
Paper 143-28

1

Why DATA _NULL_ When You Can RTF Faster?
(Shattering the 2-Dimensional Paper Barrier)

Dante diTommaso, Fred Hutchinson Cancer Research Center, Seattle, WA

ABSTRACT
I have yet to work with a statistician or epidemiologist that enjoys
reviewing pages of raw SAS® output. I hope I never meet a
programmer willing to hand enter results into someone’s
spreadsheet or document. Therefore, results management, a
data manipulation task particularly relevant to SAS report
generation, is a common effort that too often results in dull fixed-
font DATA _NULL_, PROC REPORT or similar tables. I present a
macro I have developed that instead produces customized RTF
tables with less effort than analogous fixed-font programming.

The macro and examples described below are available at the
website listed in CONTACT INFORMATION.

INTRODUCTION
My primary programming objective has become to spend as little
time as possible massaging SAS output in favor of data analysis.
To minimize format programming, I have developed a highly
flexible macro that generates rich text format (RTF) documents
from any combination of SAS data sets. This paper describes the
macro, provides examples of use, and suggests developing a set
of reporting macros that utilize this or a similar approach to
eliminate redundant aesthetics programming for standard reports.

DELIVERING KNOWLEDGE
SAS: The Power To Know. From a marketing perspective, SAS’
official slogan is on target. Whatever your data, whatever your
goal, the SAS System offers a powerful solution. However, from a
programming perspective, more appropriate slogans come to
mind. SAS: The Power to Generate lots of output that needs to
be heavily filtered, manipulated and formatted before those
seeking knowledge care to review the results. Not as snappy,
definitely, but more indicative of the nature of SAS programming.

The basic approach to using the RTF writer is to assemble
desired output into a data set (programming that is nearly
impossible to avoid), quickly add desired formatting tags, and
then combine output tables in a single or multiple RTF
documents. The process handles ODS as easily as customized
data sets.

HIGH-DIMENSIONAL PAPER
Even in the elusive paperless society the basic concept of paper
will endure, however modified the details become. Increasingly,
electronic pages supplant hard copies, but while e-paper retains
basic structure it also presents typically untapped flexibility. This
momentum affords opportunities to push beyond black and white
2-dimensional paper. Whether or not this is a great push forward,
or a return to the origins of paper is open to debate.

Plummeting prices on high-speed color printers further reinforce
the motivation to guide the eye and mind with high-dimensional
paper. Modify fonts, colors and table structure to reveal
information otherwise lost among the typical antiseptic sea of
Courier New digits and characters. My RTF writer brings high-
dimensional paper within comfortable reach.

MACRO PHILOSOPHY
Repeat after me: If you see a problem once, solve it once; if you
see a problem multiple times, solve it once.

MINIMIZE REPEAT TASKS
Toward this end, it is essential to embrace differences between
machines and humans. Unlike magicians, computers are terrific

repeat performers. Programmers need to harness this trait by
turning over familiar tasks to SAS at the earliest possible point
along the path from raw data to final reports. Doing so leaves
programmers plenty of time to address interesting challenges that
require intuition, ingenuity, keen judgment and other defining
human abilities.

The key to developing truly useful macros is minimizing the data
processing required before the macro call. The RTF macro
described below does not eliminate pre-processing. It does,
however, reduce routine work and can be integrated into a
powerful and efficient reporting system composed of standard
report macros.

SIMPLE YET FLEXIBLE
Make the simple tasks simple and the complicated task possible.
While not an original objective, it is one I embrace. I have tried to
ensure that my RTF writer reflects this measure of usefulness.
Invoking the macro is simple:

%WRITERTF(data set, filename)

This statement creates a visually pleasing RTF file filename
containing the output in data set. Data set observations and table
rows have a one-to-one correspondence.

If you need more control, optional parameters allow you to
specify document structure (multiple tables; page margins, size
and orientation; headers and footers; etc.) and table appearance
(display columns; cell padding; pre-defined table styles; etc.).

Microsoft® Word® supports document properties such as title,
author, company, and hyperlink. You can pass this information to
the macro as a document information data set.

• The macro only processes character variables. Any
numeric data must first be formatted for display as desired.
You do not have to drop numeric variables from a data set,
but the macro ignores any.

PREPARING TABLE CONTENT
The macro expects one non-display format variable in the data
set the contents of which is not table content. This variable
contains format instructions for each table cell (vertical alignment,
background color, borders, etc.) and the text within (horizontal
alignment, font name & color, etc.).

The macro does not require format instructions or even the
format variable. Pre-defined table styles are available, which you
can customize as desired. See Pre-Defined Table Styles below.

THE Format VARIABLE
The format variable contains #-delimited substrings. The full
string specifies how to format each cell of the current observation
(table row). Each #-delimited substring formats the corresponding
cell of the current row. The last substring persists to all remaining
cells (i.e., if the data set has 6 display columns and the format
string has only 3 #-delimited substrings, all format instructions in
the third and final substring apply to cells 3 through 6.

Format substrings are =-delimited keyword/value pairs. These
format details pertain to a specific cell in the current row. See
Table 1 for keywords and valid options.

SUGI 28 Data Presentation

Paper 143-28

2

Table 1: Text And Cell Format Options
Keywords (no values)

TITLE Observation contains column titles (span right
across blank cells & repeat across page breaks)

DEF Referenced table cell gets DEFault formatting
<NULL>† Table cell is blank (no TITLE spanning)

Table Cell options
VA = Vertical Alignment (Top, Center, or Bottom)
BGC = BackGround Color (common color name)
BT = Border color, Top (common color name)
BL = Border color, Left (common color name)
BB = Border color, Bottom (common color name)
BR = Border color, Right (common color name)
BA = Border color, All sides (common color name)
BSZ = Border SiZe (line width in points)
RH = Row Height (font size in points)

Text options
HA = Horizontal Alignment (Left, Center, or Right)
FN = Font Name (Times, Arial, Courier, or Symbol)
FC = Font Color (common color name)

FST = Font STyle (combination of Bold, Italic, Underline,
smallcaPs, and super(H)- or sub(L)-script)

FSZ = Font SiZe (in points, overrides default size)
† The string "<NULL>" is the actual variable content; no cell-

specific format string is necessary.

The format information also flags title rows (keyword TITLE),
which repeat after any page break within a table. TITLE row
content also spans adjacent empty cells to the right. A variable
value of keyword <NULL> blocks a column header from spanning
the blank cell. Note that you use the keyword <NULL> as table
content rather than part of the format string.

The following example declares the current observation a title row
with the first cell shaded gray, and the second and third cells
underlined in red (remaining cells get the default format):

format = 'TITLE BGC=gray#BB=RED#BB=RED#DEF'

WITHIN CELL FORMATTING
Within a table cell, page header or page footer, you can turn
basic formats ON or OFF relative to the default format. For
example, you can bold individual characters in a cell. Do this by
modifying the actual variable value (table cell content) prior to
invoking %WRITERTF(). The syntax is to tag characters or words
of interest with format instructions:

 "<FON=opt>formats ON<FON> but no more"
 "<FOF=opt>formats OFF<FOF> and back on"

This is a great feature for fine-tuning table content. For example,
if a cell has no formatting by default (in the format variable) but
contains a character you want bold and in symbol font (e.g., an
alpha, beta, superscript, etc.) then modify table content to:

 "<FON=BS>s<FON><FON=H>1<FON> = 2.5"

The resulting table content is: σ1 = 2.5. Note that formats are
added or subtracted from the formats specified in the format
variable. Valid special formats are: bold, B, italic, I, underline, U,
small caps, P, superscript, H, subscript, L, and basic fonts (Arial,
A, Courier, C, Symbol, S, Times New Roman, T).

• See macro documentation and example code for details on
the format variable and within-table formatting.

FEATURES
The macro supports a variety of features that allow customization
of the RTF document as well as table content.

PRE-DEFINED TABLE STYLES
I have defined 4 table styles that can eliminate the need for any
format variable programming. Additional styles are not difficult to
add and once you have successfully added one, adding more is
downright simple.

FONT SIZE AND COLUMN WIDTH
The macro calculates font size and column widths adequate,
although not optimal, for accommodating the table content. Since
these calculations are rough you may need to override defaults
for certain dense or unbalanced tables. The macro provides a
variety of options for fine-tuning table presentation, including
explicit specification of both font size and column widths.

AUTO HEADER/FOOTER TEXT
The macro generates automatic page header (name of
programmer, version of SAS) and page footer (page number,
filename) text. Page numbers are reported as “Page p of t”, the
page number and total pages in the document.

TITLE ROWS
Initial title rows in a table will repeat across any page breaks
necessary in the middle of a table. Any row in a table can be a
TITLE row – for which content spans adjacent blank cells.
However, only initial title rows will repeat after a page break.

SECTION BREAKS
Add a section-break before second or later tables in a document.
A section-break allows you to change page setup as well as
headers and footers.

BOOKMARKS
The macro includes a bookmark in the RTF document for each
table. This allows the RTF reader to quickly cycle through
document content.

16 OR 24 COLORS
Older versions of MS Word support 16 colors. Newer versions
support a full spectrum. The macro allows you to choose between
16 and 24 colors. With some effort, adding custom colors is
possible.

%PREP4RTF(data set, formats, title_rows)
The flexibility of %WRITERTF() is dramatically improved by this
ancillary macro which prepares ODS data sets for the RTF writer.
Pass in the data set, the display format for each variable, and the
maximum number of title rows. The macro creates title rows from
variable labels and returns a new data set.

Use the SAS Output Delivery System (ODS) to create data sets
that you can write to an RTF document in two simple steps. For
example, PROC REG produces an ODS data set of regression
model parameter estimates. Assume I have created ESTIMATES
from the ODS data set, keeping character variables DEPENDENT
and VARIABLE, and numeric results ESTIMATE, STDERR,
TVALUE, and PROBT. Preparing data set ESTIMATES for writing
to an RTF document is just a matter of specifying appropriate
formats for each variable:

%PREP4RTF(ESTIMATES,
 $8. $9. 5.2 5.3 COMMA8. PVALUE6.4,
 MAXTR=2)

The keyword parameter MAXTR stipulates that column titles
(which %PREP4RTF generates from variable labels supplied by
ODS) should take up no more than two rows. The macro
generates data set ESTIMATES_RTF which you subsequently
write to an RTF file:

%WRITERTF(ESTIMATES_RTF, C:\PROJECT\REPORT,
 STYLE=4, PORT=1, COL24=1);

SUGI 28 Data Presentation

Paper 143-28

3

Table 2: %WriteRTF() Keyword Parameters
Data Set Details
OMIT = list of variables in the data set to ignore
DOCINFO = data set of doc details supported by MS Word

Document Layout
ACTION = 0 (default) initialize & finalize file with 1 table

= 1 initialize RTF file and add first table
= 2 append to existing RTF file with section break
= 3 same as 2, plus finalize RTF file
= 4 append to existing RTF file, no section break
= 5 same as 4, plus finalize RTF file

LEGAL = 1 for legal size paper (letter is default)
PORT = 1 for portrait orientation (landscape is default)
LINCH = inches for Left page margin
RINCH = inches for Right page margin
HINCH = inches between top of page and page Header
FINCH = inches between Footer and bottom of page
HCUSH = inches between Header and table content
FCUSH = inches between table content and Footer

Page Headers and Footers
H1 to H6 = page header text (may require macro quoting)

= H1: left align, top line
= H2: center, top line
= H3: right align, top line (defaults to current date)
= H4: left align, 2nd line (defaults to system info)
= H5: center, 2nd line
= H6: right align, 2nd line (defaults to user name)

F1 to F4 = page footer text (may require macro quoting)
= F1: left align, penultimate line
= F2: center, penultimate line
= F3: right align, penultimate line
= F4: center, last line
(report name and page number appear on last
line, left align and right align, respectively)

Table Format
STYLE = 1, 2, 3, 4, or 5 (current pre-defined table styles)
CELLPAD† = twips (1440/inch) between cell border and text
FS = pts to override automatic Font Size
COLWIDTH = list of Column Widths to override automatic

widths (relative widths, COLWIDTH=1 1 2 4=
specifies that columns 3 and 4 are twice and=
four times as wide, respectively, as the first two
columns)

FSTEP† = number of 0.5 pt increments to adjust default=
font size (values <0 decrease size)

FSFACT† = multiple (relative to 1) to use when calculating
column widths to accommodate larger font size
for titles

COL24 = 1 for 24 colors (default is 16)
† Useful for fine tuning font size and column widths when

content is wrapping in a cell or cells, alternatively specify both
FS and COLWIDTH.

Parameters STYLE, PORT, and COL24 demonstrate the flexibility
of the macro. See Table 2 for a list of parameters and brief
explanations of each. Detailed descriptions appear in the macro
documentation.

SHORTCOMINGS
RTF is a Microsoft standard for displaying richly formatted text.
Microsoft published RTF version 1.6 specifications on the MS
Developers Network (http://msdn.microsoft.com). However, with
the launch of Office 2000/XP, RTF version 1.6 is outdated.

More importantly, few RTF readers (including MS WordPad®) are
sufficiently RTF compliant to handle customized tables. Without
access to Microsoft Word (yourself and more importantly your
client), %WRITERTF() can not generate useful documents.

If you have MS Word but your client does not, convert final RTF
documents to alternative formats such as postscript or PDF.

Several features are implemented by turning control over to MS
Word (eg, page numbering and page breaks). Such features are
resistant to change.

Finally, as with any programming focused on aesthetics,
%WRITERTF() programming still involves an iterative process to
make results look just right. The number of iterations depends on
your need for perfection. (Not to mention that ODS RTF in SAS
Version 9 may offer flexibility that obviates the need for such
macros … maybe.)

CONCLUSION
I have been using %WRITERTF() while it has evolved over two
years. In its current form, the macro saves me untold hours of
DATA _NULL_, PROC REPORT and similar display programming,
and the superficiality of the resulting documents has produced
goofy grins on the faces of statisticians receiving even
unwelcome results (although the later usual register eventually).
More importantly, I can produce these documents quickly.

Initially, the task of specifying display options in the format
variable may seem onerous. However, techniques that combine
informats with array processing render format programming
barely more trouble than deciding how you want the table to
appear. Consider the example "Listening to the Data" in the
Appendix. Data-driven formatting not only looks striking, it adds
incredible value to reports, shattering the 2-dimensional paper
barrier with higher dimensions of color and style.

The files referenced below (see CONTACT INFORMATION)
provide several examples of how to work with these macros.
Examining the data sets that %WRITERTF() processes can be
more helpful than the code that generates them since, as with
virtually any SAS task, 100 programmers will manage to find at
least 110 distinct paths to the same endpoint.

REFERENCES
Paul Hamilton, ODS to RTF: Tips and Tricks, PharmaSUG 2002
(http://www.pharmasug.org/psug2002/bp2002/psug2002_bp.html,
"Best Paper" in FDA Compliance: Electronic Submission &
Validation).

CONTACT INFORMATION
I value and encourage your comments and questions:

Dante diTommaso
Fred Hutchinson Cancer Research Center
1100 Fairview Ave N, MW-500
Seattle, Washington 98109
Phone: (206) 667-6470
Fax: (206) 667-4812
Email: dante@scharp.org
Files: http://dantegd.home.mindspring.com/sas/

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Data Presentation

Paper 143-28

4

+---+;
| A P P E N D I X |;
--- ---;
| "Listen To The Data" Example |;
| IDEA: USE INFORMATS IN COMBINATION WITH ARRAY PROGRAMMING |;
| TO APPLY DESIRED FORMATTING TO SPECIFIC RESULTS |;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 143, MARCH 2003)|;
*+---+;

* [STEP 1: FAKE SOME DATA] *;
DATA LISTEN (KEEP=VAR:);
 DO CNT = 1 TO 8;
 RAN1 = RANUNI(23581); RAN2 = RANUNI(49603); RAN3 = RANUNI(73805);
 VAR1 = 'factor ' !! TRIM(LEFT(PUT(CNT, 2.)));
 VAR2 = 7*RAN1; VAR3 = 3*RAN2;
 VAR4 = 5*RAN3; VAR5 = RAN1*RAN2*RAN3;
 OUTPUT;
 END;
RUN;
* ==> [SEE IMAGE 1] <== *;

* [STEP 2: DECIDE BASIS FOR DISTINGUISHING RESULTS. *;
* USE INFORMATS TO DETERMINE WHICH RTF FORMAT *;
* WILL BE APPLIED TO EACH TABLE RESULT.] *;
PROC FORMAT;
 INVALUE IDXA
 LOW – 3.5 = 1
 3.5 <- HIGH = 2; * IE, VALUES >3.5 GET 2ND FORMAT *;

 INVALUE IDXB
 LOW - 1.5 = 1
 1.5 <- HIGH = 2;

 INVALUE IDXC
 LOW - 2.5 = 1
 2.5 <- HIGH = 2;

 INVALUE PVAL
 LOW - 0.05 = 1
 0.05 <- HIGH = 2;
RUN;

SUGI 28 Data Presentation

Paper 143-28

5

+---+;
| A P P E N D I X (continued) |;
--- ---;
| "Listen To The Data" Example (continued) |;
*+---+;

* [STEP 3: PREP THE DATA SET FOR %WRITERTF()] *;
DATA LISTEN (KEEP=COL: FORMAT);
 * ESTABLISH VARIABLE ORDER = TABLE COLUMN ORDER *;
 ATTRIB COL1-COL5 LENGTH=$9; ATTRIB FORMAT LENGTH=$75;

 * ADD COLUMN HEADERS PRIOR TO ACCESSING THE DATA *;
 IF _N_ EQ 1 THEN DO;
 COL1 = 'FACTOR'; COL2 = 'SITES';
 COL5 = 'P-VALUE'; FORMAT = 'TITLE FST=P';
 OUTPUT;
 END;

 * ESTABLISH FORMAT ARRAYS. INFORMATS CREATED ABOVE *;
 * WILL MAP VALUES TO A SPECIFIC DISPLAY FORMAT *;
 ARRAY SITEA [2] $18 _TEMPORARY_ ('#BGC=TAN FC=MAR'
 '#BGC=LTBLU FC=NAVY');
 ARRAY SITEB [2] $18 _TEMPORARY_ ('# FC=BLUE' '# FC=RED');
 ARRAY SITEC [2] $18 _TEMPORARY_ ('#BGC=NAVY FC=LTBLU'
 '#BGC=OLI FC=LTGRE');
 ARRAY PVALU [2] $18 _TEMPORARY_ ('# FST=B' '# DEF');

 SET LISTEN;

 * FORMAT NUMERIC VARIABLES FOR DISPLAY *;
 COL1 = VAR1;
 COL2 = PUT(VAR2, 3.1); COL3 = PUT(VAR3, 3.1);
 COL4 = PUT(VAR4, 3.1); COL5 = PUT(VAR5, PVALUE5.);

 * LISTEN TO THE DATA!! LET THE DATA TELL YOU *;
 * THE CORRECT FORMAT! INFORMATS CONVERT THE *;
 * DATA TO THE CORRECT ARRAY REFERENCE! *;
 FORMAT = 'DEF' !! /* COL1 */
 TRIM(SITEA[INPUT(VAR2, IDXA.)]) !! /* COL2 */
 TRIM(SITEB[INPUT(VAR3, IDXB.)]) !! /* COL3 */
 TRIM(SITEC[INPUT(VAR4, IDXC.)]) !! /* COL4 */
 TRIM(PVALU[INPUT(VAR5, PVAL.)]); /* COL5 */
 OUTPUT;
RUN;
* ==> [SEE IMAGE 2] <== *;

* [STEP 4: CREATE THE RTF DOCUMENT] *;
%WRITERTF(LISTEN, C:\PROJECT\LISTEN, PORT=1, STYLE=2, COL24=1)
* ==> [SEE IMAGE 3] <==

SUGI 28 Data Presentation

Paper 143-28

6

+---------------------------------+;
| A P P E N D I X (continued) |;
--- ---;
| "Listen To The Data" Images |;
*+---------------------------------+;

IMAGE 1: RAW DATA SET

NB:

There is a 1-to-1 correspondence
between data set observations and
rows in the eventual RTF table.

IMAGE 2: FORMATTED DATA SET
WITH DISPLAY INSTRUCTIONS

NB:

1) TITLE text "Sites" will
span columns 2 – 4,

2) TITLE text will appear
in small caps font style,

3) <COL1> text will appear
in default format, and

4) formatting instructions
for remaining columns
were determined dynamic-
ly using the INFORMATS
specified above.

IMAGE 3: RESULTING RTF DOCUMENT
NB: White space (margins) has been removed so image could fit on this page.

SUGI 28 Data Presentation

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

