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Why DATA _NULL_ When You Can RTF Faster? 
(Shattering the 2-Dimensional Paper Barrier) 

Dante diTommaso, Fred Hutchinson Cancer Research Center, Seattle, WA 
 

 
ABSTRACT 
I have yet to work with a statistician or epidemiologist that enjoys 
reviewing pages of raw SAS® output. I hope I never meet a 
programmer willing to hand enter results into someone’s 
spreadsheet or document. Therefore, results management, a 
data manipulation task particularly relevant to SAS report 
generation, is a common effort that too often results in dull fixed-
font DATA _NULL_, PROC REPORT or similar tables. I present a 
macro I have developed that instead produces customized RTF 
tables with less effort than analogous fixed-font programming. 
 
The macro and examples described below are available at the 
website listed in CONTACT INFORMATION.  

INTRODUCTION 
My primary programming objective has become to spend as little 
time as possible massaging SAS output in favor of data analysis. 
To minimize format programming, I have developed a highly 
flexible macro that generates rich text format (RTF) documents 
from any combination of SAS data sets. This paper describes the 
macro, provides examples of use, and suggests developing a set 
of reporting macros that utilize this or a similar approach to 
eliminate redundant aesthetics programming for standard reports. 

DELIVERING KNOWLEDGE 
SAS: The Power To Know. From a marketing perspective, SAS’ 
official slogan is on target. Whatever your data, whatever your 
goal, the SAS System offers a powerful solution. However, from a 
programming perspective, more appropriate slogans come to 
mind. SAS: The Power to Generate lots of output that needs to 
be heavily filtered, manipulated and formatted before those 
seeking knowledge care to review the results. Not as snappy, 
definitely, but more indicative of the nature of SAS programming. 
 
The basic approach to using the RTF writer is to assemble 
desired output into a data set (programming that is nearly 
impossible to avoid), quickly add desired formatting tags, and 
then combine output tables in a single or multiple RTF 
documents. The process handles ODS as easily as customized 
data sets. 

HIGH-DIMENSIONAL PAPER 
Even in the elusive paperless society the basic concept of paper 
will endure, however modified the details become. Increasingly, 
electronic pages supplant hard copies, but while e-paper retains 
basic structure it also presents typically untapped flexibility. This 
momentum affords opportunities to push beyond black and white 
2-dimensional paper. Whether or not this is a great push forward, 
or a return to the origins of paper is open to debate. 
 
Plummeting prices on high-speed color printers further reinforce 
the motivation to guide the eye and mind with high-dimensional 
paper. Modify fonts, colors and table structure to reveal 
information otherwise lost among the typical antiseptic sea of 
Courier New digits and characters. My RTF writer brings high-
dimensional paper within comfortable reach. 

MACRO PHILOSOPHY 
Repeat after me: If you see a problem once, solve it once; if you 
see a problem multiple times, solve it once. 

MINIMIZE REPEAT TASKS 
Toward this end, it is essential to embrace differences between 
machines and humans. Unlike magicians, computers are terrific 

repeat performers. Programmers need to harness this trait by 
turning over familiar tasks to SAS at the earliest possible point 
along the path from raw data to final reports. Doing so leaves 
programmers plenty of time to address interesting challenges that 
require intuition, ingenuity, keen judgment and other defining 
human abilities. 
 
The key to developing truly useful macros is minimizing the data 
processing required before the macro call. The RTF macro 
described below does not eliminate pre-processing. It does, 
however, reduce routine work and can be integrated into a 
powerful and efficient reporting system composed of standard 
report macros. 

SIMPLE YET FLEXIBLE 
Make the simple tasks simple and the complicated task possible. 
While not an original objective, it is one I embrace. I have tried to 
ensure that my RTF writer reflects this measure of usefulness. 
Invoking the macro is simple: 
 

%WRITERTF(data set, filename) 
 
This statement creates a visually pleasing RTF file filename 
containing the output in data set. Data set observations and table 
rows have a one-to-one correspondence.  
 
If you need more control, optional parameters allow you to 
specify document structure (multiple tables; page margins, size 
and orientation; headers and footers; etc.) and table appearance 
(display columns; cell padding; pre-defined table styles; etc.). 
 
Microsoft® Word® supports document properties such as title, 
author, company, and hyperlink. You can pass this information to 
the macro as a document information data set. 
 

• The macro only processes character variables. Any 
numeric data must first be formatted for display as desired. 
You do not have to drop numeric variables from a data set, 
but the macro ignores any. 

PREPARING TABLE CONTENT 
The macro expects one non-display format variable in the data 
set the contents of which is not table content. This variable 
contains format instructions for each table cell (vertical alignment, 
background color, borders, etc.) and the text within (horizontal 
alignment, font name & color, etc.). 
 
The macro does not require format instructions or even the 
format variable. Pre-defined table styles are available, which you 
can customize as desired. See Pre-Defined Table Styles below. 

THE Format  VARIABLE 
The format variable contains #-delimited substrings. The full 
string specifies how to format each cell of the current observation 
(table row). Each #-delimited substring formats the corresponding 
cell of the current row. The last substring persists to all remaining 
cells (i.e., if the data set has 6 display columns and the format 
string has only 3 #-delimited substrings, all format instructions in 
the third and final substring apply to cells 3 through 6. 
 
Format substrings are =-delimited keyword/value pairs. These 
format details pertain to a specific cell in the current row. See 
Table 1 for keywords and valid options. 
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Table 1: Text And Cell Format Options 
Keywords (no values) 

TITLE Observation contains column titles (span right 
across blank cells & repeat across page breaks) 

DEF Referenced table cell gets DEFault formatting 
<NULL>† Table cell is blank (no TITLE spanning) 

Table Cell options  
VA = Vertical Alignment (Top, Center, or Bottom) 
BGC = BackGround Color (common color name) 
BT = Border color, Top (common color name) 
BL = Border color, Left (common color name) 
BB = Border color, Bottom (common color name) 
BR = Border color, Right (common color name) 
BA = Border color, All sides (common color name) 
BSZ = Border SiZe (line width in points) 
RH = Row Height (font size in points) 

Text options 
HA = Horizontal Alignment (Left, Center, or Right) 
FN = Font Name (Times, Arial, Courier, or Symbol) 
FC = Font Color (common color name) 

FST = Font STyle (combination of Bold, Italic, Underline, 
smallcaPs, and super(H)- or sub(L)-script) 

FSZ = Font SiZe (in points, overrides default size) 
† The string "<NULL>" is the actual variable content; no cell-

specific format string is necessary. 
 
The format information also flags title rows (keyword TITLE), 
which repeat after any page break within a table. TITLE row 
content also spans adjacent empty cells to the right. A variable 
value of keyword <NULL> blocks a column header from spanning 
the blank cell. Note that you use the keyword <NULL> as table 
content rather than part of the format string. 
 
The following example declares the current observation a title row  
with the first cell shaded gray, and the second and third cells 
underlined in red (remaining cells get the default format): 
 

format = 'TITLE BGC=gray#BB=RED#BB=RED#DEF' 

WITHIN CELL FORMATTING 
Within a table cell, page header or page footer, you can turn 
basic formats ON or OFF relative to the default format. For 
example, you can bold individual characters in a cell. Do this by 
modifying the actual variable value (table cell content) prior to 
invoking %WRITERTF(). The syntax is to tag characters or words 
of interest with format instructions: 
 

  "<FON=opt>formats ON<FON> but no more" 
  "<FOF=opt>formats OFF<FOF> and back on"  

 
This is a great feature for fine-tuning table content. For example, 
if a cell has no formatting by default (in the format variable) but 
contains a character you want bold and in symbol font (e.g., an 
alpha, beta, superscript, etc.) then modify table content to: 
 

  "<FON=BS>s<FON><FON=H>1<FON> = 2.5" 
  
The resulting table content is: σ1 = 2.5. Note that formats are 
added or subtracted from the formats specified in the format 
variable. Valid special formats are: bold, B, italic, I, underline, U, 
small caps, P, superscript, H, subscript, L, and basic fonts (Arial, 
A, Courier, C, Symbol, S, Times New Roman, T). 
 

• See macro documentation and example code for details on 
the format variable and within-table formatting. 

FEATURES 
The macro supports a variety of features that allow customization 
of the RTF document as well as table content. 

PRE-DEFINED TABLE STYLES 
I have defined 4 table styles that can eliminate the need for any 
format variable programming. Additional styles are not difficult to 
add and once you have successfully added one, adding more is 
downright simple. 

FONT SIZE AND COLUMN WIDTH 
The macro calculates font size and column widths adequate, 
although not optimal, for accommodating the table content. Since 
these calculations are rough you may need to override defaults 
for certain dense or unbalanced tables. The macro provides a 
variety of options for fine-tuning table presentation, including 
explicit specification of both font size and column widths. 

AUTO HEADER/FOOTER TEXT 
The macro generates automatic page header (name of 
programmer, version of SAS) and page footer (page number, 
filename) text. Page numbers are reported as “Page p of t”, the 
page number and total pages in the document. 

TITLE ROWS 
Initial title rows in a table will repeat across any page breaks 
necessary in the middle of a table. Any row in a table can be a 
TITLE row – for which content spans adjacent blank cells. 
However, only initial title rows will repeat after a page break. 

SECTION BREAKS 
Add a section-break before second or later tables in a document. 
A section-break allows you to change page setup as well as 
headers and footers. 

BOOKMARKS 
The macro includes a bookmark in the RTF document for each 
table. This allows the RTF reader to quickly cycle through 
document content. 

16 OR 24 COLORS 
Older versions of MS Word support 16 colors. Newer versions 
support a full spectrum. The macro allows you to choose between 
16 and 24 colors. With some effort, adding custom colors is 
possible. 

%PREP4RTF(data set, formats, title_rows) 
The flexibility of %WRITERTF() is dramatically improved by this 
ancillary macro which prepares ODS data sets for the RTF writer. 
Pass in the data set, the display format for each variable, and the 
maximum number of title rows. The macro creates title rows from 
variable labels and returns a new data set. 
 
Use the SAS Output Delivery System (ODS) to create data sets 
that you can write to an RTF document in two simple steps. For 
example, PROC REG produces an ODS data set of regression 
model parameter estimates. Assume I have created ESTIMATES 
from the ODS data set, keeping character variables DEPENDENT 
and VARIABLE, and numeric results ESTIMATE, STDERR, 
TVALUE, and PROBT. Preparing data set ESTIMATES for writing 
to an RTF document is just a matter of specifying appropriate 
formats for each variable: 

%PREP4RTF(ESTIMATES,  
          $8. $9. 5.2 5.3 COMMA8. PVALUE6.4, 
          MAXTR=2) 

 
The keyword parameter MAXTR stipulates that column titles 
(which %PREP4RTF generates from variable labels supplied by 
ODS) should take up no more than two rows. The macro 
generates data set ESTIMATES_RTF which you subsequently 
write to an RTF file: 

%WRITERTF(ESTIMATES_RTF, C:\PROJECT\REPORT, 
          STYLE=4, PORT=1, COL24=1); 
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Table 2: %WriteRTF() Keyword Parameters  
Data Set Details 
OMIT  = list of variables in the data set to ignore 
DOCINFO = data set of doc details supported by MS Word 

Document Layout 
ACTION = 0 (default) initialize & finalize file with 1 table 

= 1 initialize RTF file and add first table 
= 2 append to existing RTF file with section break 
= 3 same as 2, plus finalize RTF file 
= 4 append to existing RTF file, no section break 
= 5 same as 4, plus finalize RTF file 

LEGAL = 1 for legal size paper (letter is default) 
PORT = 1 for portrait orientation (landscape is default) 
LINCH = inches for Left page margin 
RINCH = inches for Right page margin 
HINCH = inches between top of page and page Header 
FINCH = inches between Footer and bottom of page 
HCUSH = inches between Header and table content 
FCUSH = inches between table content and Footer 

Page Headers and Footers 
H1 to H6 = page header text (may require macro quoting) 

= H1: left align, top line 
= H2: center, top line 
= H3: right align, top line (defaults to current date) 
= H4: left align, 2nd line (defaults to system info) 
= H5: center, 2nd line 
= H6: right align, 2nd line (defaults to user name) 

F1 to F4 = page footer text (may require macro quoting) 
= F1: left align, penultimate line 
= F2: center, penultimate line 
= F3: right align, penultimate line 
= F4: center, last line 
(report name and page number appear on last 
line, left align and right align, respectively) 

Table Format 
STYLE = 1, 2, 3, 4, or 5 (current pre-defined table styles) 
CELLPAD† = twips (1440/inch) between cell border and text 
FS = pts to override automatic Font Size 
COLWIDTH = list of Column Widths to override automatic 

widths (relative widths, COLWIDTH=1 1 2 4= 
specifies that columns 3 and 4 are twice and= 
four times as wide, respectively, as the first two 
columns) 

FSTEP† = number of 0.5 pt increments to adjust default= 
font size (values <0 decrease size) 

FSFACT† = multiple (relative to 1) to use when calculating 
column widths to accommodate larger font size 
for titles 

COL24 = 1 for 24 colors (default is 16) 
† Useful for fine tuning font size and column widths when 

content is wrapping in a cell or cells, alternatively specify both 
FS and COLWIDTH. 

 
Parameters STYLE, PORT, and COL24 demonstrate the flexibility 
of the macro. See Table 2 for a list of parameters and brief 
explanations of each. Detailed descriptions appear in the macro 
documentation. 

SHORTCOMINGS 
RTF is a Microsoft standard for displaying richly formatted text. 
Microsoft published RTF version 1.6 specifications on the MS 
Developers Network (http://msdn.microsoft.com). However, with 
the launch of Office 2000/XP, RTF version 1.6 is outdated. 

More importantly, few RTF readers (including MS WordPad®) are 
sufficiently RTF compliant to handle customized tables. Without 
access to Microsoft Word (yourself and more importantly your 
client), %WRITERTF() can not generate useful documents. 
 
If you have MS Word but your client does not, convert final RTF 
documents to alternative formats such as postscript or PDF. 
 
Several features are implemented by turning control over to MS 
Word (eg, page numbering and page breaks). Such features are 
resistant to change. 
 
Finally, as with any programming focused on aesthetics, 
%WRITERTF() programming still involves an iterative process to 
make results look just right. The number of iterations depends on 
your need for perfection. (Not to mention that ODS RTF in SAS 
Version 9 may offer flexibility that obviates the need for such 
macros … maybe.) 

CONCLUSION 
I have been using %WRITERTF() while it has evolved over two 
years. In its current form, the macro saves me untold hours of 
DATA _NULL_, PROC REPORT and similar display programming, 
and the superficiality of the resulting documents has produced 
goofy grins on the faces of statisticians receiving even 
unwelcome results (although the later usual register eventually). 
More importantly, I can produce these documents quickly. 
 
Initially, the task of specifying display options in the format 
variable may seem onerous. However, techniques that combine 
informats with array processing render format programming 
barely more trouble than deciding how you want the table to 
appear. Consider the example "Listening to the Data" in the 
Appendix. Data-driven formatting not only looks striking, it adds 
incredible value to reports, shattering the 2-dimensional paper 
barrier with higher dimensions of color and style. 
 
The files referenced below (see CONTACT INFORMATION) 
provide several examples of how to work with these macros. 
Examining the data sets that %WRITERTF() processes can be 
more helpful than the code that generates them since, as with 
virtually any SAS task, 100 programmers will manage to find at 
least 110 distinct paths to the same endpoint. 

REFERENCES 
Paul Hamilton, ODS to RTF: Tips and Tricks, PharmaSUG 2002 
(http://www.pharmasug.org/psug2002/bp2002/psug2002_bp.html, 
"Best Paper" in FDA Compliance: Electronic Submission & 
Validation). 

CONTACT INFORMATION 
I value and encourage your comments and questions: 

Dante diTommaso 
Fred Hutchinson Cancer Research Center 
1100 Fairview Ave N, MW-500 
Seattle, Washington 98109 
Phone: (206) 667-6470 
Fax: (206) 667-4812 
Email: dante@scharp.org 
Files: http://dantegd.home.mindspring.com/sas/ 

TRADEMARK CITATION 
SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc. in the 
USA and other countries. ® indicates USA registration.   
 
Other brand and product names are trademarks of their 
respective companies. 
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*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X                       |*; 
*---                                                         ---*; 
*| "Listen To The Data" Example                                |*;  
*| IDEA: USE INFORMATS IN COMBINATION WITH ARRAY PROGRAMMING   |*; 
*|       TO APPLY DESIRED FORMATTING TO SPECIFIC RESULTS       |*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 143, MARCH 2003)|*;  
*+-------------------------------------------------------------+; 
 
* [ STEP 1: FAKE SOME DATA ] *; 
DATA LISTEN (KEEP=VAR:); 
  DO CNT = 1 TO 8; 
    RAN1 = RANUNI(23581); RAN2 = RANUNI(49603); RAN3 = RANUNI(73805); 
    VAR1 = 'factor ' !! TRIM(LEFT(PUT(CNT, 2.))); 
    VAR2 = 7*RAN1; VAR3 = 3*RAN2; 
    VAR4 = 5*RAN3; VAR5 = RAN1*RAN2*RAN3; 
    OUTPUT; 
  END; 
RUN; 
*  ==> [ SEE  IMAGE 1 ] <==  *; 
 
 
* [ STEP 2: DECIDE BASIS FOR DISTINGUISHING RESULTS.    *; 
*           USE INFORMATS TO DETERMINE WHICH RTF FORMAT *; 
*           WILL BE APPLIED TO EACH TABLE RESULT. ]     *; 
PROC FORMAT; 
  INVALUE IDXA 
  LOW – 3.5   = 1 
  3.5 <- HIGH = 2;   * IE, VALUES >3.5 GET 2ND FORMAT *; 
 
  INVALUE IDXB 
  LOW - 1.5   = 1 
  1.5 <- HIGH = 2; 
 
  INVALUE IDXC 
  LOW - 2.5   = 1 
  2.5 <- HIGH = 2; 
 
  INVALUE PVAL 
  LOW - 0.05   = 1 
  0.05 <- HIGH = 2; 
RUN; 
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*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X (continued)           |*; 
*---                                                         ---*; 
*| "Listen To The Data" Example (continued)                    |*;  
*+-------------------------------------------------------------+; 
 
* [ STEP 3: PREP THE DATA SET FOR %WRITERTF() ] *; 
DATA LISTEN (KEEP=COL: FORMAT); 
  * ESTABLISH VARIABLE ORDER = TABLE COLUMN ORDER *; 
  ATTRIB COL1-COL5 LENGTH=$9; ATTRIB FORMAT LENGTH=$75; 
 
  * ADD COLUMN HEADERS PRIOR TO ACCESSING THE DATA *; 
  IF _N_ EQ 1 THEN DO; 
    COL1 = 'FACTOR'; COL2 = 'SITES';  
    COL5 = 'P-VALUE'; FORMAT = 'TITLE FST=P'; 
    OUTPUT; 
  END; 
 
  * ESTABLISH FORMAT ARRAYS. INFORMATS CREATED ABOVE *; 
  * WILL MAP VALUES TO A SPECIFIC DISPLAY FORMAT     *; 
  ARRAY SITEA [2] $18 _TEMPORARY_ ('#BGC=TAN FC=MAR'  
                                   '#BGC=LTBLU FC=NAVY'); 
  ARRAY SITEB [2] $18 _TEMPORARY_ ('# FC=BLUE' '# FC=RED'); 
  ARRAY SITEC [2] $18 _TEMPORARY_ ('#BGC=NAVY FC=LTBLU'  
                                   '#BGC=OLI FC=LTGRE'); 
  ARRAY PVALU [2] $18 _TEMPORARY_ ('# FST=B' '# DEF'); 
 
  SET LISTEN; 
 
  * FORMAT NUMERIC VARIABLES FOR DISPLAY *; 
  COL1 = VAR1; 
  COL2 = PUT(VAR2, 3.1); COL3 = PUT(VAR3, 3.1);  
  COL4 = PUT(VAR4, 3.1); COL5 = PUT(VAR5, PVALUE5.); 
 
  * LISTEN TO THE DATA!! LET THE DATA TELL YOU *; 
  * THE CORRECT FORMAT! INFORMATS CONVERT THE  *; 
  * DATA TO THE CORRECT ARRAY REFERENCE!       *; 
  FORMAT = 'DEF' !!                                /* COL1 */ 
           TRIM( SITEA[ INPUT(VAR2, IDXA.) ] ) !!  /* COL2 */ 
           TRIM( SITEB[ INPUT(VAR3, IDXB.) ] ) !!  /* COL3 */ 
           TRIM( SITEC[ INPUT(VAR4, IDXC.) ] ) !!  /* COL4 */ 
           TRIM( PVALU[ INPUT(VAR5, PVAL.) ] );    /* COL5 */ 
  OUTPUT; 
RUN; 
*  ==> [ SEE  IMAGE 2 ] <==  *; 
       
 
 
* [ STEP 4: CREATE THE RTF DOCUMENT ] *; 
%WRITERTF(LISTEN, C:\PROJECT\LISTEN, PORT=1, STYLE=2, COL24=1) 
*  ==> [ SEE  IMAGE 3 ] <==   
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*+---------------------------------+*; 
*|   A P P E N D I X (continued)   |*; 
*---                             ---*; 
*| "Listen To The Data" Images     |*;  
*+---------------------------------+; 
 
IMAGE 1: RAW DATA SET 
 
NB: 

There is a 1-to-1 correspondence 
between data set observations and 
rows in the eventual RTF table. 
 
 
 
 
 
IMAGE 2: FORMATTED DATA SET 
WITH DISPLAY INSTRUCTIONS 
 
NB: 

1) TITLE text "Sites" will 
span columns 2 – 4, 

2) TITLE text will appear 
in small caps font style, 

3) <COL1> text will appear 
in default format, and 

4) formatting instructions 
for remaining columns  
were determined dynamic- 
ly using the INFORMATS 
specified above. 

 
 
 
 
 
IMAGE 3: RESULTING RTF DOCUMENT 
NB: White space (margins) has been removed so image could fit on this page. 
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