
 1

Keep Those Formats Rolling:
A Macro to Manage the FMTSEARCH= Option

Pete Lund, Looking Glass Analytics, Olympia, WA

Introduction

User-defined formats in the SAS
System®

 are a wonderful thing. They
allow you to label data, classify data and
aggregate data. Storing your formats in
a permanent catalog is a handy and
efficient way to ensure that your formats
are always available to your programs.

The FMTSEARCH= option allows you to
tell SAS which catalogs to search when
a user-written format is referenced.
However, this option can be unforgiving
and provides little feedback.

This paper presents a macro which
allows for more control over the
FMTSEARCH= option. Catalogs can be
added to the list without deleting those
that already exist and can be easily
moved to the beginning or end of the
list. Also, the current value of the format
search list can be displayed as well.

Searching for User-Defined Formats

By default SAS is only going to look in
two places when it sees a reference to a
user-defined format. In the
WORK.FORMATS catalog (the default
location) and the LIBRARY.FORMATS
catalog.

LIBRARY is a “special” libref that SAS
will also search for formats if a catalog
called FORMATS is located there. This
is the only aspect of LIBRARY that is

different than any other libref. It’s not
really a reserved name; the default
format-searching behavior is its only
special feature. You can store datasets
and other catalogs in the LIBRARY
library.

LIBRARY is a handy place to
permanently store formats so that they
are available from session to session.
As long as the libref is active SAS will
find formats stored there.

What about formats stored in other
libraries or catalogs? That’s another
story!

You’ll find quickly that the
LIBRARY.FORMATS catalog can be a
bit restricting for storing your formats.
Very often you will have multiple
projects with multiple formats and it
would be nice to store the formats in the
same library as the rest of the project
data.

However, SAS only searches for
formats in the WORK.FORMATS and
LIBRARY.FORMATS catalogs - how do
you reference all your project formats?
The FMTSEARCH= option allows you to
specify which format catalogs to look in
when a user-defined format is
referenced.

Using the FMTSEARCH= Option

SUGI 28 Coders' Corner

 2

The FMTSEARCH= option is a system
option, not a PROC FORMAT option,
and is used on an OPTIONS statement.
The value is a list of catalogs to search
separated by spaces and enclosed in
parentheses. The catalog names are
not quoted and can contain either one-
level or two-level names. Two-level
names are in the format
<LIBREF>.<CATALOG> and one-level
names imply FORMATS as the catalog
name.

The WORK.FORMATS and
LIBRARY.FORMATS catalogs are
always searched first, unless they are
included in the FMTSEARCH list.

options fmtsearch=(ProjLib
 TempLib);

In the above example, four catalogs will
be searched in the following order
(notice that WORK and LIBRARY are
included in the list and that the
FORMATS catalog is implied for all the
one-level names):

• WORK.FORMATS
• LIBRARY.FORMATS
• PROJLIB.FORMATS
• TEMPLIB.FORMATS

options fmtsearch=(ProjLib
 Library Work);

In this example, three libraries will be
searched in the order shown:

• PROJLIB.FORMATS
• LIBRARY.FORMATS
• WORK.FORMATS

As we’ll see, the order of the list is
important and is different depending on
whether WORK and LIBRARY are
explicitly referenced.

A few facts about the FMTSEARCH=
option will help you to resolve issues of
formats that aren’t found or are different
than you expect.

The FMTSEARCH= List is Ordered

The catalogs are searched in the order
listed. When a format is found it is used
and the search stops. This is only an
issue if you have formats of the same
name in multiple catalogs. If so, the first
one found will be used.

The FMTSEARCH= List is All Inclusive

With the exception of the WORK and
LIBRARY libraries, discussed earlier,
the only catalogs searched are those
that are in the FMTSEARCH= list. If you
have formats stored in other catalogs
they will not be found.

This can really start to be an annoyance
if you store formats in a number of
catalogs for different projects. Every
time you change the FMTSEARCH= list
the prior value is overwritten. If you just
want to add another catalog to the list
you need to include what was there
before as well. It’s not an uncommon
experience to spend many minutes
(hours!) trying to figure out why the
formats that you can see in SAS
Explorer or in your SAS code cannot be
found only to realize that the
FMTSEARCH= list doesn’t include the
catalog any more.

The FMTSEARCH= List is Not Validated

No checking on the validity or existence
of a libname or catalog name is done
here. This can cause a lot of gray hairs
is you have a slight typo in a libref or
catalog name.

SUGI 28 Coders' Corner

 3

A “side effect” of this is that the
sequence of the LIBNAME statement
and FMTSEARCH= option are
unimportant. As long as both are set
before the format is referenced, formats
in the included catalogs will be found.

Looking at the FMTSEARCH= Value

Just looking at the FMTSEARCH option
value can be confusing. Let’s follow the
value along as we make a few changes.

When SAS is first started the default
value for FMTSEARCH is (WORK
LIBRARY). We do a little work on a
format, $Race, in the work library and
then need to work on another project.
We want to point to a permanent format
catalog so we issue the following
command:

 options fmtsearch=(ProdLib);

If we look at the FMTSEARCH option
now it is (PRODLIB). All is right with the
world – until you run a procedure and
notice that your race values are in the
temporary format you were working on
earlier!

The problem is that the WORK and
LIBRARY format catalogs are always
searched. But, once a value has been
given to the FMTSEARCH option
WORK and LIBRARY no longer are
displayed as part of the value unless
they are explicitly coded. This means
that if you look at the value of
FMTSEARCH and do not see WORK
and LIBRARY they are at the beginning
of the search list.

In order to get our permanent format to
take precedence over the temporary
format of the same name, our option
value would need to be:

 options fmtsearch=(ProdLib work);

All of these can, and will, bite you as
you use more and more formats. So, is
there anything you can do??

A FMTSEARCH= Management Macro

One solution to some of these issues
was to create a macro to manage the
FMTSEARCH= value. The macro has
only two important parameters: CAT,
which specifies the catalog and
ACTION, which specifies what you want
to do.

The FMTSEARCH macro does two
things: first, it changes the
FMTSEARCH option as specified and
second, it writes to the log the current
FMTSEARCH value and the status of all
the catalogs referenced.

The Parameters – CAT

The value of the CAT parameter is
simply the format catalog name. It can
be either a one-level or two-level name.
If a one-level name is listed, the catalog
FORMATS is assumed.

The CAT parameter is not required. If it
is omitted a description of the macro
syntax is written to the log.

The Parameters – ACTION

The ACTION parameter tells the macro
what you want done with the catalog.
We’ll look at the values of the ACTION
parameter and then at some examples.

The ACTION parameter is not required,
but has a default value (M). See
descriptions below.

SUGI 28 Coders' Corner

 4

An example of the results of each
ACTION value will given below.

Using the Macro – Values of ACTION

Note: for the examples below, assume
that the current value of FMTSEARCH
is TestLib and that WORK and
LIBRARY maintain their default location
at the beginning of the format search
list. Also, assume that there is a
WORK.FORMATS catalog and that the
libref LIBRARY has not been assigned.

• D – deletes the catalog from the

FMTSEARCH value.

%fmtsearch(cat=ProdLib,action=D)

The ProdLib.formats catalog will be
removed from the search list. The
value of FMTSEARCH will be WORK
LIBRARY.

The following log note will be written:

Note that if you looked at the value
of FMTSEARCH that WORK and
LIBRARY would not be there. They
are there by default.

• B – adds (or moves) the catalog to

the beginning of the format search
list –before WORK and LIBRARY.

%fmtsearch(cat=ProdLib,action=B)

This will move WORK and LIBRARY
to the second and third positions in
the search list:

Note that WORK and LIBRARY are
now explicitly referenced.

• E – adds (or moves) the catalog to

the end of the list.

%fmtsearch(cat=ProdLib,action=E)

The status note will be the same as
B above, with the exception of the
order of the catalog list.

• M – adds (or moves) the catalog to

the “middle” of the list, but leaves
WORK and LIBRARY in their default
location at the beginning. Note: if
WORK and LIBRARY have already
been explicitly specified in the
FMTSEARCH list they will remain in
their locations and this ACTION
value will place the current catalog
before them. This is the default
action of the macro.

%fmtsearch(cat=ProdLib,action=M)

SUGI 28 Coders' Corner

 5

PRODLIB is moved to the middle of
the list, after the default WORK and
LIBRARY and before TESTLIB. The
status note will be the same as B
above, with the exception of the
order of the catalog list.

Note that this is the default action
and %fmtsearch(cat=ProdLib) would
have produced the same result.

• X – resets the FMTSEARCH option to

its default value including only
WORK and LIBRARY.

%fmtsearch(action=X)

• L – displays the status notes for the

current value of the FMTSEARCH
option in the SAS log.

%fmtsearch(action=L)

Note that for both actions X and L no
CAT value is required and it is ignored if
included.

How Does it Work?

An enumerated copy of the macro is
given in Appendix 1. We’ll step through
it piece by piece to see how it works.
There are some pieces that have been
eliminated to save a little space.

1 – The default catalog is FORMATS
and is not required when setting the
FMTSEARCH option. In order to
facilitate subsequent processing this
statement strips off .FORMATS if it is

present in the CAT parameter and
upper-cases the value.

2 – The macro variable &_FMS is set
equal to the current value of the
FMTSEARCH option. The GETOPTION
function is used to get the value. Note
that the value returned by GETOPTION
contains parenthesis surrounding the
catalog values. These are stripped off
here.

As in step 1 above, .FORMATS is
removed from any catalog references.

3 – The X action simply resets the
FMTSEARCH option to its default value
by passing a null catalog list.

4 – The D action deletes the current
value by using the TRANWRD function.
It translates the current CAT value to a
blank value. Note that the value passed
to the function contains leading and
trailing spaces. This will prevent catalog
names that may be embedded in other
names from being affected.

The new catalog list, without the current
CAT, is stored in a macro variable,
&_NewFMS, and passed to the
FMTSEARCH option.

Note that this section is called for many
of the action values. See further
discussion for details.

5 – The M action will place the current
CAT value after default WORK and
LIBRARY and before other catalogs.

We’ll use a little trick to get this to work
easily. First, remember that the delete
action was already run for the current
CAT. This does two things: it eliminates
the current value from the FMTSEARCH

SUGI 28 Coders' Corner

 6

list and it creates the macro variable
&_NewFMS which contains any other
catalogs in the list.

Now we can create a new FMTSEARCH
value made up of the current catalog
followed by any others that were already
assigned. Remember that WORK and
LIBRARY do not show up in the
FMTSEARCH list unless they have
been explicitly coded. This behavior
works just fine with the macro. If they
were explicitly coded they will be in
&_NewFMS and remain in their place. If
not, they will continue to occupy their
default location at the beginning of the
list.

6 – This step places the current catalog
at the beginning of the list. There is a
bit more going on here because we
need to explicitly code WORK and
LIBRARY so that they come after the
current catalog.

Again, remember that the delete action
has already been run on the current
catalog. We need to check the value of
&_NewFMS to see if WORK and/or
LIBRARY are already in the list. If they
are we’ll leave them – it not, we’ll add
them after the current catalog.

7 – Again, the current catalog has
already been deleted and now it is just
added after the remaining catalog
entries, placing it at the end of the list.

8 – This step displays the FMTSEARCH
option value after the actions above
have been processed.

First, we use the GETOPTION function
again to get the current value of
FMTSEARCH as we did above. We
then need to search that value to see if

WORK and LIBRARY are there. If there
are not, that means they will be in their
default places at the beginning of the list
and we need to add them to the list.
Add an asterisk to WORK and/or
LIBRARY so we can footnote that they
are there by default.

9 – Now comes one of the most
important features of the macro. We’ll
take out &_FMS list and strip out any
asterisks we may have put there in step
8.

Now, loop through all the individual
catalogs in the list, using the %SCAN
function and breaking &_FMS on
spaces. We then pass each catalog
entry to the CEXIST function. If returns
a 1 if the catalog exists and 0 if not. We
can use the CEXIST value to write the
appropriate note to the log about the
existence of each catalog.

Conclusion

I hope that this little macro has inspired
you to not only be more brave in your
development of your own permanent
formats, but also to see how you can
use the macro language to take control
of circumstances that can seem a bit
unruly at first.

Please let me know if you see any areas
for improvement or errors.

Acknowledgements

SAS® is a registered trademark of SAS
Institute, Inc. in the USA and other
countries.

SUGI 28 Coders' Corner

 7

Author Contact Information

Pete Lund
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970
pete.lund@lgan.com
www.lgan.com

Documented electronic copies of the
macro are available on request. Drop
me an e-mail and I’ll send it along. You
should also be able to cut and paste the
code from the electronic copy of the
proceedings.

SUGI 28 Coders' Corner

 8

Appendix 1
Enumerated Code

(Comments and some error checking have been removed)

%macro FmtSearch(Action=M,Cat=,Status=Y);
 %local _FMS _Msg i pos;
 %global _NewFMS;

 %let Action = %upcase(&Action);

 %* <code to check for valid actions and to display macro syntax
 on empty call were removed for the sake of space> ;

 %let Cat = %sysfunc(tranwrd(%upcase(&Cat),%str(.FORMATS),%str()));

 %let _FMS = %upcase(%sysfunc(compress(%sysfunc(getoption(fmtsearch)),%str(%(%)))));
 %let _FMS = %sysfunc(tranwrd(&_FMS,%str(.FORMATS),%str()));

 %if &Action eq X %then
 %do;
 options fmtsearch=();
 %end;

 %if &Action eq D or &Action eq M or &Action eq B or &Action eq E %then
 %do;
 %let _NewFMS = %sysfunc(tranwrd(%str(&_FMS),%str(&cat),%str()));
 %if &Action eq D %then %str(options fmtsearch=(&_NewFMS););
 %end;

 %if &Action eq M %then
 %do;
 options fmtsearch=(&Cat &_NewFMS);
 %end;

 %if &Action eq B %then
 %do;
 %let _NewCat = &Cat;
 %if %sysfunc(indexw(&_NewFMS,WORK)) eq 0 and &Cat ne WORK %then %let _NewCat = &_NewCat WORK;
 %if %sysfunc(indexw(&_NewFMS,LIBRARY)) eq 0 and &Cat ne LIBRARY %then
 %let _NewCat = &_NewCat LIBRARY;
 options fmtsearch=(&_NewCat &_NewFMS);
 %end;

 %if &Action eq E %then
 %do;
 options fmtsearch=(&_NewFMS &Cat);
 %end;

 %if &Status eq Y %then
 %do;
 %put;
 %put %str(===);
 %let _FMS = %upcase(%sysfunc(compress(%sysfunc(getoption(fmtsearch)),%str(%(%)))));
 %if %sysfunc(indexw(%upcase(&_FMS),LIBRARY)) eq 0 %then %let _FMS = &_FMS LIBRARY*;

SUGI 28 Coders' Corner

 9

 %if %sysfunc(indexw(%upcase(&_FMS),WORK)) eq 0 %then %let FMS = WORK* &FMS;
 %put Current FmtSearch Option value:;
 %put ;
 %put %str() &_FMS;
 %put ;
 %if %index(&_FMS,*) ne 0 %then
 %do;
 %put %str()*implicitly included by default.; %put;
 %end;

 %let _FMS = %sysfunc(compress(&_FMS,%str(*)));
 %put %str(==);
 %put Status of current catalogs:;
 %put ;
 %let i = 1;
 %do %while(%scan(&_FMS,&i,%str()) ne %str());
 %let ThisCat = %scan(&_FMS,&i,%str());
 %if %index(&ThisCat,.) eq 0 %then %let ThisCat = &ThisCat..FORMATS;
 %if %sysfunc(cexist(&ThisCat)) eq 1 %then %put NOTE: &ThisCat EXISTS;
 %else %put WARNING: &ThisCat DOES NOT EXIST;
 %let i = %eval(&i + 1);
 %end;
 %put %str(==);
 %put ;
 %end;

 %Finish:
%mend;

SUGI 28 Coders' Corner

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	pnum116-28: Paper 116-28

