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Keep Those Formats Rolling: 
A Macro to Manage the FMTSEARCH= Option 
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Introduction 
 
User-defined formats in the SAS 
System®

 are a wonderful thing.  They 
allow you to label data, classify data and 
aggregate data.  Storing your formats in 
a permanent catalog is a handy and 
efficient way to ensure that your formats 
are always available to your programs. 
 
The FMTSEARCH= option allows you to 
tell SAS which catalogs to search when 
a user-written format is referenced.  
However, this option can be unforgiving 
and provides little feedback. 
 
This paper presents a macro which 
allows for more control over the 
FMTSEARCH= option.  Catalogs can be 
added to the list without deleting those 
that already exist and can be easily 
moved to the beginning or end of the 
list.  Also, the current value of the format 
search list can be displayed as well. 
 
Searching for User-Defined Formats 
 
By default SAS is only going to look in 
two places when it sees a reference to a 
user-defined format.  In the 
WORK.FORMATS catalog (the default 
location) and the LIBRARY.FORMATS 
catalog. 
 
LIBRARY is a “special” libref that SAS 
will also search for formats if a catalog 
called FORMATS is located there.  This 
is the only aspect of LIBRARY that is 

different than any other libref.  It’s not 
really a reserved name; the default 
format-searching behavior is its only 
special feature.  You can store datasets 
and other catalogs in the LIBRARY 
library. 
 
LIBRARY is a handy place to 
permanently store formats so that they 
are available from session to session.  
As long as the libref is active SAS will 
find formats stored there.  
 
What about formats stored in other 
libraries or catalogs?  That’s another 
story! 

 
You’ll find quickly that the 
LIBRARY.FORMATS catalog can be a 
bit restricting for storing your formats.  
Very often you will have multiple 
projects with multiple formats and it 
would be nice to store the formats in the 
same library as the rest of the project 
data. 
 
However, SAS only searches for 
formats in the WORK.FORMATS and 
LIBRARY.FORMATS catalogs - how do 
you reference all your project formats?  
The FMTSEARCH= option allows you to 
specify which format catalogs to look in 
when a user-defined format is 
referenced. 
 
Using the FMTSEARCH= Option 
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The FMTSEARCH= option is a system 
option, not a PROC FORMAT option, 
and is used on an OPTIONS statement.  
The value is a list of catalogs to search 
separated by spaces and enclosed in 
parentheses.  The catalog names are 
not quoted and can contain either one-
level or two-level names.  Two-level 
names are in the format 
<LIBREF>.<CATALOG> and one-level 
names imply FORMATS as the catalog 
name.  

 
The WORK.FORMATS and 
LIBRARY.FORMATS catalogs are 
always searched first, unless they are 
included in the FMTSEARCH list. 
 
options fmtsearch=(ProjLib 
                   TempLib); 
 
In the above example, four catalogs will 
be searched in the following order 
(notice that WORK and LIBRARY are 
included in the list and that the 
FORMATS catalog is implied for all the 
one-level names): 

• WORK.FORMATS 
• LIBRARY.FORMATS 
• PROJLIB.FORMATS 
• TEMPLIB.FORMATS 

 
options fmtsearch=(ProjLib 
             Library Work); 
 
In this example, three libraries will be 
searched in the order shown: 

• PROJLIB.FORMATS 
• LIBRARY.FORMATS 
• WORK.FORMATS 

 
As we’ll see, the order of the list is 
important and is different depending on 
whether WORK and LIBRARY are 
explicitly referenced. 

 

A few facts about the FMTSEARCH= 
option will help you to resolve issues of 
formats that aren’t found or are different 
than you expect. 
 
The FMTSEARCH= List is Ordered 
 
The catalogs are searched in the order 
listed.  When a format is found it is used 
and the search stops.  This is only an 
issue if you have formats of the same 
name in multiple catalogs.  If so, the first 
one found will be used. 
 
The FMTSEARCH= List is All Inclusive 
 
With the exception of the WORK and 
LIBRARY libraries, discussed earlier, 
the only catalogs searched are those 
that are in the FMTSEARCH= list.  If you 
have formats stored in other catalogs 
they will not be found. 
 
This can really start to be an annoyance 
if you store formats in a number of 
catalogs for different projects.  Every 
time you change the FMTSEARCH= list 
the prior value is overwritten.  If you just 
want to add another catalog to the list 
you need to include what was there 
before as well.  It’s not an uncommon 
experience to spend many minutes 
(hours!) trying to figure out why the 
formats that you can see in SAS 
Explorer or in your SAS code cannot be 
found only to realize that the 
FMTSEARCH= list doesn’t include the 
catalog any more. 
 
The FMTSEARCH= List is Not Validated 
 
No checking on the validity or existence 
of a libname or catalog name is done 
here.  This can cause a lot of gray hairs 
is you have a slight typo in a libref or 
catalog name.  
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A “side effect” of this is that the 
sequence of the LIBNAME statement 
and FMTSEARCH= option are 
unimportant.  As long as both are set 
before the format is referenced, formats 
in the included catalogs will be found. 
 
Looking at the FMTSEARCH= Value 
 
Just looking at the FMTSEARCH option 
value can be confusing.  Let’s follow the 
value along as we make a few changes. 
 
When SAS is first started the default 
value for FMTSEARCH is (WORK 
LIBRARY).  We do a little work on a 
format, $Race, in the work library and 
then need to work on another project.  
We want to point to a permanent format 
catalog so we issue the following 
command: 
 
  options fmtsearch=(ProdLib); 
 
If we look at the FMTSEARCH option 
now it is (PRODLIB).  All is right with the 
world – until you run a procedure and 
notice that your race values are in the 
temporary format you were working on 
earlier! 
 
The problem is that the WORK and 
LIBRARY format catalogs are always 
searched.  But, once a value has been 
given to the FMTSEARCH option 
WORK and LIBRARY no longer are 
displayed as part of the value unless 
they are explicitly coded.  This means 
that if you look at the value of 
FMTSEARCH and do not see WORK 
and LIBRARY they are at the beginning 
of the search list. 
 
In order to get our permanent format to 
take precedence over the temporary 
format of the same name, our option 
value would need to be: 

 
  options fmtsearch=(ProdLib work); 
 
All of these can, and will, bite you as 
you use more and more formats.  So, is 
there anything you can do?? 
 
A FMTSEARCH= Management Macro 
 
One solution to some of these issues 
was to create a macro to manage the 
FMTSEARCH= value.  The macro has 
only two important parameters: CAT, 
which specifies the catalog and 
ACTION, which specifies what you want 
to do. 
 
The FMTSEARCH macro does two 
things: first, it changes the 
FMTSEARCH option as specified and 
second, it writes to the log the current 
FMTSEARCH value and the status of all 
the catalogs referenced. 
 
The Parameters – CAT 
 
The value of the CAT parameter is 
simply the format catalog name.  It can 
be either a one-level or two-level name.  
If a one-level name is listed, the catalog 
FORMATS is assumed. 
 
The CAT parameter is not required.  If it 
is omitted a description of the macro 
syntax is written to the log. 
 
The Parameters – ACTION 
 
The ACTION parameter tells the macro 
what you want done with the catalog.  
We’ll look at the values of the ACTION 
parameter and then at some examples. 
 
The ACTION parameter is not required, 
but has a default value (M).  See 
descriptions below. 
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An example of the results of each 
ACTION value will given  below. 
 
Using the Macro – Values of ACTION 
 
Note: for the examples below, assume 
that the current value of FMTSEARCH 
is TestLib and that WORK and 
LIBRARY maintain their default location 
at the beginning of the format search 
list.  Also, assume that there is a 
WORK.FORMATS catalog and that the 
libref LIBRARY has not been assigned. 
 
• D – deletes the catalog from the 

FMTSEARCH value. 
 
%fmtsearch(cat=ProdLib,action=D) 

 
The ProdLib.formats catalog will be 
removed from the search list.  The 
value of FMTSEARCH will be WORK 
LIBRARY. 
 
The following log note will be written: 
 

 
 

Note that if you looked at the value 
of FMTSEARCH that WORK and 
LIBRARY would not be there.  They 
are there by default. 

 
• B – adds (or moves) the catalog to 

the beginning of the format search 
list –before WORK and LIBRARY. 

 
%fmtsearch(cat=ProdLib,action=B) 

 

This will move WORK and LIBRARY 
to the second and third positions in 
the search list: 

 

 
 

Note that WORK and LIBRARY are 
now explicitly referenced. 

 
• E – adds (or moves) the catalog to 

the end of the list. 
 
%fmtsearch(cat=ProdLib,action=E) 

 

 
 

The status note will be the same as 
B above, with the exception of the 
order of the catalog list. 

 
• M – adds (or moves) the catalog to 

the “middle” of the list, but leaves 
WORK and LIBRARY in their default 
location at the beginning.  Note: if 
WORK and LIBRARY have already 
been explicitly specified in the 
FMTSEARCH list they will remain in 
their locations and this ACTION 
value will place the current catalog 
before them.  This is the default 
action of the macro. 

 
%fmtsearch(cat=ProdLib,action=M) 
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PRODLIB is moved to the middle of 
the list, after the default WORK and 
LIBRARY and before TESTLIB.  The 
status note will be the same as B 
above, with the exception of the 
order of the catalog list. 
 
Note that this is the default action 
and %fmtsearch(cat=ProdLib) would 
have produced the same result. 

 
• X – resets the FMTSEARCH option to 

its default value including only 
WORK and LIBRARY. 

 
%fmtsearch(action=X) 

 
• L – displays the status notes for the 

current value of the FMTSEARCH 
option in the SAS log. 

 
%fmtsearch(action=L) 

 
Note that for both actions X and L no 
CAT value is required and it is ignored if 
included. 
 
How Does it Work? 
 
An enumerated copy of the macro is 
given in Appendix 1.  We’ll step through 
it piece by piece to see how it works.  
There are some pieces that have been 
eliminated to save a little space. 
 
1 – The default catalog is FORMATS 
and is not required when setting the 
FMTSEARCH option.  In order to 
facilitate subsequent processing this 
statement strips off .FORMATS if it is 

present in the CAT parameter and 
upper-cases the value. 
 
2 – The macro variable &_FMS is set 
equal to the current value of the 
FMTSEARCH option.  The GETOPTION 
function is used to get the value.  Note 
that the value returned by GETOPTION 
contains parenthesis surrounding the 
catalog values.  These are stripped off 
here. 
 
As in step 1 above, .FORMATS is 
removed from any catalog references. 
 
3 – The X action simply resets the 
FMTSEARCH option to its default value 
by passing a null catalog list. 
 
4 – The D action deletes the current 
value by using the TRANWRD function.  
It translates the current CAT value to a 
blank value.  Note that the value passed 
to the function contains leading and 
trailing spaces.  This will prevent catalog 
names that may be embedded in other 
names from being affected. 
 
The new catalog list, without the current 
CAT, is stored in a macro variable, 
&_NewFMS, and passed to the 
FMTSEARCH option. 
 
Note that this section is called for many 
of the action values.  See further 
discussion for details. 
 
5 – The M action will place the current 
CAT value after default WORK and 
LIBRARY and before other catalogs.  
 
We’ll use a little trick to get this to work 
easily.  First, remember that the delete 
action was already run for the current 
CAT.  This does two things: it eliminates 
the current value from the FMTSEARCH 
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list and it creates the macro variable 
&_NewFMS which contains any other 
catalogs in the list. 
 
Now we can create a new FMTSEARCH 
value made up of the current catalog 
followed by any others that were already 
assigned.  Remember that WORK and 
LIBRARY do not show up in the 
FMTSEARCH list unless they have 
been explicitly coded.  This behavior 
works just fine with the macro.  If they 
were explicitly coded they will be in 
&_NewFMS and remain in their place.  If 
not, they will continue to occupy their 
default location at the beginning of the 
list. 
 
6 – This step places the current catalog 
at the beginning of the list.  There is a 
bit more going on here because we 
need to explicitly code WORK and 
LIBRARY so that they come after the 
current catalog. 
 
Again, remember that the delete action 
has already been run on the current 
catalog.  We need to check the value of 
&_NewFMS to see if WORK and/or 
LIBRARY are already in the list.  If they 
are we’ll leave them – it not, we’ll add 
them after the current catalog. 
 
7 – Again, the current catalog has 
already been deleted and now it is just 
added after the remaining catalog 
entries, placing it at the end of the list. 
 
8 – This step displays the FMTSEARCH 
option value after the actions above 
have been processed. 
 
First, we use the GETOPTION function 
again to get the current value of 
FMTSEARCH as we did above.  We 
then need to search that value to see if 

WORK and LIBRARY are there.  If there 
are not, that means they will be in their 
default places at the beginning of the list 
and we need to add them to the list.  
Add an asterisk to WORK and/or 
LIBRARY so we can footnote that they 
are there by default. 
 
9 – Now comes one of the most 
important features of the macro.  We’ll 
take out &_FMS list and strip out any 
asterisks we may have put there in step 
8. 
 
Now, loop through all the individual 
catalogs in the list, using the %SCAN 
function and breaking &_FMS on 
spaces.  We then pass each catalog 
entry to the CEXIST function.  If returns 
a 1 if the catalog exists and 0 if not.  We 
can use the CEXIST value to write the 
appropriate note to the log about the 
existence of each catalog. 
 
Conclusion 
 
I hope that this little macro has inspired 
you to not only be more brave in your 
development of your own permanent 
formats, but also to see how you can 
use the macro language to take control 
of circumstances that can seem a bit 
unruly at first. 
 
Please let me know if you see any areas 
for improvement or errors. 
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Appendix 1 
Enumerated Code 

 
(Comments and some error checking have been removed) 

 
 
%macro FmtSearch(Action=M,Cat=,Status=Y); 
  %local _FMS _Msg i pos; 
  %global _NewFMS; 
 
  %let Action = %upcase(&Action); 
 
  %* <code to check for valid actions and to display macro syntax 
      on empty call were removed for the sake of space> ; 
 
  %let Cat = %sysfunc(tranwrd(%upcase(&Cat),%str(.FORMATS),%str())); 
 
  %let _FMS = %upcase(%sysfunc(compress(%sysfunc(getoption(fmtsearch)),%str(%(%))))); 
  %let _FMS = %sysfunc(tranwrd(&_FMS,%str(.FORMATS),%str())); 
 
  %if &Action eq X %then  
    %do; 
      options fmtsearch=(); 
    %end; 
 
  %if &Action eq D or &Action eq M or &Action eq B or &Action eq E %then 
    %do; 
      %let _NewFMS = %sysfunc(tranwrd(%str( &_FMS ),%str( &cat ),%str())); 
      %if &Action eq D %then %str(options fmtsearch=(&_NewFMS);); 
    %end; 
 
  %if &Action eq M %then 
    %do; 
      options fmtsearch=(&Cat &_NewFMS); 
    %end; 
 
  %if &Action eq B %then 
    %do; 
      %let _NewCat = &Cat; 
      %if %sysfunc(indexw(&_NewFMS,WORK)) eq 0 and &Cat ne WORK %then %let _NewCat = &_NewCat WORK; 
      %if %sysfunc(indexw(&_NewFMS,LIBRARY)) eq 0 and &Cat ne LIBRARY %then 
        %let _NewCat = &_NewCat LIBRARY; 
      options fmtsearch=(&_NewCat &_NewFMS); 
    %end; 
 
  %if &Action eq E %then 
    %do; 
      options fmtsearch=(&_NewFMS &Cat); 
    %end; 
 
  %if &Status eq Y %then 
    %do; 
      %put;  
      %put %str(===========================================================); 
      %let _FMS = %upcase(%sysfunc(compress(%sysfunc(getoption(fmtsearch)),%str(%(%))))); 
      %if %sysfunc(indexw(%upcase(&_FMS),LIBRARY)) eq 0 %then %let _FMS = &_FMS LIBRARY*; 
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      %if %sysfunc(indexw(%upcase(&_FMS),WORK)) eq 0 %then %let FMS = WORK* &FMS; 
      %put Current FmtSearch Option value:; 
      %put ;    
      %put %str(     ) &_FMS; 
      %put ; 
      %if %index(&_FMS,*) ne 0 %then 
        %do; 
          %put %str(   )*implicitly included by default.;   %put; 
        %end; 
 
      %let _FMS = %sysfunc(compress(&_FMS,%str(*))); 
      %put %str(============================================================); 
      %put Status of current catalogs:; 
      %put ; 
      %let i = 1; 
      %do %while(%scan(&_FMS,&i,%str( )) ne %str( )); 
        %let ThisCat = %scan(&_FMS,&i,%str( )); 
        %if %index(&ThisCat,.) eq 0 %then %let ThisCat = &ThisCat..FORMATS; 
        %if %sysfunc(cexist(&ThisCat)) eq 1 %then %put NOTE:    &ThisCat EXISTS; 
        %else %put WARNING: &ThisCat DOES NOT EXIST; 
        %let i = %eval(&i + 1); 
      %end; 
      %put %str(============================================================); 
      %put ; 
    %end; 
 
  %Finish: 
%mend; 
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