
Paper 96-28 

  1  

 

PROC SQL vs. Merge.  The Miller Lite Question of 2002 and Beyond. 
Kevin J. Smith; Oxford Health Plans Trumbull, CT 

Muhammad Z. Khan; Oxford Health Plans Trumbull, CT 
Yadong Zhang; Oxford Health Plans Trumbull, CT 

 

ABSTRACT  
Whenever SAS® programmers get together to discuss SAS tips 
and techniques, there always seems to be a conflict regarding 
linking two tables together.  I have noticed that programmers 
have very strong allegiances to either PROC SQL or Merge.  I 
often think if this was a sports commercial, instead of arguing 
“Taste’s Great” and “Less Filling” we would be arguing “In A and 
B” or “Left Join”. 
 
For a beginning SAS programmer, seeking help from co-workers 
can be very challenging as one will preach “tastes great” and the 
other “less filling” and I feel the novice programmer will actually 
seek the Miller Lite beer as they don’t fully understand either 
technique and when it is appropriate to use one over the other.  In 
this analysis, we will have an active discussion on not only the 
coding aspect of the two methods; we will discuss hashing and 
system issues such as CPU, Input/Output, Disk Space, and 
memory system resources and how it affects productivity. 
  

INTRODUCTION  
When we talk about PROC SQL and Merge, the primary focus of 
this paper will involve combining multiple SAS datasets into one 
new table. The emphasis of this paper is not designed to teach 
you Merge or PROC SQL, but the reader should have a basic 
understanding of each skill and this paper will help emphasize the 
two techniques and when to appropriately apply each of them.  
Included in the paper, we will be showing examples of PROC 
SQL and Merge in action.  Now, I would be remiss if I didn’t 
mention there are other ways of combining SAS datasets.  One 
example is a Multiple SET Statement.  However, using multiple 
SET Statements are most effective using small data sets and the 
matching variables need to be indexed.  We will however, discuss 
the effects of hashing.  Hashing is also an effective way of 
combining SAS datasets, and we will discuss the performance 
mechanism of each system. 
 
To effectively determine which mechanism is better, we will be 
concentrating on the following areas: 

• CPU Time.  This is the amount of time the Centralized 
Processing Unit takes to complete a task. 

• Memory.  The total memory used. 
 
 
The focus of this paper will be on the CPU time and memory for 
the different methods.  Although disk space is an important 
feature, for our purposes we will “pretend” there is an adequate 
amount of space on your operating system.  Remember, we are 
assuming that all other users are “good corporate citizens” and 
no-one rogue programmer is running amok and crashing the 
system.   Although we can’t control the Disk Space, it should be 
noted that we did understand this could be a vital topic and were 
aware of its implication. Another element is the input/output time, 
this is the amount of time it takes for the SAS system to read the 
data and produce a new dataset for you.  The last consideration, 
which is very difficult to measure, will be the SAS Programmer’s 
time.  Once again, although it is an important factor, we will not 
take its implications into account. 
 
To decide which technique is better, we developed benchmarks.  
These benchmarks tested certain programs in separate SAS 

sessions.  We tested these programs at different intervals during 
different times of the day to create a normalized factor, which we 
can then apply.  The idea was to run a synopsis, which won’t let 
one “outlier” affect the total outcome. 
 

HYPOTHESIS 
For five weeks straight, we ran the same program every single 
day at different times during the day to measure the program 
effectiveness.  
We ran the program three times a day at different times, in 
different orders to get a sense of the different outcomes.  The 
below graphs represent the weekly average. 
The data was set up where PROC SQL and the Merge can 
basically do the same feature.  Therefore, we eliminated any 
discrepancies between the two. 
During the middle of the test, the tables were refreshed with 
“new” data. 
We measured the effectiveness of hash joins.  

MERGE VS. PROC SQL USING ALL VARIABLES 
 
options fullstimer; 
 
proc sql; 
create table clmsql2 as 
select  a.*,b.* 
from medmart.qclaims as a, medmart.members as b 
where a.memcode=b.memcode and a.dosdte between 
'01jan2002'd and '31jan2002'd ; 
quit; 
 
data mergestep2; 
merge medmart.qclaims ( in=a  where = ( '01JAN2002'd <= 
dosdte <= '31JAN2002'd)) 
medmart.members (in=b  )  ; 
by memcode; 
if a and b ; 
run; 

 
In this example, we pulled one month’s worth of claims (January 
2002) from the claims table and pulled the entire member 
demographics information from the member’s table.  It is 
important to note, that both tables are sorted and indexed on the 
memcode field. Memcode is the member identification number.   
 
The data yielded some noticeable results.  In system CPU time, 
SQL always took at least twice as long to complete the same 
task.  The Merge step took approximately 56 minutes to 1 hour 
and three minutes to complete.  SQL on the other hand, took 
between 2 hours and 5 minutes to 2 hours and 31 minutes to 
complete the same task.  The system memory aspect was really 
intriguing.  The memory was over 517,013K in SQL.  This number 
remained consistent throughout the study, except when the data 
was refreshed.  At that point the memory increased slightly.  On 
the Merge step, the memory remained at 206K throughout the 
study. This is a big advantage for Merge. 

 

SUGI 28 Coders' Corner



 

2 

 
 
 

All Variables CPU Time

0

20

40

60

80

100

120

140

160

1st 2nd 3rd 4th 5th

Periods

M
in

ut
es Merge 

SQL

 

 

MERGE VS. PROC SQL USING LIMITED 
VARIABLES 

 
options fullstimer; 
 
proc sql; 
create table clmsql as 
select  a.prvcode, a.reqamt, a.allowamt, a.payamt, a.memcode, 
b.memfname, b.memlname 
from medmart.qclaims as a, medmart.members as b 
where a.memcode=b.memcode and a.dosdte between 
'01jan2002'd and '31jan2002'd ; 
quit; 
 
data mergestep; 
merge medmart.qclaims ( in=a keep = prvcode reqamt allowamt 
payamt memcode dosdte where = ( '01JAN2002'd <= dosdte <= 
'31JAN2002'd)) 
medmart.members (in=b keep = memcode memfname 
memlname )  ; 
by memcode; 
if a and b ; 
run; 
 
 
In this example, we used the same program as before, except we 
used  “keep” statements and limited the fields to only a handful of 
variables.  Once again, Merge returned more desirable results, 
however, this time, the results were closer. On the Merge 
statement, the system CPU time ranged from 9.76 minutes to 
11.04 minutes, while in PROC SQL, the system CPU time was 
13.56 minutes to 17.11 minutes.  Once again, the system 
memory was vastly in favor of Merge.  However, it is worth noting 
the difference in system time when you pull only limited variables, 
vs. all variables.   
 
 
 
 
 

 

Limited Variables CPU Time

0

2

4

6

8

10

12

14

16

18

1st 2nd 3rd 4th 5th

Periods

M
in

ut
es CPU Merge 

CPU SQL

 
 

SQL HASH VS INDEXING  
options fullstimer msglevel=i; 
** Preparation **; 
 
data sugi; 
 set r.sugi; 
run; 
 
data a; 
set sugi (keep=memcode); 
if uniform(1)<.001 
run; 
 
proc sql _method; 
create table mem as  
select distinct memcode  
from a  
order by 1; 
quit;  
 
** Hash Join **; 
 proc sql _method ; 
         create table smeth as 
         select s.* 
         from sugi s , mem m 
         where s.memcode=m.memcode; 
 
NOTE: SQL execution methods chosen are: 
 
      sqxcrta 
          sqxjhsh 
              sqxsrc( WORK.SUGI(alias = S) ) 
              sqxsrc( WORK.MEM(alias = M) ) 
NOTE: Table WORK.SMETH created, with 23962 rows and 19 
columns. 
 
** Index Join **; 
proc datasets nolist; 
 modify sugi; 
 index create memcode; 
quit; 
 
 
 
 
 
proc sql _method ; 

SUGI 28 Coders' Corner



 

3 

create table s2 as  
select s.*  
from sugi s , mem m 
where s.memcode=m.memcode; 
quit; 
Note : 
sqxcrta 
          sqxjndx 
              sqxsrc( WORK.MEM(alias = M) ) 
              sqxsrc( WORK.SUGI(alias = S) ) 
 

DATASTEP SORT MERGE VS INDEX MERGE 
** Data Step **; 
** Index only **; 
data dstep; 
 merge sugi mem(in=m); 
 by memcode; 
 if m; 
run; 
**  Sort **; 
proc sort data=sugi force; 
 by memcode; 
run; 
data d2; 
 merge sugi mem(in=m); 
 by memcode; 
 if m; 
run; 
 
 
 
 

CPU Comparison

0

5

10

15

20

25

30

35

40

45

50

1st 2nd 3rd 4th 5th
Periods

Se
co

nd
s Merge Index

SQL Hash

Merge Sort

CPU SQL
Index

 
 
 
 
 In this example, we compared the hash join and indexed join of 
PROC SQL and the sort merge and indexed merge of data step. 
To then effectively compare the CPU time, we included in our 
study the time for SAS to sort the table or create the index.  As 
you can see, hashing took less CPU Time than the Merge step. 
 

Memory Comparison

0

50

100

150

200

250

300

350

1st 2nd 3rd 4th 5th

Periods

M
eg

a 
B

yt
e

Merge Index

SQL Hash

Merge Sort

Memory SQL Index

 

  1st 2nd 3rd 4th 5th 
CPU Merge + Index 42.89 39.51 35.5 35.5 34.84 
CPU Merge + Sort 13.6 13.49 9.73 9.59 10.14 
CPU SQL Hash 4.86 4.66 1.77 1.76 1.8 
CPU SQL + Index 7.43 7.26 3.83 3.32 3.76 
Memory Index 56.051 56.051 56.051 56.051 56.051 
Memory Merge sort 310.848 310.848 310.848 310.848 310.848 
Memory SQL Hash 0.491 0.491 0.491 0.491 0.491 
Memory SQL Index 56.036 56.036 56.036 56.036 56.036 
 
* CPU is measured in seconds and memory is displayed in MB. 

CONCLUSION 
Although this paper compared PROC SQL vs. Merge and the 
effect of Hashing it was not intended and will not recommend any 
one procedure over the other. The user needs to understand that 
their platform may not yield the same results as our test.  
However, it should be noted that our results compared to SAS 
benchmarks were remarkably consistent (1).   The objective of 
this paper is to familiarize the reader with all techniques and allow 
the user the knowledge to create an effective and efficient 
program.  To us, an efficient program is more than the output.  An 
efficient program allows for the data to be pulled concisely, 
without straining the resources available, and allows for 
debugging to take place.  We recommend the user test their data 
and understand that there are always shortcuts or better 
techniques available. Finally, the user should be aware of 
external factors effecting the data combinations. As always, we 
welcome any comments or feedback the programmers can 
provide. 
 

ACKNOWLEDGMENTS  
The authors wish to thank all their fellow co-workers in the Health 
Care Economics team at Oxford Health Plans.  We are honored 
to work with such a bright, energetic group of people who make 
coming to work both fun and interesting. 
 
REFERENCES 
1. “Advanced SAS Programming Techniques and Efficiencies” 
Course Notes. 1999 SAS Institute Inc. Cary NC. Page 61. 

CONTACT INFORMATION  
Kevin J. Smith 
Oxford Health Plans 
48 Monroe Turnpike 
Trumbull, CT  06611 
(203) 459-6145 
kevsmith@oxfordhealth.com 
www.oxfordhealth.com 
 

SUGI 28 Coders' Corner



 

4 

SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc. in the 
USA and other countries. ® Indicates USA registration.   
  
 

SUGI 28 Coders' Corner


	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28:  Multi-platform SAS(r), Multi-platform Code
	SUGI 28:  Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28:  Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28:  Hashing: Generations
	SUGI 28:  Version 9 Epiphanies
	SUGI 28:  Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28:  Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28:  Advanced Analytics with Enterprise Guide(r)
	SUGI 28:  Categorical Data Analysis with Graphics
	SUGI 28:  A Serious Look at Macro Quoting
	SUGI 28:  Generating Custom Excel Spreadsheets Using ODS
	SUGI 28:  The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28:  Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28:  PROC REPORT: Doin' It In STYLE!
	SUGI 28:  Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28:  Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28:  SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28:  Undocumented and Hard-to-Find SQL Features
	SUGI 28:  Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28:  %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28:  Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28:  Hot Links: Creating Embedded URLs Using ODS
	SUGI 28:  ODS to RTF: Tips and Tricks
	SUGI 28:  XML in the DATA Step
	SUGI 28:  Using SAS(r) Software to Analyze Web Logs
	SUGI 28:  Developing SAS/AF(r) Applications Made Easy
	SUGI 28:  The One-Time Methodology: Encapsulating Application Data
	SUGI 28:  SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28:  'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28:  Application Refactoring with Design Patterns
	SUGI 28:  Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28:  Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28:  A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28:  Web Enable Your SAS(r) Applications
	SUGI 28:  Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28:  Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28:  'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28:  UNIX Meet PC: Version 8 to the Rescue
	SUGI 28:  A Table-Driven Solution for Clinical Data Submission
	SUGI 28:  A Programming Development Environment for SAS(r) Programs
	SUGI 28:  StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28:  Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28:  Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28:  Building Metadata Repository for Data Sets
	SUGI 28:  Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28:  Advanced CRM Solution Using Java Applications
	SUGI 28:  Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28:  Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28:  GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28:  Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28:  A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28:  Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28:  Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28:  Describing and Retrieving Data with SAS(r) Formats
	SUGI 28:  Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28:  How Regular Expressions Really Work
	SUGI 28:  Beyond Debugging: Program Validation
	SUGI 28:  Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28:  Introduction to the SAS(r) Custom Tag Library
	SUGI 28:  DHTML -- GUI on the Cheap
	SUGI 28:  Tips for Manipulating Data
	SUGI 28:  Data Warehouse Administrator: Step by Step
	SUGI 28:  Java Syntax for SAS(r) Programmers
	SUGI 28:  Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28:  Date Handling in the SAS(r) System
	SUGI 28:  SAS(r) System Options Are Your Friends
	SUGI 28:  Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28:  SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28:  Getting Up to Speed with PROC REPORT
	SUGI 28:  SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28:  Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28:  The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28:  So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28:  Splitting a Large SAS(r) Data Set
	SUGI 28:  Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28:  Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28:  Automatic Data File Retrieval from Different Database Engines
	SUGI 28:  UNLOADing Data from Informix
	SUGI 28:  Return Code from Macro; Passing Parameter by Reference
	SUGI 28:  If Only 'Page 1 of 1000'
	SUGI 28:  Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28:  A Handy Use of the %LINE Annotate Macro
	SUGI 28:  A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28:  Make Your Life and Little Easier:  A Collection of SAS Macro Utilities
	SUGI 28:  More _Infile_ Magic
	SUGI 28:  The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28:  Continuous or Not: How One Can Tell
	SUGI 28:  Identifying Continuity in Longitudinal Data
	SUGI 28:  Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28:  Using a SAS(r) Macro to Document the Database
	SUGI 28:  An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28:  A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28:  Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28:  Taking Control of Macro Variables
	SUGI 28:  PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28:  An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28:  Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28:  The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28:  MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28:  Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28:  Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28:  Combining Summary Level Data with Individual Records
	SUGI 28:  RETAINing Information to Identify Entity Characteristics
	SUGI 28:  Randomized Rounding
	SUGI 28:  Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28:  %Fun &With %SYSFUNC
	SUGI 28:  Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28:  Build a SAS(r) Development Environment under Windows
	SUGI 28:  Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28:  Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28:  SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28:  Run Time Comparison Macro
	SUGI 28:  Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28:  Date Parameters for Interval Reporting
	SUGI 28:  Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28:  A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28:  Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28:  The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28:  Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28:  A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28:  Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28:  Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28:  Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28:  The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28:  Dynamic Behavior from Static Web Applications
	SUGI 28:  SAS(r) and the Internet for Programmers
	SUGI 28:  Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28:  Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28:  Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28:  Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28:  What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28:  Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28:  SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28:  Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28:  Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28:  A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28:  Why Data _Null_ When You Can RTF Faster?
	SUGI 28:  Business Intelligence Applications with JMP(r) Software
	SUGI 28:  ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28:  ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28:  It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28:  Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28:  Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28:  Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28:  Using SAS(r) Strategically: A Case Study
	SUGI 28:  Understanding SAS/Warehouse Administrator(r)
	SUGI 28:  How to Access PC File Data Objects Directly from UNIX
	SUGI 28:  SAS(r) in the Office -- IT Works
	SUGI 28:  Multi-Center Study Data Management With A Distributed Application
	SUGI 28:  Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28:  Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28:  The Value of ETL and Data Quality
	SUGI 28:  The Horror of Bad Data Quality
	SUGI 28:  'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28:  Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28:  New Ways and Means to Summarize Files
	SUGI 28:  Better Decisions Through Better Data
	SUGI 28:  Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28:  Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28:  Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28:  Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28:  XML? We do that!
	SUGI 28:  Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28:  Future Trends and New Developments in Data Management
	SUGI 28:  Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28:  A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28:  An Integrated View of the Customer
	SUGI 28:  Rapid Analytic Application Deployment
	SUGI 28:  Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28:  PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28:  The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28:  SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28:  New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28:  Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28:  How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28:  PROC DATASETS: Managing Data Efficiently
	SUGI 28:  Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28:  Macro Power
	SUGI 28:  XML Primer for SAS(r) Programmers
	SUGI 28:  Creating Dynamic Web Based Reporting
	SUGI 28:  SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28:  So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28:  The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28:  Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28:  An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28:  Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28:  Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28:  Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28:  Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28:  What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28:  Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28:  P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28:  The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28:  An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28:  Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28:  Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28:  “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28:  Filling Report Templates with the SAS(r) System and DDE
	SUGI 28:  Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28:  Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28:  Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28:  Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28:  Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28:  A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28:  Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28:  MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28:  Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28:  Applied Population Genetics Using SAS(r) Software
	SUGI 28:  PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28:  Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28:  'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28:  Security Control System with SAS(r) Application Dispatcher
	SUGI 28:  %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28:  Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28:  Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28:  A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28:  An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28:  Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28:  Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28:  Practical Tips to Customize a SAS(r) Session
	SUGI 28:  SAS(r) Programming Conventions
	SUGI 28:  Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28:  SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28:  Where to Go from Here: Learning More about SAS(r)
	SUGI 28:  An Overview of SAS Certification and the Test Development Process 
	SUGI 28:  Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28:  SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28:  Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28:  Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28:  Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28:  Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28:  Case Studies in Time Series
	SUGI 28:  An Introduction to the Analysis of Mixed Models
	SUGI 28:  Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28:  Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28:  Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28:  Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28:  STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28:  An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28:  How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28:  Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28:  Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28:  Multilevel Designs and Their Analyses
	SUGI 28:  Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28:  Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28:  Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28:  Smoothing with SAS(r) PROC MIXED
	SUGI 28:  Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28:  Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28:  An Alternative to PROC MI for Large Samples
	SUGI 28:  Known Nonsense
	SUGI 28:  Analysis of Data from Recurrent Events
	SUGI 28:  Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28:  SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28:  Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28:  Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28:  Using a HOLAP Solution to Analyze Large Volumes of Data via the Web  
	SUGI 28:  Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28:  SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28:  An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28:  SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28:  Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28:  SAS(r) System on Network Appliance
	SUGI 28:  SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28:  The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28:  PROC MIGRATE:  How to Migrate Your Data and Know You?ve Done It Right! 
	SUGI 28:  SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28:  Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28:  A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System



