tabular output. The good news is that in Version 9,
graphical output can now be formatted in a similar fashion with an
ODS style.

ODS AND SAS/GRAPH OUTPUT
Many of the new styles offer graphical visual effects such color
gradients, transparency, texture maps, shadow effects and anti-
aliasing on text. To see style effects for SAS/GRAPH procedures,
the graphics device driver must be set to ACTIVEX, JAVA,
ACTXIMG, or JAVAIMG (the first two drivers create interactive
controls and the last two drivers create images). The following
program illustrates how easy it is to use a style with ODS and how
the style produces a coordinated visual effect on both graphical
and tabular output:

ods html file='class.html' style=default;
goptions reset=all border device=actximg;
proc gchart data=sashelp.class;
 vbar3d sex / sumvar=height type=mean
 outside=mean;
run; quit;
proc means data=sashelp.class maxdec=1
 nonobs mean;
 class sex;
 var height;
run;
ods html close;

Figure 1: Graph – DEFAULT Style

 Figure 2: Table – DEFAULT Style

By changing only the value for the STYLE= option, you can create
an entirely different appearance for both the graph and table. This
is the result for STYLE=RSVP:

Figure 3: Graph – RSVP Style

Figure 4: Table – RSVP Style

Notice that the SAS/GRAPH coding did not include any options
that specified fonts or colors to be used. This information was all
derived from the style definition. If such options were present, the
colors or fonts in the program would be used in place of the
corresponding style values.

The example program use ODS HTML destination, but it could
have used any other ODS destination just as well, such as PDF,
RTF, or PRINTER. All produce different output files with the same
visual content.

If you have not used any of the four client drivers before, here are
some other things you should know:

SUGI 28 Data Presentation

2

• A client technology (ActiveX or Java) is used to render the
graph, not SAS/Graph. Consequently, there may be some
differences in appearance between client and non-client
drivers.

• The only supported procedures are GCHART, GPLOT,
GMAP, GCONTOUR, and G3D. You can also use
SAS/GRAPH annotation coding with these procedures.

• Titles and footnotes appear but are not part of the graph.
• The interactive client drivers (ACTIVEX and JAVA) enable

you to change the graphical display via context menus.
• There are some differences in which SAS/GRAPH options

are supported by Java and ActiveX technologies. See the
SAS/GRAPH documentation for details.

It should be emphasized that when using SAS/GRAPH
procedures with ODS, a SAS/GRAPH device driver is always in
effect. You must use one of the “client drivers” (ACTIVEX, JAVA,
ACTXIMG, or JAVAIMG) to see the effect of a style. All other
drivers are “style unaware”. For example, if you were to use any
of the GIF family of drivers, the ODS output would look like just
like the GRSEG output, but as a GIF image. Its visual appearance
is affected only by SAS/GRAPH coding and not by any ODS style.

Figure 5: Graph using DEVICE=GIF260

ODS AND STATGRAPH OUTPUT
In Version 9, SAS/STAT and SAS/ETS procedures can produce
graphs when used with ODS. Here is an example of using PROC
LIFETEST to produce a survival plot showing the Hall-Wellner
band.

ods html file='lifetest.html' style=mystyle;
ods graphics on;
proc lifetest data=mydata;
 time Months;
 survival confband=all plots=(hwb);
run;
ods graphics off;
ods html close;

Here are some things to know about the graphs produced by
SAS/STAT and SAS/ETS:
• Graphs are produced by entirely Java technology. They do

not require installation of SAS/GRAPH and do not support
any form of SAS/GRAPH coding, including device drivers.

• Graphs are not produced by default. You must enable /
disable graphics with the ODS GRAPHICS statement.

• Statistical procedures supply one or more ODS
STATGRAPH templates that specify a predefined graph.
You simply instruct the procedure which graphs to produce.

• The supplied STATGRAPH templates use ODS styles to set
colors, fonts, and as well as other appearance features such
as markers and line styles.

Figure 6: StatGraph - Custom Style

SUPPLIED STYLES
To view the supplied ODS styles, issue the ODSTEMPLATE
command from your Display Manager session. If you have not
created any of your own styles, you will see a single node for
SASHELP.TMPLMST under the TEMPLATES tree. Expand this
node to see all supplied template folders. Select STYLES to
display the contents of this folder. In addition to the 17 ODS styles
provided in Version 8, there are 16 new styles in Version 9:

Analysis Astronomy Banker BlockPrint
Curve Gears Education Electronics
Magnify Money RSVP Science
Sketch Statistical Torn Watercolor

Figure 7: Templates Window – Supplied Styles

SUGI 28 Data Presentation

3

ANATOMY OF AN ODS STYLE DEFINITION
An ODS style is defined by a SAS program. You can browse or
edit the source program for any style from the Templates window.
The code for defining styles is not complex but it can be lengthy.
To modify or create a style it is important to understand the
structure of a style program and how it can inherit information
from other styles.

TEMPLATE PROCEDURE
PROC TEMPLATE is used to create various kinds of template
stores. Examples of template stores are STYLE, TABLE, and
STATGRAPH. All ODS templates stores can be viewed from the
Template window. This paper will only deal with STYLE and
STATGRAPH template types.

The general form of a program that creates a style is this:

proc template;
 define style <directory.>styleName;
 parent = <directory.>parentStyle;

 replace elementName /
 attribute = value
 attribute = value
 ...
 ;

 style elementName <from parentElement> /
 attribute = value
 attribute = value
 ...
 ;
 end;
run;

The DEFINE statement creates a new template. STYLE is type of
template we are creating. The name of the style comes next.
Notice that the DEFINE statement requires an END statement.
For example, to define a style named MYCURVE:

define style styles.mycurve;
 /* sub-statements */

 end;

The sub-statements most commonly used within the DEFINE
STYLE block are STYLE, REPLACE, and PARENT.

STYLE STATEMENT
The STYLE statement defines a style element which is a named
set of logically-related style attributes. A style attribute is a
name-value pair. (ODS uses the terms element and attribute in
the same way markup languages like HTML and XML do.)
For example:

style Table /
 background = colors('tablebg')
 rules = ALL
 frame = BOX
 cellpadding = 5
 cellspacing = 5
 bordercolor = colors('tableborder')
 borderwidth = 2
;

Here the TABLE element is being defined. The forward slash
begins the declaration of its attributes. All the attribute names
used here are reserved and documented. The attributes RULES
and FRAME have only a few possible values which are also

reserved and documented. The syntax for assigning color values
will be explained shortly.
So far, this is pretty straightforward. What make styles very
interesting is that they support inheritance.

PARENT STATEMENT
Inheritance provides a mechanism for one template definition to
use another template definition.

parent = styles.default;

Most supplied styles include this PARENT statement (except for
STYLES.DEFAULT which has no parent). When defining your
own styles, you do not need to use inheritance, but it certainly
makes your work easier if you do. There are over 100 style
elements in STYLES.DEFAULT. Each of the other supplied
styles overrides specific elements definitions rather than
redefining all the style elements from scratch. If the current style
does not define one or more elements, these elements are picked
up from the parent. Learning how exploit inheritance will make
your style definitions much shorter and more readable. Any
existing style can be used as a parent. It is recommended that
you become familiar with the supplied styles and pick one of them
as the parent of your custom style.

Inheritance is used not only at the template level, but also at the
element level. Here a partial listing of a few existing styles
elements within STYLES.DEFAULT (indentation implies
inheritance):

Container (root of all containers)
Output (output presentation)

Table (tablular output)
Graph (graphical output)

The keyword FROM indicates inheritance syntactically. The style
element following FROM is the parent element. For example:

define style Container /..;
define style Output from Container /..;
define style Table from Output /..;
define style Graph from Output /..;

This form of inheritance allows you to define a new element and
automatically include all the attributes of a parent element.
As mentioned before, if you do not declare an element, the same
named parent template element is used. If you do declare an
element, you should decide whether you want inheritance or not.

/* inheritance: */
/* element picks up any additional */
/* attributes from parent element */

style Table from Table /
 rules = COLS

borderwidth=1;

/* no inheritance: */
/* element is self-contained */

style Table /
 background = colors('tablebg')
 rules = COLS
 frame = BOX

 cellpadding = 5
 cellspacing = 5
 bordercolor = colors('tableborder')

 borderwidth = 1
;

SUGI 28 Data Presentation

4

What happens if you don’t include all possible attributes and you
don’t inherit them? Some default value will be used. Even if the
default for an attribute is documented, it is recommended that you
completely redefine the element when not using inheritance.

REPLACE STATEMENT
Both STYLE and REPLACE sub-statements control style element
inheritance. They augment or override the attributes of a particular
style element. You can think of the REPLACE statement as
replacing the definition for the like-named element in the parent
style definition. The REPLACE statement doesn't actually change
the parent style definition, but PROC TEMPLATE builds the child
style definition as if it had changed the parent. All style elements
that inherit attributes from this style element inherit the ones that
are specified in the REPLACE statement, not the ones that are
used in the parent style definition. The REPLACE statement can
further reduce element coding but it provides no unique
functionality that can’t be obtained with STYLE statements.

DEFINING COLORS AND FONTS
A major portion of any style definition establishes colors and fonts
for specific areas of the output. A style establishes lists of colors
and fonts and assigns each value an “abstract” name. These
names are referenced in other style elements. Here are some
shortened examples of such lists:

style fonts "Fonts for style" /

'docFont' = ("Arial, Helvetica, Helv",3);

style GraphFonts "Fonts for graphs" /
'GraphValueFont' = ("Arial",10pt)
'GraphLabelFont' = ("Arial",14pt,Bold);

style color_list "Colors for default style" /
 'fgA1' = cx000000 /*foreground */
 'bgA1' = cxF0F0F0 /* background */
 ‘fgA' = cx002288
 'bgA' = cxE0E0E0;

style colors “Abstract colors" /
 'tableborder' = color_list('fgA1')
 'tablebg' = color_list('bgA1')
 'docfg' = color_list('fgA')
 'docbg' = color_list('bgA');

style GraphColors "Abstract graph colors" /
 'glabel' = cx000000
 'gaxis' = cx000000
 'gdata1' = cx6173A9
 'gdata2' = cx8DA642
 'gdata3' = cx98341C
 'gdata4' = cxFDC861;

Here are some examples of how these lists are used:

style container /
 font = Fonts('DocFont')
 foreground = colors('docfg')
 background = colors('dogbg');

style Table from output /
 background = colors('tablebg');

style GraphBackground /
 background = colors('docbg');

style GraphAxisLines /
 foreground = GraphColors('gaxis');

style GraphLabelText /
 font = GraphFonts(‘GraphLabelFont’);

Notice that various style elements may reference the same color
or font. If you want to change fonts or colors in a style, it is
recommended that you change only the font or color values (but
not their abstract names) in elements Fonts, GraphFonts,
Color_List, and GraphColors. This ensures a consistent effect is
created across tables and graphs. Color values can be specified
in many ways including SAS color names, RGB or HLS. Consult
the ODS documentation for examples. When testing the
appearance of modified colors and fonts, you should include both
graphs and tables to assure that you get the desired consistency
for both forms of output.

GRAPHICAL STYLE FEATURES IN VERSION 9
Everything that has been said about PROC TEMPLATE syntax
applies to Versions 8 and 9. What has changed in Version 9 is the
addition of 16 styles mentioned earlier. All of these new styles
incorporate a large number of graphically-related style elements
and attributes that better coordinate the appearance of graphical
and tabular output. There are tables at the end of the paper that
summarize the new style elements and style attributes. Use these
tables to help understand which style elements affect which part
of the graph. Figure 8 shows the names of some of the graphical
style elements indicates the areas of a graph affected by each.

Figure 8: Commonly Used Graphical Style Elements

Most of the element names are self-explanatory. The elements
GraphData1 – GraphData12 are used to associate a style
attributes with sets of data values. Figure 8 shows a subgrouped
bar chart. The properties for each level of the subgroup variable
are obtained from the GraphData elements. These elements can
specify not only colors, but also line and marker properties for
plots.

The remainder of this paper will show how customize the
appearance of graphs (both SAS/GRAPH and STATGRAPH) in
your ODS output by adapting supplied styles.

We will modify the supplied STYLES.CURVE as our starting point
(parent) and name our style STYLES.MYCURVE:

proc template;
 define style Styles.myCurve;

 parent = styles.Curve;

 /* style statements */
 /* defined below */

 end;
run;

SUGI 28 Data Presentation

5

CHANGING GRAPH SIZE
By adding the OUTPUTWIDTH and OUTPUTHEIGHT attributes
to the GRAPH element, you can change the size of all graphs
produced with this style. The defaults for these attributes are
OUTPUTWIDTH=640px and OUTPUTHEIGHT=480px. For
SAS/GRAPH output these attributes are overridden if you include
values for GOPTIONS XPIXELS= YPIXELS=.

/* add to mycurve definition */
style Graph from Graph /
 outputwidth = 400px
 outputheight = 400px;

Figure 9: Curve Style

CHANGING GRAPH TEXT ATTRIBUTES
The two style elements that affect most graphical text are
 GraphLabelText – color and font for axis and legend labels
 GraphValueText – color and font for axis and legend values

The CURVE style set these attributes for GraphLabelText:

style GraphLabelText from GraphLabelText /
 dropshadow = on
 /* these are inherited from default */
 foreground = GraphColors(‘glabel’)
 font = fonts('GraphLabelFont');

The DrowShadow element defines a shadow color and some
offsets for shadow size. Rather than change these, you could
sharpen the text appearance by simply disabling the drop shadow
effect:

/* add to mycurve definition */
style GraphLabelText from GraphLabelText /
 dropshadow = off;

The CURVE style did not enable the drop shadow effect for the
GraphValueText element so no changes are necessary.

CHANGING CHART ATTRIBUTES
One of the more interesting attributes is transparency. This
affects how much you can “see through” portions of a chart. The
CURVE style employs transparency with two elements:

style GraphCharts from GraphCharts /
 transparency = 0.1;
style GraphWalls from GraphCharts /
 transparency = 1.0;

The closer the transparency is to 1, the more you will see through
to the graph background.

Figure 10: Transparency = 0 for Chart and Walls

Figure 11: Transparency = 1 for Chart and Walls

CHANGING GRAPH BACKGROUND
The CURVE style uses this definition for GraphBackground:

replace GraphBackground /
 background = colors('docbg')
 image = "Curve.jpg"
 just = Right
 vjust = Bottom;

CURVE.JPG is one of several image files supplied with base
SAS that are used with style definitions. The location of these
files is defined by the system option TEXTURELOC=. You can
add your own images to the TEXTURELOC path, and refer to
them without path information or you can include the fully-qualified
name (or URL) to your own image. Filetypes are not restricted to
JPG. Figure 12 shows a corporate logo used for the IMAGE
attribute.

Figure 12: Custom Image for Background

SUGI 28 Data Presentation

6

The IMAGE attribute displays an image using its actual size. The
JUST attribute (LEFT, CENTER, RIGHT) and VJUST attribute
(TOP, MIDDLE, BOTTOM) control its position. A related attribute
is BACKGROUNDIMAGE. This differs from IMAGE in that it
specifies an image to be stretched to fit the entire background.
VJUST and JUST do not apply to BACKGROUNDIMAGE.

Another possible background effect is to create a gradient.

replace GraphBackground /
 gradient_direction = "YAxis"
 startcolor = colors('headerbg')
 endcolor = colors('docbg');

There are three attributes affecting a gradient. The
GRADIENT_DIRECTION can be vertical (“Yaxis”) or horizontal
(“Xaxis). The graph in Figure 13 also set these attributes for
GraphWalls and GraphData1-GraphData12.

 Figure 13: Using a Vertical Gradient for Background

ADJUSTING SAS/GRAPH PROGRAMS FOR
STYLES
Recall the SAS/GRAPH coding of our original program:

goptions reset=all border dev=actximg;
proc gchart data=sashelp.class;
 vbar3d sex / sumvar=height type=mean
 outside=mean;
 run; quit;

Notice that this program does NOT contain any of the numerous
SAS/GRAPH options that change colors or fonts of the output. If
any of these options were to appear in the program, they would
have precedence over any style attribute that may address the
same feature.
In general, a style does not enable a SAS/GRAPH feature – you
must do this in your SAS/GRAPH program. Examples of this
include GOPTIONS BORDER | NOBORDER to enable or disable
a border around the graph. If you enable the border, the Output
and Graph styles elements control its visual characteristics (which
are coordinated with the table border in the supplied styles).
Another example is the FRAME | NOFRAME option used by
GCHART and GPLOT action statements. In general, you only
need to enable or disable this feature. If you use CFRAME to turn
on the frame you will also override the color defined in the style.
Here a list of some common SAS/GRAPH options that affect the
same graph features that graphical styles do:

GOPTIONS
 COLORS HSIZE VSIZE XPIXELS YPIXELS IBACK
 CTEXT CTITLE CBY CBACK CSYMBOL CPATTERN

 FTEXT FTITLE FBY HTEXT HTITLE HBY
AXIS
 COLOR STYLE WIDTH LABEL=(COLOR FONT HEIGHT)
 VALUE=(COLOR FONT HEIGHT)

LEGEND
 CBACK CFRAME CBORDER CSHADOW FWIDTH
 LABEL=(COLOR FONT HEIGHT)
 VALUE=(COLOR FONT HEIGHT)

SYMBOL
 CO CI CV FONT VALUE HEIGHT WIDTH

PATTERN
 COLOR IMAGE

TITLE / FOOTNOTE
 COLOR FONT HEIGHT JUSTIFY

GCHART – VBAR/HBAR/VBAR3D/HBAR3D
 CAXIS CFRAME COUTLINE CTEXT IFRAME
 LAUTOREF CAUTOREF

GPLOT – PLOT
 CAXIS CFRAME CTEXT FRAME
 CAUTOHREF CAUTOVREF LAUTOVREF LAUTOHREF

STATGRAPH TEMPLATES AND STYLES
As mentioned earlier, you will be able to create one or more
graphs for statistical procedures, independent of SAS/GRAPH.

ods graphics on;
ods html file="robustreg.html"
 style=mystatistical;

 proc robustreg data=growth HISTplot DDPlot;
 model GDP = LFG GAP EQP NEQ /
 diagnostics(all) leverage;
 run;

ods html close;
ods graphics off;

Figure 13: HISTPlot Output from PROC ROBUSTREG

SUGI 28 Data Presentation

7

STATGRAPH output uses the same graphical style elements and
attributes that SAS/GRAPH does (there are a few style attributes
that STATGRAPH does not support, such as those for image and
gradient backgrounds). In the DEFAULT style there are several
additional elements that apply only to STATGRAPH. Two of these
elements are shown here:

style StatGraphData from GraphComponent /
 markersize = 3px

markersymbol = "CircleFilled"
linestyle = 1
contrastcolor = GraphColors('gcdata')
foreground = GraphColors('gdata');

style StatGraphFitLine from GraphComponent /
transparency = 0.00
linethickness = 2px
linestyle = 1
contrastcolor = GraphColors('gcfit')
foreground = GraphColors('gfit');

Figure 14: Templates for PROC ROBUSTREG

If you look at a STATGRAPH template that defines a graph, you
will see visual features being set by references to style attributes
(element : attribute). This form of coding enables a user to
modify the style definition to get a customized presentation
without modifying the STATGRAPH template.

proc template;
 define statgraph Stat.Robustreg.HISTplot;

 layout Gridded;
 EntryTitle
 "Residuals from Robust Regression";
 layout Overlay /
 xaxisopts=(label="Robust Residuals”)
 yaxisopts=(label="Percent");

 Histogram RRESIDUAL / fill=true
 fillcolor=StatGraphData:foreground;

 Density RRESIDUAL / KERNEL() name="kern"
 linecolor=
 StatGraphFitLine:contrastcolor
 linethickness=
 StatGraphFitLine:linethickness
 LegendLabel=
 "Kernel Density Estimate";

 Density RRESIDUAL / name="norm"
 linecolor=
 StatGraphFitLine:contrastcolor
 linethickness=
 StatGraphFitLine:linethickness
 linepattern=dashlong
 LegendLabel="Normal”;

 DiscreteLegend "norm" "kern" /
 hAlign=left vAlign=top;
 EndLayout;
 EndLayout;

 end;
run;

CONCLUSION
In Version 9, you will be able to control the appearance of graphs
as well as tables in your ODS output. SAS will provide 16 new
styles. You can define your own styles to create many interesting
effects.
The two tables that follow document the Version 9 style elements
and attributes. These tables also relate style elements and
attributes to SAS/GRAPH syntax features so you can more easy
adjust your programs to use more (or less) of the style definition in
any particular program.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Jeff Cartier
 SAS Institute Inc.
 Cary NC 27513
 Work Phone:
 Email: Jeff.Cartier@sas.com

 SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

SUGI 28 Data Presentation

8

Style Element Affects Style Attributes SAS/Graph Override

Graph Graph size, border
around graph

OutputWidth OutputHeight
Borderwidth, BorderColor,
CellSpacing, CellPadding

GOPTIONS XPIXELS= YPIXELS=
GOPTIONS BORDER must be in
effect to enable the border effects

GraphCharts all charts in
graphics area

Transparency

GraphBackground background color
or image of the
graph

Gradient_Direction, StartColor,
EndColor; BackGround,
BackGroundImage, Image, Vjust, Just

GOPTIONS CBACK=
IBACK= IMAGESTYLE=

GraphLegendBackground background color
or image of the
legend

Gradient_Direction, StartColor,
EndColor; BackGround,
BackGroundImage, Image, Vjust, Just

LEGEND statement CFRAME=
CBLOCK=

DropShadowStyle drop shadow color
for text

DropShadow, ForeGround

GraphLabelText text for axis labels
and legend title

ForeGround, DropShadow, Font_Face,
Font_Size, Font_Weight,
Font_Style

GOPTIONS FTEXT= CTEXT=;
AXIS statement LABEL=() options
COLOR=, FONT= HEIGHT=;
LEGEND statement LABEL=()
options COLOR=, FONT= HEIGHT=;

GraphValueText text for axis tick
marks values and
legend entries

ForeGround, DropShadow, Font_Face,
Font_Size, Font_Weight,
Font_Style

GOPTIONS FTEXT= CTEXT=;
AXIS statement VALUE=() options
COLOR=, FONT= HEIGHT=;
LEGEND statement VALUE=()
options COLOR=, FONT= HEIGHT=;

GraphGridLines grid / reference
lines

 ForeGround, LineStyle, OutputWidth AXIS statement COLOR= , STYLE=,
WIDTH= options

GraphAxisLines axis lines and tick
marks

 ForeGround, LineStyle, OutputWidth Procedure CAXIS=;
AXIS statement COLOR=, STYLE=,
WIDTH=

GraphBorderLines frame around axis
area and legend

ForeGround, LineStyle, OutputWidth Chart FRAME option,
LEGEND statement CBORDER=
FWIDTH=

GraphOutlines lines that outline
bars, map regions,
etc.

ForeGround, LineStyle, OutputWidth PATTERN statement

GraphWalls wall color or image Transparency, StartColor, EndColor,
Gradient_Direction, Background,
BackgroundImage, Image

Procedure action statement
IFRAME= IMAGESTYLE=
CFRAME= options

GraphFloor floor color or image Transparency, StartColor, EndColor,
Gradient_Direction, Background,
BackgroundImage, Image

TwoColorRamp maps with
continuous
response

StartColor, EndColor

GraphData1 –
GraphData12

graphics primitives
related to data
items:
color, fill, marker

Foreground, ContrastColor,
MarkerSymbol, MarkerSize, LineStyle,
LineThickness

GOPTIONS COLORS=();
SYMBOL statement;
PATTERN statement

Table 1 Version 9 Graphical Style Elements

Note: Style elements include all recognized attributes.
 Style elements do not have to define all attributes.

SUGI 28 Data Presentation

9

Style Attribute Type Affects Examples

OutputWidth dimension width of graph; line thickness OutputWidth=400px;
OutputWidth=2

OutputHeight dimension height of graph OutputHeight=300px

Transparency number:
 0.0=opaque
 1.0=transparent

Chart, walls, floor and legend
backgrounds

Transparency=0.2

Background color background color of the
graph, walls, or floor

Background=
 colors(‘docbg’);

Foreground color color of text, data fill item Foreground=
 colors(‘docfg’);

ContrastColor color alternate color for maps;
marker color

ContrastColor=red

LineStyle integer:
 1 = solid line
 2-46= dashed line

borders, axis lines, grid,
reference, model, confidence
lines

LineStyle=2

LineThickness color

color of line LineColor=b lue

DropShadow boolean: On or Off drop shadow color for text DropShadow,=on
DropShadow=off

BackGroundImage string: image file
(including path)

image that can be stretched,
but not positioned in graph,
chart, walls, floor

Image=”//server/images/
myimage.gif”

Image string: image file
(including path)

image that can be positioned,
but not stretched in graph,
chart, walls, floor

Image=”//server/images/
myimage.gif”

Just justifcation: center,
left, or right

image horizontal positioning Just=left

Vjust justifcation: top,
middle, bottom

image vertical positioning Vjust=bottom

Gradient_Direction string: use “Xaxis”
for left-to-right;
“Yaxis” for top-to-
bottom

graph background, legend
background, charts, walls,
floors

Gradient_Direction=
”Xaxis”

StartColor color: initial color
used with gradient

graph background, legend
background, charts, walls,
floors

StartColor=yellow

EndColor color: final color
used with gradient

graph background, legend
background, charts, walls,
floors

StartColor=red

MarkerSymbol string markers related to data
values

MarkerSymbol=”circle”;
MarkerSymbol=”square”

MarkerSize dimension marker size related to data
values

MarkerSize=5px;
MarkerSize=3%

Font_Face string value text, label text Font_Face=”Helvetica”

Font_Size fontsize: 1 to 7 or
dimension

value text, label text Font_Size=3;
Font_Size=10pt

Font_Width fontwidth: normal,
narrow, wide, etc.

value text, label text Font_Width=narrow

Font_Weight fontweight: light,
medium, bold, etc.

value text, label text Font_Weight=bold

Font_Style fontstyle: italic,
roman, slant

value text, label text Font_Style=italic

Font Aggregate definition
in parentheses

value text, label text Font=("arial, helvetica",
4, medium roman)

Table 2 Version 9 Graphical Style Attributes

SUGI 28 Data Presentation

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

