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The DOW (not that DOW!!!) and the LOCF in Clinical Trials 
 

Venky Chakravarthy, Ann Arbor, MI 
 

ABSTRACT 
 
Pharmaceutical companies conduct longitudinal 
studies on human subjects that often span several 
months. It is unrealistic to expect patients to keep 
every scheduled visit over such a long period of time. 
Despite every effort, patient data are not collected for 
some time points. Eventually, these become missing 
values in a SAS data set later. For reporting 
purposes, the most recent previously available value 
is substituted for each missing visit. This is called the 
Last Observation Carried Forward (LOCF) and is 
familiar to the Pharmaceutical audience.  
 
There are a number of ways to carry forward the last 
observation using SAS. This paper focuses on a 
technique that has gained prominence among SAS-L 
regulars. It is called the DO loop of Whitlock (DOW) 
also known as the Dorfman-Whitlock loop. 

INTRODUCTION  
 
We mostly use the default behavior of the DATA 
STEP to create working code. However, certain 
common tasks are made easier by overriding the 
default behavior. In the Pharmaceutical Industry one 
such common task is LOCF. We will examine how to 
override one of the default behaviors of the data step 
to facilitate the calculation of LOCF.   
 
To get value out of this a good understanding of 
Base SAS is assumed. If you are a beginner and 
work in the pharmaceutical or biotech industry, you 
are encouraged to read the paper and attend the 
presentation. 
 

THE ORGANIZATION OF THIS PAPER 
 

(1) We will create a weight data set and also 
display what it should look like after LOCF. 

(2) We will calculate the LOCF with the default 
behavior of the data step. 

(3) Next we will examine how to modify this 
default behavior to benefit LOCF. 

(4) We will finish with a few other benefits of 
such a modified data step behavior. 

 

 

 

CREATING A SAMPLE WEIGHT DATA SET 
 
Since this paper is targeted for a Pharmaceutical 
audience, let us create a weight data set with a 
limited number of variables and observations. For 
the sake of simplicity, we will not deal with any 
treatment groups and consider only two patients with 
5 scheduled visits for weight measures. We will also 
make the assumption that these two patients missed 
a few of their scheduled visits: 
 

1. data weight ; 
2.    do pt = 1 to 2 ; 
3.        do visit = 1 to 5 ; 
4.            weight = ceil ( 200 * ranuni ( 1963 ) ) ; 
5.            if weight < 150 then weight = . ; 
6.            output ; 
7.        end ; 
8.    end ; 
9. run ; 

 
+FSVIEW:  WORK.WEIGHT (B)----+ 
| Obs    pt   visit  weight  | 
|                            | 
|   1     1       1       .  | 
|   2     1       2       .  | 
|   3     1       3     172  | 
|   4     1       4       .  | 
|   5     1       5       .  | 
|   6     2       1       .  | 
|   7     2       2     174  | 
|   8     2       3       .  | 
|   9     2       4     150  | 
|  10     2       5       .  | 
|                            | 
+----------------------------+  
 
Visits 1 and 2 are Screening Visits. The 3rd visit is the 
randomization visit when patients are assigned to 
treatment groups. This is also the baseline visit. So, 
if a patient missed this visit, the weight from Visit 2 is 
considered the base weight. If the patient missed 
that too then weight at Visit 1 is considered the 
baseline. If that was also missing then the baseline 
weight is considered missing. Visit 4 is a post-
baseline visit and 5 is the same but also the 
termination visit. If the termination weight was not 
recorded then the weight must be taken from visit 4 if 
available. If weight at visit 4 is missing then the 
termination weight is considered missing. 
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HOW IT SHOULD LOOK AFTER THE LOCF 
 
Now that we have examined the data, let us take a 
look at the task we have, that of creating LOCF 
values. More particularly, let us examine how the 
projected BASELINE WEIGHT data set should look. 
 
+FSVIEW:  WORK.BASEWEIGHT (B)-----+ 
| Obs    pt   visit  weight  BASE | 
|                                 | 
|   1     1       3     172   172 | 
|   2     2       3       .   174 | 
|                                 | 
+---------------------------------+ 
 
The POST BASELINE data set should look as 
follows: 
 
+FSVIEW:  WORK.POSTWEIGHT (B)-----+ 
| Obs    pt   visit  weight  POST | 
|                                 | 
|   1     1       4       .     . | 
|   2     1       5       .     . | 
|   3     2       4     150   150 | 
|   4     2       5       .   150 | 
|                                 | 
+---------------------------------+ 
 
Let us now examine the code to go about this task. 
The traditional method of calculating LOCF for the 
baseline and post baseline data is first examined. 
This is what we have earlier referred to as the default 
behavior of the data step.   

LOCF - THE TRADITIONAL WAY  
 
The following code will look remarkably familiar if you 
are working in the pharmaceutical industry. 
 

1. data baseweight ;   
2.     set weight ( where = ( visit <=3 ) ) ; 
3.     by pt ; 
4.     retain base ; 
5.     if first.pt then base= . ; 
6.     if weight ^= . then base = weight ; 
7.     if last.pt ; 
8. run ; 

 
This is straightforward, simple and easy to follow. 
However, there are many explicit instructions.  
 

(1) We RETAIN BASE to prevent its value from 
being reset to missing at the beginning of the 
next iteration of the data step.  

(2) We also take care not to carry the previous 
patient’s weight by reinitializing the BASE 
value to missing in line #5.  

(3) We instruct to output only the last qualified 
baseline visit. 

 
The calculation of LOCF for the post baseline visits 
is not much different. The only exceptions are: 
 

(1) We subset from visit 4. 
(2) We output all observations after (1). 

 
The code for the POST BASELINE dataset is as 
follows: 

1. data postweight ;   
2.    set weight ( where = ( visit > 3 ) ) ; 
3.    by pt ; 
4.    retain post ; 
5.    if first.pt then post = . ; 
6.    if weight ^= . then post = weight ; 
7. run ; 

 

THE INTERNAL WORKINGS OF THE DATA STEP 

Let us examine the internal workings of the data step 
that creates BASEWEIGHT. There are two compile 
time directives. The RETAIN statement and the BY 
PT group that follows the SET statement. We will 
deal with RETAIN here. 

The directive RETAIN causes the variable that is 
created by an input or assignment statement to 
retain its value from one iteration of the data step 
to the next (SAS OnlineDoc, Version 8, 2001).   

By iteration it is meant that the data step begins a 
loop from the top and ends it at the bottom by 
default. The bottom is typically a RUN statement or 
any step boundary like another DATA statement or a 
PROC. Under normal circumstances, as used in the 
creation of BASEWEIGHT here, the data step reads 
an observation from the WEIGHT data step every 
time it iterates from the top to the bottom. Mark the 
above statement carefully for future reference. The 
current iteration number manifests itself in the 
automatic variable _N_. 

We will now examine what happens as the data step 
reaches the bottom: 
 
AT THE BOTTOM 

These default actions are performed by the data step 
(SAS OnlineDoc, Version 8, 2001).  

1. Automatically, writes the observation 
to the BASEWEIGHT data set.  

2. Automatically returns to the top of 
the data step. 
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WHEN IT RETURNS TO THE TOP 
 

When it returns to the top, it automatically resets 
the Program Data Vector (PDV) to missing for the 
non-retained variables. Note that the variables in the 
input data set WEIGHT, are automatically retained 
but are immediately clobbered by the values from the 
next observation. Since the next iteration has begun, 
the iteration counter _N_ is incremented by 1. 
 
We have covered two very important concepts as 
they relate to the default behavior of the data step. 
One occurs at the top and the other at the bottom 
as outlined above. We will next examine an alternate 
approach to the LOCF calculations and outputting 
only the last visit per patient. It will become clearer 
why the concepts outlined thus far have such an 
important bearing. 

MODIFYING THE DEFAULT BEHAVIOR – AN 
ALTERNATE APPROACH TO LOCF  
 
Let us now rewrite the code that creates the 
BASEWEIGHT data set as: 
 

1. data baseweight ;   
2.     do until ( last.pt ) ; 
3.         set weight ( where = ( visit <=3 ) ) ; 
4.         by pt ; 
5.         if weight ^= . then base = weight ; 
6.     end ; 
7. run ; 

 
Do not be deceived by the fact that the overall code 
has reduced by only 1 line. There are some 
significant improvements to the design. We have 
eliminated the RETAIN, the REINITIALIZING of 
BASE value for the next patient and do not explicitly 
ask the last value for the patient to be output (IF 
LAST.PT). That is 3 significant eliminations for such 
a simple example.  
 
How is this accomplished? Recall that in the 
default behavior of the data step, the non-
retained variables are automatically reset to 
missing at the top of the data step. So to eliminate 
the need for a RETAIN, the first task is to modify the 
default behavior so that the data step does not reset 
the values for BASE at the top. At least, we do not 
want it to reset the value until all the observations are 
read for a patient. So we would like the data step to 
return to the top only after reading all the visits for a 
patient. This task is accomplished by the DO loop of 
Whitlock (DOW) which puts the SET statement 
inside a DO UNTIL (LAST.PT) loop.  
 

Ian Whitlock posted the DOW on SAS-L sometime in 
1999-2000. At least, that was the first time it was 
prominently noticed. Paul Dorfman immediately 
recognized its immense potential and started 
applying it to various problems from many industries 
that represent SAS-L members.  
 
So, how is the DOW used to eliminate the RETAIN 
in our data step. This is accomplished by putting the 
SET statement inside a DO loop with an UNTIL 
clause to end at the last qualified visit for the patient 
(LAST.PT). In this case it ends at Visit 3, since the 
input data set WEIGHT is subset to read only the 
first 3 visits.  
 
The data step reads all the visits per patient inside 
the DOW without reaching the bottom of the data 
step. This means the data step does not iterate until 
all the visits are exhausted for a patient. Any variable 
created inside this do loop is not reset to missing 
until it exits the DOW. So the variable BASE is 
automatically retained for all the observations of any 
given patient. 
 
Next we deal with the end of the loop. This special 
DO loop tests for the LAST.PT at the bottom of the 
DO loop. Recall that by default, at the bottom of 
the data step, the current observation is written 
to BASEWEIGHT. After exiting the DOW, only the 
last visit for the patient is available for output. Hence 
this is the only visit that is output for the patient. This 
is a very convenient feature since this eliminates the 
need to explicitly subset for LAST.PT.  
 
Next we cover how the value of BASE is 
automatically cleaned up for the next patient. The 
data step returns to the top and begins its next 
iteration only after it exits the DOW and performs the 
default actions at the bottom. It exits the DOW only 
after reading all the observations for a patient. 
Recall that in the default behavior of the data 
step, the non-retained variables are 
automatically reset to missing at the top of the 
data step. Well, we have not retained BASE so it is 
automatically reset to missing at the top of the data 
step. It is as simple as that. 
 
Likewise the POSTWEIGHT data set can be coded 
with the DOW as: 
 

1. data postweight ;   
2.     do until ( last.pt ) ; 
3.         set weight ( where = ( visit > 3 ) ) ; 
4.         by pt ; 
5.         if weight ^= . then post = weight ; 
6.         output ; 
7.     end ; 
8. run ; 
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Notice that the only difference from the DOW in 
BASEWEIGHT (other than the WHERE subset) is 
the explicit OUTPUT statement. This ensures that 
every observation inside the do loop is output and 
avoids the default output at the bottom of the data 
step. The only action performed at the bottom then is 
to automatically return to the top of the data step. 
 

CONCLUSION 
 
We have seen an application of a technique that 
modifies the default behavior of the data step. The 
DOW has a wide variety of uses and is a natural 
selection when it comes to outputting a single 
observation per group and calculating variables that 
need to be retained within the group only. This is a 
common situation in Clinical Trials with LOCF. 
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