
 
Paper 147-28 

   

It's All in the Presentation 
Jeff Cartier, SAS Institute Inc., Cary, NC 

 

ABSTRACT  
In Version 9, ODS styles have been extended to include elements 
that affect graphical procedure output as well as tabular output. 
This paper will show how to easy it is to apply any of the new 
supplied style definitions to SAS/GRAPH, SAS/STAT, SAS/ETS 
output. You will also see how SAS/GRAPH coding and supplied 
STATGRAPH templates interact with information supplied by a 
style. By adjusting source programs, you can control exactly the 
level of style information that contributes to final output.   

INTRODUCTION 
Today, most SAS users are taking advantage of ODS to produce 
documents containing output from SAS procedures. Users are 
aware of the existence of ODS styles and how a style can be 
specified to alter the fonts, colors, and other appearance aspects 
of their tabular output. The good news is that in Version 9, 
graphical output can now be formatted in a similar fashion with an 
ODS style. 

ODS AND SAS/GRAPH OUTPUT 
Many of the new styles offer graphical visual effects such color 
gradients, transparency, texture maps, shadow effects and anti-
aliasing on text. To see style effects for SAS/GRAPH procedures, 
the graphics device driver must be set to ACTIVEX, JAVA, 
ACTXIMG, or JAVAIMG (the first two drivers create interactive 
controls and the last two drivers create images).  The following 
program illustrates how easy it is to use a style with ODS and how 
the style produces a coordinated visual effect on both graphical 
and tabular output:  
 

ods html file='class.html' style=default; 
goptions reset=all border device=actximg; 
proc gchart data=sashelp.class; 
   vbar3d sex / sumvar=height type=mean  
                outside=mean; 
run; quit; 
proc means data=sashelp.class maxdec=1 
            nonobs mean; 
   class sex; 
   var height; 
run; 
ods html close;  
 

 

Figure 1:  Graph – DEFAULT Style 

 

 Figure 2:  Table – DEFAULT Style 

 
By changing only the value for the STYLE= option, you can create 
an entirely different appearance for both the graph and table. This 
is the result for STYLE=RSVP: 
 

 
Figure 3:  Graph – RSVP Style 

  

Figure 4:  Table – RSVP Style 

 
Notice that the SAS/GRAPH coding did not include any options 
that specified fonts or colors to be used. This information was all 
derived from the style definition.  If such options were present, the 
colors or fonts in the program would be used in place of the 
corresponding style values. 
 
The example program use ODS HTML destination, but it could 
have used any other ODS destination just as well, such as PDF, 
RTF, or PRINTER. All produce different output files with the same 
visual content. 
 
If you have not used any of the four client drivers before, here are 
some other things you should know: 
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• A client technology (ActiveX or Java) is used to render the 
graph, not SAS/Graph. Consequently, there may be some 
differences in appearance between client and non-client 
drivers. 

• The only supported procedures are GCHART, GPLOT, 
GMAP, GCONTOUR, and G3D. You can also use 
SAS/GRAPH annotation coding with these procedures. 

• Titles and footnotes appear but are not part of the graph.  
• The interactive client drivers (ACTIVEX and JAVA) enable 

you to change the graphical display via context menus.   
• There are some differences in which SAS/GRAPH options 

are supported by Java and ActiveX technologies. See the 
SAS/GRAPH documentation for details. 

 
It should be emphasized that when using SAS/GRAPH 
procedures with ODS, a SAS/GRAPH device driver is always in 
effect. You must use one of the “client drivers” (ACTIVEX, JAVA, 
ACTXIMG, or JAVAIMG) to see the effect of a style. All other 
drivers are “style unaware”.  For example, if you were to use any 
of the GIF family of drivers, the ODS output would look like just 
like the GRSEG output, but as a GIF image. Its visual appearance 
is affected only by SAS/GRAPH coding and not by any ODS style.  
 

 

Figure 5:  Graph using DEVICE=GIF260    

ODS AND STATGRAPH OUTPUT 
In Version 9, SAS/STAT and SAS/ETS procedures can produce 
graphs when used with ODS. Here is an example of using PROC 
LIFETEST to produce a survival plot showing the Hall-Wellner 
band.  
 

ods html file='lifetest.html' style=mystyle; 
ods graphics on;  
proc lifetest data=mydata; 
   time Months; 
   survival confband=all plots=(hwb); 
run;   
ods graphics off;  
ods html close;  

 
Here are some things to know about the graphs produced by 
SAS/STAT and SAS/ETS: 
• Graphs are produced by entirely Java technology. They do 

not require installation of SAS/GRAPH and do not support 
any form of SAS/GRAPH coding, including device drivers. 

• Graphs are not produced by default. You must enable / 
disable graphics with the ODS GRAPHICS statement.  

• Statistical procedures supply one or more ODS 
STATGRAPH templates that specify a predefined graph. 
You simply instruct the procedure which graphs to produce.   

• The supplied STATGRAPH templates use ODS styles to set 
colors, fonts, and as well as other appearance features such 
as markers and line styles.   

 

 

Figure 6:  StatGraph - Custom Style 

SUPPLIED STYLES 
To view the supplied ODS styles, issue the ODSTEMPLATE 
command from your Display Manager session. If you have not 
created any of your own styles, you will see a single node for 
SASHELP.TMPLMST under the TEMPLATES tree. Expand this 
node to see all supplied template folders. Select STYLES to 
display the contents of this folder. In addition to the 17 ODS styles 
provided in Version 8, there are 16 new styles in Version 9: 

Analysis      Astronomy Banker       BlockPrint   
Curve         Gears             Education   Electronics 
Magnify       Money            RSVP    Science   
Sketch        Statistical       Torn            Watercolor 

 
Figure 7:  Templates Window – Supplied Styles 
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ANATOMY OF AN ODS STYLE DEFINITION  
An ODS style is defined by a SAS program. You can browse or 
edit the source program for any style from the Templates window. 
The code for defining styles is not complex but it can be lengthy. 
To modify or create a style it is important to understand the 
structure of a style program and how it can inherit information 
from other styles. 
 

TEMPLATE PROCEDURE 
PROC TEMPLATE is used to create various kinds of template 
stores. Examples of template stores are STYLE, TABLE, and 
STATGRAPH.  All ODS templates stores can be viewed from the 
Template window. This paper will only deal with STYLE and 
STATGRAPH template types. 
 
The general form of a program that creates a style is this: 

  
proc template;                                                                 
   define style <directory.>styleName;                      
      parent = <directory.>parentStyle;   
 
      replace elementName /  
           attribute = value 
           attribute = value 
           ... 
      ; 
                                       
      style elementName <from parentElement> /                                      
           attribute = value 
           attribute = value 
         ... 
      ; 
   end; 
run;                     

 
The DEFINE statement creates a new template. STYLE is type of 
template we are creating. The name of the style comes next.  
Notice that the DEFINE statement requires an END statement. 
For example, to define a style named MYCURVE: 
 

define style styles.mycurve;  
    /* sub-statements */ 

   end;  
                  
The sub-statements most commonly used within the DEFINE 
STYLE block are STYLE, REPLACE, and PARENT. 

STYLE STATEMENT  
The STYLE statement defines a style element  which is a named 
set of logically-related style attributes. A style attribute is a 
name-value pair. (ODS uses the terms element and attribute in 
the same way markup languages like HTML and XML do.)  
For example: 
 

style Table /                                                
   background = colors('tablebg')                                        
   rules = ALL                                                           
   frame = BOX                                                           
   cellpadding = 5                                                       
   cellspacing = 5                                                       
   bordercolor = colors('tableborder')                                   
   borderwidth = 2 
;                      

 
Here the TABLE element is being defined. The forward slash 
begins the declaration of its attributes. All the attribute names 
used here are reserved and documented. The attributes RULES 
and FRAME have only a few possible values which are also 

reserved and documented. The syntax for assigning color values 
will be explained shortly. 
So far, this is pretty straightforward. What make styles very 
interesting is that they support inheritance. 

PARENT STATEMENT 
Inheritance provides a mechanism for one template definition to 
use another template definition. 
 

parent = styles.default;   
 
Most supplied styles include this PARENT statement (except for 
STYLES.DEFAULT which has no parent). When defining your 
own styles, you do not need to use inheritance, but it certainly 
makes your work easier if you do. There are over 100 style 
elements  in STYLES.DEFAULT. Each of the other supplied 
styles overrides specific elements definitions rather than 
redefining all the style elements from scratch. If the current style 
does not define one or more elements, these elements are picked 
up from the parent. Learning how exploit inheritance will make 
your style definitions much shorter and more readable. Any 
existing style can be used as a parent. It is recommended that 
you become familiar with the supplied styles and pick one of them 
as the parent of your custom style.  
 
Inheritance is used not only at the template level, but also at the 
element level. Here a partial listing of a few existing styles 
elements within STYLES.DEFAULT (indentation implies 
inheritance): 
  

Container  (root of all containers) 
Output (output presentation) 

Table (tablular output) 
Graph (graphical output) 
 

The keyword FROM indicates inheritance syntactically. The style 
element following FROM is the parent element. For example: 
 

define style Container /..; 
define style Output from Container /..; 
define style Table from Output /..; 
define style Graph from Output /..; 
 

This form of inheritance allows you to define a new element and 
automatically include all the attributes of a parent element. 
As mentioned before, if you do not declare an element, the same 
named parent template element is used. If you do declare an 
element, you should decide whether you want inheritance or not. 
 

/* inheritance:                    */ 
/* element picks up any additional */ 
/* attributes from parent element  */ 
 

style Table from Table / 
   rules = COLS                               

borderwidth=1;   
                     

/* no inheritance:           */ 
/* element is self-contained */ 
 

style Table /  
   background = colors('tablebg')                        
  rules = COLS                                          
  frame = BOX                                           

   cellpadding = 5                                        
  cellspacing = 5                                       
  bordercolor = colors('tableborder')                   

   borderwidth = 1 
;                      
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What happens if you don’t include all possible attributes and you 
don’t inherit them? Some default value will be used. Even if the 
default for an attribute is documented, it is recommended that you 
completely redefine the element when not using inheritance. 

REPLACE STATEMENT 
Both STYLE and REPLACE sub-statements control style element 
inheritance. They augment or override the attributes of a particular 
style element. You can think of the REPLACE statement as 
replacing the definition for the like-named element in the parent 
style definition. The REPLACE statement doesn't actually change 
the parent style definition, but PROC TEMPLATE builds the child 
style definition as if it had changed the parent. All style elements 
that inherit attributes from this style element inherit the ones that 
are specified in the REPLACE statement, not the ones that are 
used in the parent style definition. The REPLACE statement can 
further reduce element coding but it provides no unique 
functionality that can’t be obtained with STYLE statements. 

DEFINING COLORS AND FONTS 
A major portion of any style definition establishes colors and fonts 
for specific areas of the output. A style establishes lists of colors 
and fonts and assigns each value an “abstract” name. These 
names are referenced in other style elements. Here are some 
shortened examples of such lists: 

  
style fonts "Fonts for style" /                                   

'docFont' = ("Arial, Helvetica, Helv",3);  
 

style GraphFonts "Fonts for graphs" /                                        
'GraphValueFont' = ("Arial",10pt)                                     
'GraphLabelFont' = ("Arial",14pt,Bold);  

 
style color_list "Colors for default style" /                                  
  'fgA1' = cx000000     /*foreground */                                                
  'bgA1' = cxF0F0F0     /* background */                                                
  ‘fgA' = cx002288                                                      
  'bgA' = cxE0E0E0;   
                                                 
style colors “Abstract colors" /                         
  'tableborder' = color_list('fgA1')                                    
  'tablebg' = color_list('bgA1')                                        
  'docfg' = color_list('fgA')                                           
  'docbg' = color_list('bgA');   
                                        
style GraphColors "Abstract graph colors" /                              
  'glabel' = cx000000                                                    
  'gaxis' = cx000000                                     
  'gdata1' = cx6173A9     
  'gdata2' = cx8DA642     
  'gdata3' = cx98341C                                                    
  'gdata4' = cxFDC861;  
 
Here are some examples of how these lists are used: 
 
style container / 
  font = Fonts('DocFont')                                               
  foreground = colors('docfg')                                          
  background = colors('dogbg');    
  
style Table from output /                                            
  background = colors('tablebg');                                       

                    
style GraphBackground /                                            
  background = colors('docbg'); 
 
style GraphAxisLines /                                            
  foreground = GraphColors('gaxis');                                       
 
style GraphLabelText / 
  font = GraphFonts(‘GraphLabelFont’); 
    

Notice that various style elements may reference the same color 
or font. If you want to change fonts or colors in a style, it is 
recommended that you change only the font or color values (but 
not their abstract names) in elements Fonts, GraphFonts, 
Color_List,  and GraphColors.  This ensures a consistent effect is 
created across tables and graphs. Color values can be specified 
in many ways including SAS color names, RGB or HLS. Consult 
the ODS documentation for examples. When testing the 
appearance of modified colors and fonts, you should include both 
graphs and tables to assure that you get the desired consistency 
for both forms of output. 

GRAPHICAL STYLE FEATURES IN VERSION 9 
Everything that has been said about PROC TEMPLATE syntax 
applies to Versions 8 and 9. What has changed in Version 9 is the 
addition of 16 styles mentioned earlier. All of these new styles  
incorporate a large number of graphically-related style elements 
and attributes that better coordinate the appearance of graphical 
and tabular output. There are tables at the end of the paper that 
summarize the new style elements and style attributes. Use these 
tables to help understand which style elements affect which part 
of the graph. Figure 8 shows the names of some of the graphical 
style elements indicates the areas of a graph affected by each. 

 
Figure 8:  Commonly Used Graphical Style Elements 
 
Most of the element names are self-explanatory. The elements 
GraphData1 – GraphData12 are used to associate a style 
attributes with sets of data values. Figure 8 shows a subgrouped 
bar chart. The properties for each level of the subgroup variable 
are obtained from the GraphData elements. These elements can 
specify not only colors, but also line and marker properties for 
plots.  
 
The remainder of this paper will show how customize the 
appearance of graphs (both SAS/GRAPH and STATGRAPH) in 
your ODS output by adapting supplied styles. 
 
We will modify the supplied STYLES.CURVE as our starting point 
(parent) and name our style STYLES.MYCURVE: 

 
proc template;                                           
  define style Styles.myCurve;                          

      parent = styles.Curve; 
 
     /* style statements */ 
     /* defined below    */ 
 
   end; 
run; 
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CHANGING GRAPH SIZE                   
By adding the OUTPUTWIDTH and OUTPUTHEIGHT attributes 
to the GRAPH element, you can change the size of all graphs 
produced with this style. The defaults for these attributes are 
OUTPUTWIDTH=640px and OUTPUTHEIGHT=480px. For 
SAS/GRAPH output these attributes are overridden if you include 
values for GOPTIONS XPIXELS= YPIXELS=.                                  
 

/* add to mycurve definition */ 
style Graph from Graph /               
   outputwidth = 400px                                                       
   outputheight = 400px;  
      

 
Figure 9:  Curve Style 

 

CHANGING GRAPH TEXT ATTRIBUTES 
The two style elements that affect most graphical text are 
     GraphLabelText – color and font for axis and legend labels 
     GraphValueText – color and font for axis and legend values  
 
The CURVE style set these attributes for GraphLabelText: 
 

style GraphLabelText from GraphLabelText /                                 
  dropshadow = on   
    /* these are inherited from default */    
    foreground = GraphColors(‘glabel’)                                        
    font = fonts('GraphLabelFont');        

 
The DrowShadow element defines a shadow color and some 
offsets for shadow size. Rather than change these, you could   
sharpen the text appearance by simply disabling the drop shadow 
effect:  
 

/* add to mycurve definition */ 
style GraphLabelText from GraphLabelText /                                 
  dropshadow = off;  
                                                      

The CURVE style did not enable the drop shadow effect for the 
GraphValueText element so no changes are necessary.  

CHANGING CHART ATTRIBUTES 
One of the more interesting attributes is transparency. This 
affects how much you can “see through” portions of a chart. The 
CURVE style employs transparency with two elements: 
 

style GraphCharts from GraphCharts /                                      
  transparency = 0.1;                 
style GraphWalls from GraphCharts /                                      
  transparency = 1.0;    
 

The closer the transparency is to 1, the more you will see through 
to the graph background. 

 
Figure 10: Transparency = 0 for Chart and Walls  

  

 
Figure 11: Transparency = 1 for Chart and Walls  
 

CHANGING GRAPH BACKGROUND 
The CURVE style uses this definition for GraphBackground: 
 

replace GraphBackground /                                
   background = colors('docbg')                          
   image = "Curve.jpg" 
   just = Right                                          
   vjust = Bottom;       

 
CURVE.JPG  is one of several image files supplied with base 
SAS that are used with style definitions.  The location of these 
files is defined by the system option TEXTURELOC=.  You can  
add your own images to the TEXTURELOC path, and refer to 
them without path information or you can include the fully-qualified 
name  (or URL) to your own image. Filetypes are not restricted to 
JPG. Figure 12 shows a corporate logo used for the IMAGE 
attribute. 

 
Figure 12: Custom Image for Background  
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The IMAGE attribute displays an image using its actual size. The 
JUST attribute (LEFT, CENTER, RIGHT) and VJUST attribute 
(TOP, MIDDLE, BOTTOM) control its position.  A related attribute 
is BACKGROUNDIMAGE. This differs from IMAGE in that it 
specifies an image to be stretched to fit the entire background. 
VJUST and JUST do not apply to BACKGROUNDIMAGE.  
 
Another possible background effect is to create a gradient.  
 

replace GraphBackground /                                                 
   gradient_direction = "YAxis"                                          
   startcolor = colors('headerbg') 
     endcolor = colors('docbg');                                      
     

There are three attributes affecting a gradient. The 
GRADIENT_DIRECTION can be vertical (“Yaxis”) or horizontal 
(“Xaxis). The graph in Figure 13 also set these attributes for 
GraphWalls and GraphData1-GraphData12. 

 

 
 Figure 13: Using a Vertical Gradient for Background 
 

ADJUSTING SAS/GRAPH PROGRAMS FOR 
STYLES 
Recall the SAS/GRAPH coding of our original program: 
 

goptions reset=all border dev=actximg; 
proc gchart data=sashelp.class; 
  vbar3d sex / sumvar=height type=mean 
               outside=mean; 
  run; quit; 
 

Notice that this program does NOT contain any of the numerous 
SAS/GRAPH options that change colors or fonts of the output. If 
any of these options were to appear in the program, they would 
have precedence over any style attribute that may address the 
same feature.  
In general, a style does not enable a SAS/GRAPH feature – you 
must do this in your SAS/GRAPH program. Examples of this 
include GOPTIONS BORDER | NOBORDER  to enable or disable 
a border around the graph. If you enable the border, the Output 
and Graph styles elements control its visual characteristics (which 
are coordinated with the table border in the supplied styles).   
Another example is the FRAME | NOFRAME option used by 
GCHART and GPLOT action statements. In general, you only 
need to enable or disable this feature.  If you use CFRAME to turn 
on the frame you will also override the color defined in the style. 
Here a list of some common SAS/GRAPH options that affect the 
same graph features that graphical styles do: 
 
GOPTIONS 
    COLORS HSIZE VSIZE XPIXELS YPIXELS IBACK  
    CTEXT CTITLE CBY CBACK CSYMBOL CPATTERN 

    FTEXT FTITLE FBY HTEXT HTITLE HBY 
AXIS  
     COLOR STYLE WIDTH LABEL=(COLOR FONT HEIGHT) 
     VALUE=(COLOR FONT HEIGHT) 
 
LEGEND  
     CBACK CFRAME CBORDER CSHADOW FWIDTH 
      LABEL=(COLOR FONT HEIGHT)  
      VALUE=(COLOR FONT HEIGHT) 

 
SYMBOL  
      CO CI CV FONT VALUE HEIGHT WIDTH 
 
PATTERN  
      COLOR IMAGE 
 
TITLE / FOOTNOTE 
      COLOR FONT HEIGHT JUSTIFY  
 
GCHART – VBAR/HBAR/VBAR3D/HBAR3D 
    CAXIS CFRAME  COUTLINE CTEXT IFRAME  
    LAUTOREF CAUTOREF 
 
GPLOT – PLOT 
    CAXIS CFRAME CTEXT FRAME 
    CAUTOHREF CAUTOVREF LAUTOVREF LAUTOHREF 

STATGRAPH TEMPLATES AND STYLES 
As mentioned earlier, you will be able to create one or more  
graphs for statistical procedures, independent of SAS/GRAPH. 

 
ods graphics on; 
ods html file="robustreg.html"  
         style=mystatistical; 
  

   proc robustreg data=growth HISTplot DDPlot;  
     model GDP = LFG GAP EQP  NEQ / 
           diagnostics(all) leverage;  
   run;  

 
ods html close; 
ods graphics off; 
 

 
Figure 13: HISTPlot Output from PROC ROBUSTREG 
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STATGRAPH output uses the same graphical style elements and 
attributes that SAS/GRAPH does (there are a few style attributes 
that STATGRAPH does not support, such as those for image and 
gradient backgrounds). In the DEFAULT style there are several 
additional elements that apply only to STATGRAPH. Two of these 
elements are shown here:  
 
style StatGraphData from GraphComponent /                         
   markersize = 3px                                                      

markersymbol = "CircleFilled"                                              
linestyle = 1 
contrastcolor = GraphColors('gcdata')                              
foreground = GraphColors('gdata');  
                                

style StatGraphFitLine from GraphComponent /                             
transparency = 0.00                                                   
linethickness = 2px                                                   
linestyle = 1                                                         
contrastcolor = GraphColors('gcfit')                                  
foreground = GraphColors('gfit');  
 

 
Figure 14: Templates for PROC ROBUSTREG 
 
If you look at a STATGRAPH template that defines a graph, you 
will see visual features being set by references to style attributes 
(element : attribute). This form of coding enables a user to 
modify the style definition to get a customized presentation 
without modifying the STATGRAPH template.  
 
proc template;                                                                 
  define statgraph Stat.Robustreg.HISTplot;                                   

 layout Gridded;                                                          
      EntryTitle  
            "Residuals from Robust Regression";  
      layout Overlay /  
            xaxisopts=(label="Robust Residuals”) 
            yaxisopts=(label="Percent");   
                                                  
        Histogram RRESIDUAL / fill=true 
             fillcolor=StatGraphData:foreground;  
     
        Density RRESIDUAL / KERNEL() name="kern" 
             linecolor=                              
                 StatGraphFitLine:contrastcolor    
             linethickness=                              
                 StatGraphFitLine:linethickness                      
             LegendLabel= 
                 "Kernel Density Estimate";  
                         
        Density RRESIDUAL / name="norm" 
           linecolor=                              
                 StatGraphFitLine:contrastcolor  
           linethickness= 
                 StatGraphFitLine:linethickness         
           linepattern=dashlong                                                  
           LegendLabel="Normal”;   
                                         
        DiscreteLegend "norm" "kern" / 
           hAlign=left vAlign=top;               
       EndLayout;                                                               
    EndLayout;                                                               

 end;                                                      
run;                                  

CONCLUSION   
In Version 9, you will be able to control the appearance of graphs 
as well as tables in your ODS output. SAS will provide 16 new 
styles. You can define your own styles to create many interesting 
effects.  
The two tables that follow document the Version 9 style elements 
and attributes. These tables also relate style elements and 
attributes to SAS/GRAPH syntax features so you can more easy 
adjust your programs to use more (or less) of the style definition in 
any particular program. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  
Contact the author at: 

Jeff Cartier 
 SAS Institute Inc. 
 Cary NC 27513 
 Work Phone:   
 Email: Jeff.Cartier@sas.com 
 
 SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc. in the 
USA and other countries. ® indicates USA registration.   
 

SUGI 28 Data Presentation



 

8 

 
 

 

Style Element Affects Style Attributes SAS/Graph Override 

Graph Graph size, border 
around graph 

OutputWidth OutputHeight 
Borderwidth, BorderColor, 
CellSpacing, CellPadding 

GOPTIONS  XPIXELS= YPIXELS= 
GOPTIONS BORDER must be in 
effect to enable the border effects 

GraphCharts all charts in 
graphics area 

Transparency  

GraphBackground background color 
or  image of the 
graph 

Gradient_Direction, StartColor, 
EndColor; BackGround, 
BackGroundImage, Image, Vjust, Just 

GOPTIONS CBACK= 
IBACK= IMAGESTYLE= 
 

GraphLegendBackground background color 
or image of the 
legend 

Gradient_Direction, StartColor, 
EndColor; BackGround, 
BackGroundImage, Image, Vjust, Just 

LEGEND statement CFRAME= 
CBLOCK= 

DropShadowStyle drop shadow color 
for text   

DropShadow, ForeGround  

GraphLabelText text for axis labels 
and legend title 

ForeGround, DropShadow, Font_Face, 
Font_Size, Font_Weight, 
Font_Style 

GOPTIONS FTEXT= CTEXT=; 
AXIS statement  LABEL=( ) options 
COLOR=, FONT= HEIGHT=; 
LEGEND statement LABEL=( ) 
options COLOR=, FONT= HEIGHT=; 

GraphValueText text for axis tick 
marks values and 
legend entries 

ForeGround, DropShadow, Font_Face, 
Font_Size, Font_Weight, 
Font_Style 

GOPTIONS FTEXT= CTEXT=; 
AXIS statement VALUE=( ) options 
COLOR=, FONT= HEIGHT=; 
LEGEND statement VALUE=( ) 
options COLOR=, FONT= HEIGHT=; 

GraphGridLines grid / reference 
lines 

 ForeGround, LineStyle, OutputWidth AXIS statement COLOR= , STYLE=, 
WIDTH= options 

GraphAxisLines axis lines and tick 
marks 

 ForeGround, LineStyle, OutputWidth Procedure CAXIS=; 
AXIS statement COLOR=, STYLE=, 
WIDTH= 

GraphBorderLines frame around axis 
area and legend 

ForeGround, LineStyle, OutputWidth Chart FRAME option, 
LEGEND statement CBORDER= 
FWIDTH= 

GraphOutlines lines that outline 
bars, map regions, 
etc. 

ForeGround, LineStyle, OutputWidth PATTERN statement 

GraphWalls wall color or image Transparency, StartColor, EndColor, 
Gradient_Direction, Background, 
BackgroundImage, Image 

Procedure action statement 
IFRAME= IMAGESTYLE=  
CFRAME= options 

GraphFloor floor color or image Transparency, StartColor, EndColor, 
Gradient_Direction, Background, 
BackgroundImage, Image 

 

TwoColorRamp maps with 
continuous 
response 

StartColor, EndColor  

GraphData1 – 
GraphData12 

graphics primitives 
related to data 
items: 
color, fill, marker   

Foreground,  ContrastColor, 
MarkerSymbol, MarkerSize, LineStyle, 
LineThickness 

GOPTIONS COLORS=(  ); 
SYMBOL statement; 
PATTERN statement 

 
Table 1   Version 9 Graphical Style Elements  
 
Note: Style elements include all recognized attributes.   
         Style elements do not have to define all attributes.
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Style Attribute Type Affects Examples 

OutputWidth dimension width of graph; line thickness OutputWidth=400px; 
OutputWidth=2 

OutputHeight dimension height of graph OutputHeight=300px 

Transparency number: 
 0.0=opaque 
 1.0=transparent 

Chart, walls, floor and legend 
backgrounds 

Transparency=0.2 

Background color  background color of the 
graph, walls, or floor 

Background= 
       colors(‘docbg’);  

Foreground color  color of text, data fill item Foreground= 
     colors(‘docfg’);  

ContrastColor color alternate color for maps; 
marker color 

ContrastColor=red 

LineStyle integer: 
 1 = solid line 
 2-46= dashed line 

borders, axis lines, grid, 
reference, model, confidence 
lines 

LineStyle=2 

LineThickness color 
  

color of line LineColor=b lue 

DropShadow boolean: On or Off drop shadow color for text   DropShadow,=on 
DropShadow=off 

BackGroundImage string: image file 
(including path) 

image that can be stretched, 
but not positioned in graph, 
chart, walls, floor 

Image=”//server/images/
myimage.gif” 

Image string: image file 
(including path) 

image that can be positioned, 
but not stretched in graph, 
chart, walls, floor 

Image=”//server/images/
myimage.gif” 

Just justifcation: center, 
left, or right 

image horizontal positioning  Just=left 

Vjust justifcation: top, 
middle, bottom 

image vertical positioning  Vjust=bottom 

Gradient_Direction string: use “Xaxis” 
for left-to-right; 
“Yaxis” for top-to-
bottom 

graph background, legend 
background, charts, walls, 
floors 

Gradient_Direction= 
”Xaxis” 

StartColor color: initial color 
used with gradient 

graph background, legend 
background, charts, walls, 
floors 

StartColor=yellow 

EndColor color: final color 
used with gradient 

graph background, legend 
background, charts, walls, 
floors 

StartColor=red 

MarkerSymbol string markers related to data 
values 

MarkerSymbol=”circle”; 
MarkerSymbol=”square” 

MarkerSize dimension marker size related to data 
values 

MarkerSize=5px; 
MarkerSize=3% 

Font_Face string value text, label text Font_Face=”Helvetica” 

Font_Size fontsize: 1 to 7 or 
dimension 

value text, label text Font_Size=3; 
Font_Size=10pt 

Font_Width fontwidth: normal, 
narrow, wide, etc. 

value text, label text Font_Width=narrow 

Font_Weight fontweight: light, 
medium, bold, etc. 

value text, label text Font_Weight=bold 

Font_Style fontstyle:  italic, 
roman, slant 

value text, label text Font_Style=italic 

Font Aggregate definition 
in parentheses 

value text, label text Font=("arial, helvetica", 
4, medium roman) 
 

Table 2   Version 9 Graphical Style Attributes  
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