
Paper 99-28

- 1 -

The DOW (not that DOW!!!) and the LOCF in Clinical Trials

Venky Chakravarthy, Ann Arbor, MI

ABSTRACT

Pharmaceutical companies conduct longitudinal
studies on human subjects that often span several
months. It is unrealistic to expect patients to keep
every scheduled visit over such a long period of time.
Despite every effort, patient data are not collected for
some time points. Eventually, these become missing
values in a SAS data set later. For reporting
purposes, the most recent previously available value
is substituted for each missing visit. This is called the
Last Observation Carried Forward (LOCF) and is
familiar to the Pharmaceutical audience.

There are a number of ways to carry forward the last
observation using SAS. This paper focuses on a
technique that has gained prominence among SAS-L
regulars. It is called the DO loop of Whitlock (DOW)
also known as the Dorfman-Whitlock loop.

INTRODUCTION

We mostly use the default behavior of the DATA
STEP to create working code. However, certain
common tasks are made easier by overriding the
default behavior. In the Pharmaceutical Industry one
such common task is LOCF. We will examine how to
override one of the default behaviors of the data step
to facilitate the calculation of LOCF.

To get value out of this a good understanding of
Base SAS is assumed. If you are a beginner and
work in the pharmaceutical or biotech industry, you
are encouraged to read the paper and attend the
presentation.

THE ORGANIZATION OF THIS PAPER

(1) We will create a weight data set and also
display what it should look like after LOCF.

(2) We will calculate the LOCF with the default
behavior of the data step.

(3) Next we will examine how to modify this
default behavior to benefit LOCF.

(4) We will finish with a few other benefits of
such a modified data step behavior.

CREATING A SAMPLE WEIGHT DATA SET

Since this paper is targeted for a Pharmaceutical
audience, let us create a weight data set with a
limited number of variables and observations. For
the sake of simplicity, we will not deal with any
treatment groups and consider only two patients with
5 scheduled visits for weight measures. We will also
make the assumption that these two patients missed
a few of their scheduled visits:

1. data weight ;
2. do pt = 1 to 2 ;
3. do visit = 1 to 5 ;
4. weight = ceil (200 * ranuni (1963)) ;
5. if weight < 150 then weight = . ;
6. output ;
7. end ;
8. end ;
9. run ;

+FSVIEW: WORK.WEIGHT (B)----+
| Obs pt visit weight |
| |
| 1 1 1 . |
| 2 1 2 . |
| 3 1 3 172 |
| 4 1 4 . |
| 5 1 5 . |
| 6 2 1 . |
| 7 2 2 174 |
| 8 2 3 . |
| 9 2 4 150 |
| 10 2 5 . |
| |
+----------------------------+

Visits 1 and 2 are Screening Visits. The 3rd visit is the
randomization visit when patients are assigned to
treatment groups. This is also the baseline visit. So,
if a patient missed this visit, the weight from Visit 2 is
considered the base weight. If the patient missed
that too then weight at Visit 1 is considered the
baseline. If that was also missing then the baseline
weight is considered missing. Visit 4 is a post-
baseline visit and 5 is the same but also the
termination visit. If the termination weight was not
recorded then the weight must be taken from visit 4 if
available. If weight at visit 4 is missing then the
termination weight is considered missing.

R
A
N
D
O
M
I
Z
A
T
I
O
N

SUGI 28 Coders' Corner

2

HOW IT SHOULD LOOK AFTER THE LOCF

Now that we have examined the data, let us take a
look at the task we have, that of creating LOCF
values. More particularly, let us examine how the
projected BASELINE WEIGHT data set should look.

+FSVIEW: WORK.BASEWEIGHT (B)-----+
| Obs pt visit weight BASE |
| |
| 1 1 3 172 172 |
| 2 2 3 . 174 |
| |
+---------------------------------+

The POST BASELINE data set should look as
follows:

+FSVIEW: WORK.POSTWEIGHT (B)-----+
| Obs pt visit weight POST |
| |
| 1 1 4 . . |
| 2 1 5 . . |
| 3 2 4 150 150 |
| 4 2 5 . 150 |
| |
+---------------------------------+

Let us now examine the code to go about this task.
The traditional method of calculating LOCF for the
baseline and post baseline data is first examined.
This is what we have earlier referred to as the default
behavior of the data step.

LOCF - THE TRADITIONAL WAY

The following code will look remarkably familiar if you
are working in the pharmaceutical industry.

1. data baseweight ;
2. set weight (where = (visit <=3)) ;
3. by pt ;
4. retain base ;
5. if first.pt then base= . ;
6. if weight ^= . then base = weight ;
7. if last.pt ;
8. run ;

This is straightforward, simple and easy to follow.
However, there are many explicit instructions.

(1) We RETAIN BASE to prevent its value from
being reset to missing at the beginning of the
next iteration of the data step.

(2) We also take care not to carry the previous
patient’s weight by reinitializing the BASE
value to missing in line #5.

(3) We instruct to output only the last qualified
baseline visit.

The calculation of LOCF for the post baseline visits
is not much different. The only exceptions are:

(1) We subset from visit 4.
(2) We output all observations after (1).

The code for the POST BASELINE dataset is as
follows:

1. data postweight ;
2. set weight (where = (visit > 3)) ;
3. by pt ;
4. retain post ;
5. if first.pt then post = . ;
6. if weight ^= . then post = weight ;
7. run ;

THE INTERNAL WORKINGS OF THE DATA STEP

Let us examine the internal workings of the data step
that creates BASEWEIGHT. There are two compile
time directives. The RETAIN statement and the BY
PT group that follows the SET statement. We will
deal with RETAIN here.

The directive RETAIN causes the variable that is
created by an input or assignment statement to
retain its value from one iteration of the data step
to the next (SAS OnlineDoc, Version 8, 2001).

By iteration it is meant that the data step begins a
loop from the top and ends it at the bottom by
default. The bottom is typically a RUN statement or
any step boundary like another DATA statement or a
PROC. Under normal circumstances, as used in the
creation of BASEWEIGHT here, the data step reads
an observation from the WEIGHT data step every
time it iterates from the top to the bottom. Mark the
above statement carefully for future reference. The
current iteration number manifests itself in the
automatic variable _N_.

We will now examine what happens as the data step
reaches the bottom:

AT THE BOTTOM

These default actions are performed by the data step
(SAS OnlineDoc, Version 8, 2001).

1. Automatically, writes the observation
to the BASEWEIGHT data set.

2. Automatically returns to the top of
the data step.

SUGI 28 Coders' Corner

3

WHEN IT RETURNS TO THE TOP

When it returns to the top, it automatically resets
the Program Data Vector (PDV) to missing for the
non-retained variables. Note that the variables in the
input data set WEIGHT, are automatically retained
but are immediately clobbered by the values from the
next observation. Since the next iteration has begun,
the iteration counter _N_ is incremented by 1.

We have covered two very important concepts as
they relate to the default behavior of the data step.
One occurs at the top and the other at the bottom
as outlined above. We will next examine an alternate
approach to the LOCF calculations and outputting
only the last visit per patient. It will become clearer
why the concepts outlined thus far have such an
important bearing.

MODIFYING THE DEFAULT BEHAVIOR – AN
ALTERNATE APPROACH TO LOCF

Let us now rewrite the code that creates the
BASEWEIGHT data set as:

1. data baseweight ;
2. do until (last.pt) ;
3. set weight (where = (visit <=3)) ;
4. by pt ;
5. if weight ^= . then base = weight ;
6. end ;
7. run ;

Do not be deceived by the fact that the overall code
has reduced by only 1 line. There are some
significant improvements to the design. We have
eliminated the RETAIN, the REINITIALIZING of
BASE value for the next patient and do not explicitly
ask the last value for the patient to be output (IF
LAST.PT). That is 3 significant eliminations for such
a simple example.

How is this accomplished? Recall that in the
default behavior of the data step, the non-
retained variables are automatically reset to
missing at the top of the data step. So to eliminate
the need for a RETAIN, the first task is to modify the
default behavior so that the data step does not reset
the values for BASE at the top. At least, we do not
want it to reset the value until all the observations are
read for a patient. So we would like the data step to
return to the top only after reading all the visits for a
patient. This task is accomplished by the DO loop of
Whitlock (DOW) which puts the SET statement
inside a DO UNTIL (LAST.PT) loop.

Ian Whitlock posted the DOW on SAS-L sometime in
1999-2000. At least, that was the first time it was
prominently noticed. Paul Dorfman immediately
recognized its immense potential and started
applying it to various problems from many industries
that represent SAS-L members.

So, how is the DOW used to eliminate the RETAIN
in our data step. This is accomplished by putting the
SET statement inside a DO loop with an UNTIL
clause to end at the last qualified visit for the patient
(LAST.PT). In this case it ends at Visit 3, since the
input data set WEIGHT is subset to read only the
first 3 visits.

The data step reads all the visits per patient inside
the DOW without reaching the bottom of the data
step. This means the data step does not iterate until
all the visits are exhausted for a patient. Any variable
created inside this do loop is not reset to missing
until it exits the DOW. So the variable BASE is
automatically retained for all the observations of any
given patient.

Next we deal with the end of the loop. This special
DO loop tests for the LAST.PT at the bottom of the
DO loop. Recall that by default, at the bottom of
the data step, the current observation is written
to BASEWEIGHT. After exiting the DOW, only the
last visit for the patient is available for output. Hence
this is the only visit that is output for the patient. This
is a very convenient feature since this eliminates the
need to explicitly subset for LAST.PT.

Next we cover how the value of BASE is
automatically cleaned up for the next patient. The
data step returns to the top and begins its next
iteration only after it exits the DOW and performs the
default actions at the bottom. It exits the DOW only
after reading all the observations for a patient.
Recall that in the default behavior of the data
step, the non-retained variables are
automatically reset to missing at the top of the
data step. Well, we have not retained BASE so it is
automatically reset to missing at the top of the data
step. It is as simple as that.

Likewise the POSTWEIGHT data set can be coded
with the DOW as:

1. data postweight ;
2. do until (last.pt) ;
3. set weight (where = (visit > 3)) ;
4. by pt ;
5. if weight ^= . then post = weight ;
6. output ;
7. end ;
8. run ;

SUGI 28 Coders' Corner

4

Notice that the only difference from the DOW in
BASEWEIGHT (other than the WHERE subset) is
the explicit OUTPUT statement. This ensures that
every observation inside the do loop is output and
avoids the default output at the bottom of the data
step. The only action performed at the bottom then is
to automatically return to the top of the data step.

CONCLUSION

We have seen an application of a technique that
modifies the default behavior of the data step. The
DOW has a wide variety of uses and is a natural
selection when it comes to outputting a single
observation per group and calculating variables that
need to be retained within the group only. This is a
common situation in Clinical Trials with LOCF.

REFERENCES

SAS OnlineDoc (2001), SAS Language Reference
Concepts: Data STEP Execution. SAS Institute Inc.,
Cary, NC, USA.

ACKNOWLEDGMENTS

First and foremost my sincere appreciation goes to
Ian Whitlock for authoring this technique. Without
Paul Dorfman, this technique may have taken longer
to come to light. So, my sincere thanks go to him for
demonstrating some brilliant applications using this
technique. Also, the many SAS-L participants who
posted many interesting questions that made the
DOW popular.

CONTACT INFORMATION (HEADER 1)

Your comments and questions are valued and
encouraged. Contact the author at:

Venky Chakravarthy
 1591 Abigail Way
 Ann Arbor, MI 48103
 Email: swovcc@hotmail.com

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of
their respective companies.

SUGI 28 Coders' Corner

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

