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ABSTRACT  
Whenever SAS® programmers get together to discuss SAS tips 
and techniques, there always seems to be a conflict regarding 
linking two tables together.  I have noticed that programmers 
have very strong allegiances to either PROC SQL or Merge.  I 
often think if this was a sports commercial, instead of arguing 
“Taste’s Great” and “Less Filling” we would be arguing “In A and 
B” or “Left Join”. 
 
For a beginning SAS programmer, seeking help from co-workers 
can be very challenging as one will preach “tastes great” and the 
other “less filling” and I feel the novice programmer will actually 
seek the Miller Lite beer as they don’t fully understand either 
technique and when it is appropriate to use one over the other.  In 
this analysis, we will have an active discussion on not only the 
coding aspect of the two methods; we will discuss hashing and 
system issues such as CPU, Input/Output, Disk Space, and 
memory system resources and how it affects productivity. 
  

INTRODUCTION  
When we talk about PROC SQL and Merge, the primary focus of 
this paper will involve combining multiple SAS datasets into one 
new table. The emphasis of this paper is not designed to teach 
you Merge or PROC SQL, but the reader should have a basic 
understanding of each skill and this paper will help emphasize the 
two techniques and when to appropriately apply each of them.  
Included in the paper, we will be showing examples of PROC 
SQL and Merge in action.  Now, I would be remiss if I didn’t 
mention there are other ways of combining SAS datasets.  One 
example is a Multiple SET Statement.  However, using multiple 
SET Statements are most effective using small data sets and the 
matching variables need to be indexed.  We will however, discuss 
the effects of hashing.  Hashing is also an effective way of 
combining SAS datasets, and we will discuss the performance 
mechanism of each system. 
 
To effectively determine which mechanism is better, we will be 
concentrating on the following areas: 

• CPU Time.  This is the amount of time the Centralized 
Processing Unit takes to complete a task. 

• Memory.  The total memory used. 
 
 
The focus of this paper will be on the CPU time and memory for 
the different methods.  Although disk space is an important 
feature, for our purposes we will “pretend” there is an adequate 
amount of space on your operating system.  Remember, we are 
assuming that all other users are “good corporate citizens” and 
no-one rogue programmer is running amok and crashing the 
system.   Although we can’t control the Disk Space, it should be 
noted that we did understand this could be a vital topic and were 
aware of its implication. Another element is the input/output time, 
this is the amount of time it takes for the SAS system to read the 
data and produce a new dataset for you.  The last consideration, 
which is very difficult to measure, will be the SAS Programmer’s 
time.  Once again, although it is an important factor, we will not 
take its implications into account. 
 
To decide which technique is better, we developed benchmarks.  
These benchmarks tested certain programs in separate SAS 

sessions.  We tested these programs at different intervals during 
different times of the day to create a normalized factor, which we 
can then apply.  The idea was to run a synopsis, which won’t let 
one “outlier” affect the total outcome. 
 

HYPOTHESIS 
For five weeks straight, we ran the same program every single 
day at different times during the day to measure the program 
effectiveness.  
We ran the program three times a day at different times, in 
different orders to get a sense of the different outcomes.  The 
below graphs represent the weekly average. 
The data was set up where PROC SQL and the Merge can 
basically do the same feature.  Therefore, we eliminated any 
discrepancies between the two. 
During the middle of the test, the tables were refreshed with 
“new” data. 
We measured the effectiveness of hash joins.  

MERGE VS. PROC SQL USING ALL VARIABLES 
 
options fullstimer; 
 
proc sql; 
create table clmsql2 as 
select  a.*,b.* 
from medmart.qclaims as a, medmart.members as b 
where a.memcode=b.memcode and a.dosdte between 
'01jan2002'd and '31jan2002'd ; 
quit; 
 
data mergestep2; 
merge medmart.qclaims ( in=a  where = ( '01JAN2002'd <= 
dosdte <= '31JAN2002'd)) 
medmart.members (in=b  )  ; 
by memcode; 
if a and b ; 
run; 

 
In this example, we pulled one month’s worth of claims (January 
2002) from the claims table and pulled the entire member 
demographics information from the member’s table.  It is 
important to note, that both tables are sorted and indexed on the 
memcode field. Memcode is the member identification number.   
 
The data yielded some noticeable results.  In system CPU time, 
SQL always took at least twice as long to complete the same 
task.  The Merge step took approximately 56 minutes to 1 hour 
and three minutes to complete.  SQL on the other hand, took 
between 2 hours and 5 minutes to 2 hours and 31 minutes to 
complete the same task.  The system memory aspect was really 
intriguing.  The memory was over 517,013K in SQL.  This number 
remained consistent throughout the study, except when the data 
was refreshed.  At that point the memory increased slightly.  On 
the Merge step, the memory remained at 206K throughout the 
study. This is a big advantage for Merge. 
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MERGE VS. PROC SQL USING LIMITED 
VARIABLES 

 
options fullstimer; 
 
proc sql; 
create table clmsql as 
select  a.prvcode, a.reqamt, a.allowamt, a.payamt, a.memcode, 
b.memfname, b.memlname 
from medmart.qclaims as a, medmart.members as b 
where a.memcode=b.memcode and a.dosdte between 
'01jan2002'd and '31jan2002'd ; 
quit; 
 
data mergestep; 
merge medmart.qclaims ( in=a keep = prvcode reqamt allowamt 
payamt memcode dosdte where = ( '01JAN2002'd <= dosdte <= 
'31JAN2002'd)) 
medmart.members (in=b keep = memcode memfname 
memlname )  ; 
by memcode; 
if a and b ; 
run; 
 
 
In this example, we used the same program as before, except we 
used  “keep” statements and limited the fields to only a handful of 
variables.  Once again, Merge returned more desirable results, 
however, this time, the results were closer. On the Merge 
statement, the system CPU time ranged from 9.76 minutes to 
11.04 minutes, while in PROC SQL, the system CPU time was 
13.56 minutes to 17.11 minutes.  Once again, the system 
memory was vastly in favor of Merge.  However, it is worth noting 
the difference in system time when you pull only limited variables, 
vs. all variables.   
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SQL HASH VS INDEXING  
options fullstimer msglevel=i; 
** Preparation **; 
 
data sugi; 
 set r.sugi; 
run; 
 
data a; 
set sugi (keep=memcode); 
if uniform(1)<.001 
run; 
 
proc sql _method; 
create table mem as  
select distinct memcode  
from a  
order by 1; 
quit;  
 
** Hash Join **; 
 proc sql _method ; 
         create table smeth as 
         select s.* 
         from sugi s , mem m 
         where s.memcode=m.memcode; 
 
NOTE: SQL execution methods chosen are: 
 
      sqxcrta 
          sqxjhsh 
              sqxsrc( WORK.SUGI(alias = S) ) 
              sqxsrc( WORK.MEM(alias = M) ) 
NOTE: Table WORK.SMETH created, with 23962 rows and 19 
columns. 
 
** Index Join **; 
proc datasets nolist; 
 modify sugi; 
 index create memcode; 
quit; 
 
 
 
 
 
proc sql _method ; 
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create table s2 as  
select s.*  
from sugi s , mem m 
where s.memcode=m.memcode; 
quit; 
Note : 
sqxcrta 
          sqxjndx 
              sqxsrc( WORK.MEM(alias = M) ) 
              sqxsrc( WORK.SUGI(alias = S) ) 
 

DATASTEP SORT MERGE VS INDEX MERGE 
** Data Step **; 
** Index only **; 
data dstep; 
 merge sugi mem(in=m); 
 by memcode; 
 if m; 
run; 
**  Sort **; 
proc sort data=sugi force; 
 by memcode; 
run; 
data d2; 
 merge sugi mem(in=m); 
 by memcode; 
 if m; 
run; 
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 In this example, we compared the hash join and indexed join of 
PROC SQL and the sort merge and indexed merge of data step. 
To then effectively compare the CPU time, we included in our 
study the time for SAS to sort the table or create the index.  As 
you can see, hashing took less CPU Time than the Merge step. 
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  1st 2nd 3rd 4th 5th 
CPU Merge + Index 42.89 39.51 35.5 35.5 34.84 
CPU Merge + Sort 13.6 13.49 9.73 9.59 10.14 
CPU SQL Hash 4.86 4.66 1.77 1.76 1.8 
CPU SQL + Index 7.43 7.26 3.83 3.32 3.76 
Memory Index 56.051 56.051 56.051 56.051 56.051 
Memory Merge sort 310.848 310.848 310.848 310.848 310.848 
Memory SQL Hash 0.491 0.491 0.491 0.491 0.491 
Memory SQL Index 56.036 56.036 56.036 56.036 56.036 
 
* CPU is measured in seconds and memory is displayed in MB. 

CONCLUSION 
Although this paper compared PROC SQL vs. Merge and the 
effect of Hashing it was not intended and will not recommend any 
one procedure over the other. The user needs to understand that 
their platform may not yield the same results as our test.  
However, it should be noted that our results compared to SAS 
benchmarks were remarkably consistent (1).   The objective of 
this paper is to familiarize the reader with all techniques and allow 
the user the knowledge to create an effective and efficient 
program.  To us, an efficient program is more than the output.  An 
efficient program allows for the data to be pulled concisely, 
without straining the resources available, and allows for 
debugging to take place.  We recommend the user test their data 
and understand that there are always shortcuts or better 
techniques available. Finally, the user should be aware of 
external factors effecting the data combinations. As always, we 
welcome any comments or feedback the programmers can 
provide. 
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