
Paper 95-28 

1 

Taking Control of Macro Variables 
Dante diTommaso, Fred Hutchinson Cancer Research Center, Seattle, WA 

 
 
ABSTRACT 
Devised for programmers with some SAS® Macro Language 
experience, this paper reviews fundamental concepts and 
discusses essential details of dynamic programming. My goal is 
to guide you towards developing solid macro programming skills 
through embracing and leveraging SAS features. Nothing (little?) 
that SAS does should seem mysterious; strength and dexterity lie 
in understanding. 

INTRODUCTION 
Dynamic programming can lead to uncontrolled and disorganized 
macro symbol generation, complicating code development and 
future maintenance. Except for the simplest programs, 
unnecessary clutter of any kind compromises value; dynamic 
programming is no exception and in fact demands greater 
diligence in maintaining clarity. SAS version 8.2 provides old and 
new features for controlling macro symbols. You can customize 
and extend these tools through macro programs. I will review and 
demonstrate useful features of the SAS macro language, as well 
as my favorite macros that facilitate efficient dynamic 
programming and macro development. The reader should have 
some experience with SAS macro language. 
 
Macros with examples of use are available electronically; see the 
CONTACT INFORMATION. 

MACRO REVIEW 
• SAS language processes data: numeric and character 

variables. SAS Macro Language processes SAS code: 
text. Embracing this distinction is crucial to macro dexterity. 

 
Macro programming is essential if you generally know all that a 
program should be able to do but need flexibility in execution. 
 
Program flexibility is achieved through macro variables 
("symbols") which store compile- and run-time details. Symbols 
can contain values, strings, lists, or even a series of instructions 
or an entire DATA step or PROC block. To avoid confusion, I will 
use "symbols" to refer to values, strings and lists. By comparison 
a compiled macro program ("macro") refers to a block of SAS 
code and macro instructions bracketed by %MACRO and %MEND 
statements. Macro processing adds a compilation layer to 
standard SAS language compilation and execution. Once 
submitted to SAS, macros are poised to generate SAS code 
which SAS subsequently compiles and executes. 
 
Consider a macro that generates daily reports each morning and 
additional weekly reports on Fridays. Certain instructions are 
fixed when the macro is first submitted and compiled: daily 
versus weekly actions, report names (e.g., "TODAY.RPT" and 
"THISWEEK.RPT"). Remaining data-driven behavior is the raison 
d'être of macro programming: What are today's data sets? Is 
today Friday? What is the directory path for today's report(s)? 
 

• Compile-time details are known up front -- at the time of 
submitting code to SAS. Run-time details are situation- or 
data-driven. This is something of an oversimplification 
given the two compilation stages (macro versus code), but 
a fairly safe one for developing a basic understanding. 

 
Macro symbols follow SAS variable naming rules and can store 
from zero up to 32k of text (potential SAS code). Macros store 
any combination of SAS and macro language expressions. 

SYMBOL TABLES AND SCOPE 
SAS categorizes symbols along two related dimensions based on 
declaration and scope. 

AUTOMATIC VERSUS USER-DEFINED 
Macro symbols are either automatic or user-defined. SAS 
creates automatic symbols during initialization (the single 
exception is &SYSPBUFF when including /PARMBUFF in a macro 
definition). Automatic symbols provide information on the current 
date, user, operating environment, SAS version, et cetera. The 
programmer subsequently creates user-defined symbols, either 
global or local. 

GLOBAL VERSUS LOCAL 
SAS stores symbols in symbol tables ("tables"). Global symbols 
are available for the duration of a SAS session; SAS stores them 
in a single global symbol table. Automatic symbols (again with 
the single exception noted above) are global. 
 
User-defined symbols are global if created outside any macro 
program or created inside but first declared a global symbol (see 
%Global and %Local below). 
 
If a programmer first declares or defines a symbol inside a 
macro, SAS creates a local symbol table that expires when the 
macro ends. Local symbols are only available for the duration of 
the enclosing macro. 
 
If a symbol already exists in a table outside the current macro, 
SAS does not store a new instance in the local table unless first 
declared a local symbol (see %Global and %Local below). 
Multiple nested tables are possible when macros are called within 
macros. 
 
Symbol table is equivalent to symbol scope. Symbols in the 
global table have global scope; those in a local table have local 
scope. Understanding and managing symbol scope is essential 
for developing clean, clear and efficient dynamic programs. 
 

• Symbols in the immediate table are available during macro 
execution. 

• Symbols in outer local tables and the global table that have 
unique names are also available during macro execution. 

• Symbols in outer local tables and the global table that have 
the same name as a symbol in the immediate local table 
are not available; the local table dominates (name hiding). 

MACRO SYMBOL RESOLUTION 
The SAS Word Scanner parses code into recognized pieces or 
tokens. Tokens are string literals ('HELLO'), variable names, 
numeric values or special characters (+-/.;&%). The scanner 
typically passes tokens to the Data Step Compiler or a particular 
SAS Procedure which check program syntax. Two special 
characters (macro triggers % and &) followed by nonblank 
characters prompt the word scanner to first divert code to the 
Macro Processor which attempts to resolve symbols into SAS 
language. For a detailed discussion of how SAS resolves symbol 
references see "Using Macro Variable" (1, Macro Variables 
chapter). 
 
As the macro compiler encounters symbols, it attempts to resolve 
them using the most local table first, then working outward to the 
global table. If SAS first encounters %MACRO, it checks and 
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compiles macro logic (e.g., matching %IF and %END statements), 
and simply stores other code as text (e.g., SAS code or symbol 
references). This compilation of a macro definition ends upon 
reaching %MEND. 

SAS FEATURES 
SAS makes it quite easy for programmers to control symbols and 
tables. Never wonder where a symbol definition will end up, or 
assume it will end up where you intend. Determine the 
appropriate approach and specify it in your code. 

%GLOBAL AND %LOCAL 
Explicit declarations of global and local macro symbols not only 
make macro programming more intelligible, they eliminate 
problems that are otherwise difficult to discover. Consider the 
following code fragment from a common macro that returns the 
number of observations in a data set: 
 

%MACRO NUMOBS (DS); 
 %GLOBAL NUMOBS; 
... * ACCESS NUMBER OF OBS & *;  
    * STORE IN &NUMOBS)      *; ... 
%MEND NUMOBS; 
 
%NUMOBS(DATA01) 

 
Without the %GLOBAL declaration and assuming &NUMOBS does 
not exist in the global table the remaining code would create 
&NUMOBS in the local table, store a value, then erase the local 
table upon reaching %MEND, trashing the desired information. 
 
Another example demonstrates the importance of using %LOCAL 
declarations, arguably the most underused macro statement: 
 

%MACRO SUBROUTINE (VARS); 
 %LOCAL LOOPS; 
 %LET LOOPS = 5;     * DECLARATION [2] *; 
 ... * LOOP THROUGH DATA *; 
%MEND; 
 
%LET LOOPS = 25;     * DECLARATION [1] *; 
... 
%SUBROUTINE(&VNAMES) 

 
Without the explicit %LOCAL declaration inside the definition of 
%SUBROUTINE(), declaration [2] would update the global symbol 
&LOOPS that declaration [1] established earlier. This would almost 
certainly put the program in an illegal state, an egregious bug that 
would hide until again accessing the global symbol &LOOPS. 
 

• Imagine relying on another programmer’s library of macro 
utilities and having your global symbols mysteriously 
change due to name conflicts like the one demonstrated 
above. I recommend rigorous and enthusiastic use of 
%LOCAL declarations. 

%PUT AND %SYMDEL 
%PUT and %SYMDEL statements are extremely useful for 
managing symbols. Combine %PUT with one of the following 
keywords to dump the corresponding macro variables to the SAS 
log: _ALL_, _AUTOMATIC_, _GLOBAL_, _LOCAL_, _USER_ 
(user-defined symbols comprise both global and local symbols). 
 
Use %SYMDEL to specify a list of variables to remove from the 
global table. %SYMDEL does not accept SAS variable list syntax or 
macro expressions that resolve to macro variable names. 
 
Statement [1] below prints user-defined symbols to the log, while 
[2] removes &LOOPS and &VNAMES from the global table: 

%PUT _USER_;                      /* [1] */ 
%SYMDEL LOOPS VNAMES;             /* [2] */ 

 
Both are valuable during program development. %SYMDEL allows 
the programmer to carefully maintain the global table, minimizing 
name conflicts and the problems they cause. 

FAVORITE DEVELOPMENT MACROS 
Macro programming involves careful management of global and 
local symbols. I use several macros to facilitate common symbol 
management tasks. 
 
These macros, with examples of use, are available in the 
appendix or electronically (see the CONTACT INFORMATION). 

MANAGE THE GLOBAL SYMBOL TABLE 
%GLOBVARS; 
%PUT _keyword_; (described above) writes an unordered and 
unformatted list of symbols to the log. Initially useful, I find the list 
difficult to read. While developing programs that include macro 
language, I am most interested in the state of the global symbols 
(more so than automatic or even local symbols). In particular, I 
am interested in when symbols expire, at which point they 
deserve %SYMDEL. Maintaining a clean global table makes it 
much easier to later update the middle of a complex program. 
Again, any unnecessary clutter is a liability. 
 
I use %GLOBVARS to print a formatted and alphabetical report of 
the symbols from the global table. The report includes a count of 
symbols, a simple measure of cleanliness. 
 
%CHKGVAR symbol-name;  
I tend to reuse symbol names for common functions (counters, 
indices, etc.) between and within programs. %CHKGVAR checks 
the global symbol table to remind me if a particular symbol is 
already in use and, if so, reports its current value. 
 
%DELGVARS;  
The next time you want to quickly start from scratch with the 
proverbial clean global symbol slate, type just 9 characters (the 
semi-colon is optional). %DELGVARS removes user-defined global 
symbols using %SYMDEL. 
 
%FRESHSTART; 
I have extended the clean slate concept beyond global symbols 
with a macro that comes as close as currently possible to re-
initialized SAS' interactive development environment: clear 
LIBNAMEs, global symbols and temporary data sets & formats; 
restore original system options (which may require site 
customization); and finish by launching the original session 
AUTOEXEC file.  
 
Quickly switch between programs during development without 
shutting down SAS.  Now if we could only programmatically clear 
compiled temporary macros, although doing so from a temporary 
macro is as recursively inconceivable as most time travel tales! 
Contact the author for the code. 

MANAGE DYNAMIC VARIABLE LISTS 
The following macros are designed to work in-line – their 
definitions include only macro language. Invoking these macros 
generates no SAS code other than inserting the value you ask for 
right where you specify. The required parameters for each include 
character-delimited (space-delimited by default) lists of variable 
names (or similar). 
 
%QUICKCNT(macro-variable-list);  
Given a list of variable names, %QUICKCNT returns the number of 
names in the list. For example, if the symbol table contains 
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&MNTHS (with value JAN FEB MAR) you can use %QUICKCNT to 
declare a dynamic array used to calculate monthly totals: 
 

ARRAY TOTALS[%QUICKCNT(&MNTHS)]  
      _TEMPORARY_ (0*%QUICKCNT(&MNTHS)); 

 
%COMMVAR(var-list-1, varlist-2);  
%COMMVAR() returns the list of variables common to both 
var-list-1 and var-list-2.  Merging and appending data sets in 
dynamic programs come to mind. 
 
%DIFFVAR(var-list-1, varlist-2);  
Complementing %COMMVAR(), %DIFFVAR() returns the list of 
variables in either list but not the other: the first but not the 
second, or the second but not the first. I do not need this often, 
but when I do the convenience is thrilling. Contact the author for 
the code. 

POLITE, CONSIDERATE MACROS 
Minimizing macro side effects is somewhat off topic, but in my 
mind an essential component of designing high quality macros. I 
consider a side effect any change in the SAS system 
environment that the macro user does not anticipated, notice, 
and perhaps most importantly appreciate. For example, a macro 
may change titles, footnotes or system options such as 
LINESIZE and PAGESIZE to generate a desired report. Rude 
macros do so arrogantly, without reporting such changes and 
without later restoring settings to their original values. I use two 
pairs of macros to save and restore TITLEs /FOOTNOTEs and 
system options. 
 
%SAVETTLFN and %RSTRTTLFN 
Invoked without parameter, %SAVETTLFN stores SAS system 
titles and footnotes in a temporary data set. After doing so a 
macro can freely make necessary changes. At the end of macro 
processing, simply %RSTRTTLFN to restore original titles and 
footnotes. 
 
Including these statements in macros allows you to label macro 
output appropriately without irritating programmers that use your 
code. Contact the author for the code. 
 
%SAVEOPT(system-options) and %RSTROPT(system-options) 
In a parallel fashion %SAVEOPT(system-options) sets aside 
current settings for listed system options. Change page layout, 
form delimiter, missing values, etc., with absolute impunity. Once 
macro processing is complete, %RSTROPT(system-options) 
restores all settings or just those listed. 
 
Given human nature, being polite and considerate is rarely so 
easy. Thus rudeness and the irritation of mysterious environment 
changes is inexcusable. End of lecture. Contact the author for the 
code. 

CONCLUSION 
Understanding and managing symbols is essential for developing 
clear, reliable and maintainable dynamic programs and macro 
libraries. Making use of SAS features for working with symbol 
tables and developing generic helper macros saves development 
time and makes dynamic programming efficient and downright 
fun. Explore, experiment and enjoy! 

REFERENCES 
1. SAS Institute Inc., SAS OnlineDoc®, Version 8, Cary, NC: SAS 
Institute Inc., 1999 (SAS Macro Language: Reference section) 
 
2. Art Carpenter, Carpenter’s Complete Guide to the SAS Macro 
Language, Cary, NC: SAS Institute, Inc., 1998, 242pp. 
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Fred Hutchinson Cancer Research Center 
1100 Fairview Ave N, MW-500 
Seattle, Washington 98109 
Phone: (206) 667-6470 
Fax: (206) 667-4812 
Email: dante@scharp.org 
Files: http://dantegd.home.mindspring.com/sas/ 
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Other brand and product names are trademarks of their 
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*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X                       |*; 
*---                                                         ---*; 
*| [GLOBVARS]  NO PARAMETERS: REPORT GLOBAL SYMBOLS, THEIR     |*; 
*|             VALUES, AND A COUNT OF GLOBAL SYMBOLS           |*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |*;  
*+-------------------------------------------------------------+; 
%MACRO GLOBVARS; 
  %LOCAL MAXNAME MAXVAL NGLOBVAR; 
 
  DATA GLOBVARS (KEEP=NAME VALUE); 
    SET SASHELP.VMACRO (KEEP=SCOPE NAME VALUE 
                        WHERE=(UPCASE(SCOPE) EQ 'GLOBAL'))  
                       END=NOMORE; 
    RETAIN MAXNAME 10 MAXVAL 20; 
 
    IF (LENGTH(NAME) GT MAXNAME) THEN MAXNAME = LENGTH(NAME); 
    IF (LENGTH(VALUE) GT MAXVAL) THEN MAXVAL = LENGTH(VALUE); 
 
    IF (NOMORE) THEN DO; 
      CALL SYMPUT('MAXNAME', TRIM(LEFT(PUT(MAXNAME, 8.)))); 
      CALL SYMPUT('MAXVAL', TRIM(LEFT(PUT(MAXVAL, 8.)))); 
    END; 
 
  PROC SQL NOPRINT; 
    SELECT (NOBS - DELOBS) INTO :NGLOBVAR  
    FROM DICTIONARY.TABLES 
    WHERE UPCASE(LIBNAME) = 'WORK' AND  
          UPCASE(MEMNAME) = 'GLOBVARS'; 
 
  %IF &NGLOBVAR. > 0 %THEN %DO; 
    %LET NGLOBVAR = %TRIM(%LEFT(&NGLOBVAR.)); 
    PROC REPORT DATA = GLOBVARS SPLIT = "|" CENTER HEADLINE NOWD; 
      COLUMN NAME VALUE; 
      DEFINE NAME  / ORDER   FORMAT=$&MAXNAME.. WIDTH=&MAXNAME. 
                             SPACING=2 LEFT 
                             "SYMBOL|NAME|(N=&NGLOBVAR.)"; 
      DEFINE VALUE / DISPLAY FORMAT=$&MAXVAL.. WIDTH=&MAXVAL. 
                             SPACING=2 LEFT 
                             'SYMBOL|VALUE| '; 
  %END; 
 
  PROC DATASETS LIB=WORK MEMTYPE=DATA NOLIST NODETAILS; 
    DELETE GLOBVARS; 
  QUIT; 
%MEND GLOBVARS; 
 
*-------*; %let ONE = a global symbol; 
* USAGE *; %let TWO = another global symbol; 
*-------*; %globvars 
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*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X (continued)           |*; 
*---                                                         ---*; 
*| [CHKGVARS] CHECK GLOBAL SYMBOL DATA SET AND REPORT WHETHER  |*; 
*|            OR NOT A MACRO SYMBOL ALREADY EXISTS.            |*; 
*| PARAMETER: <VN> GLOBAL SYMBOL NAME TO CHECK AGAINST DATA SET|*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |*;  
*+-------------------------------------------------------------+; 
%MACRO CHKGVARS(VN); 
  DATA _NULL_; 
    SET SASHELP.VMACRO (KEEP=SCOPE NAME VALUE 
                        WHERE=(UPCASE(SCOPE)='GLOBAL')) END=NOMORE; 
    RETAIN MATCH 0; 
    IF UPCASE(NAME) = UPCASE("&VN.") THEN MATCH = 1; 
    IF NOMORE AND MATCH THEN DO; 
      PUT '+' 24*'-' '>'; 
      PUT "+ [CHKGVARS] GLOBAL SYMBOL <%UPCASE(&VN.)> EXISTS: " VALUE; 
      PUT '+' 24*'-'; 
    END; 
    ELSE IF NOMORE AND ^MATCH THEN DO; 
      PUT '+' 24*'-' '|'; 
      PUT "+ [CHKGVARS] GLOBAL SYMBOL <%UPCASE(&VN.)> DOES NOT EXIST."; 
      PUT '+' 24*'-'; 
    END; 
  RUN; 
%MEND CHKGVARS; 
 
*-------*; 
* USAGE *; %let PI = 3.1416; %chkgvars(PI) 
*-------*; %chkgvars(THREE) 
 
 
 
*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X (continued)           |*; 
*---                                                         ---*; 
*| [DELGVARS]  NO PARAMETERS, DELETE !!ALL!! GLOBAL SYMBOLS    |*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |*;  
*+-------------------------------------------------------------+; 
%MACRO DELGVARS; 
  DATA DELGVARSTEMP; 
    SET SASHELP.VMACRO (KEEP=SCOPE NAME 
                        WHERE=(SCOPE='GLOBAL')); 
  DATA _NULL_; 
    SET DELGVARSTEMP; 
    CALL EXECUTE('%SYMDEL ' !! TRIM(LEFT(NAME)) !! ';'); 
 
  PROC DATASETS LIBRARY=WORK MEMTYPE=DATA NOLIST NODETAILS; 
    DELETE DELGVARSTEMP; 
  QUIT; 
%MEND DELGVARS; 
 
*-------*; %let PI = 3.1416; %globvars 
* USAGE *; %delgvars 
*-------*; %globvars 
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*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X (continued)           |*; 
*---                                                         ---*; 
*| [QUICKCNT]  IN-LINE UTILITY TO COUNT WORDS IN A CHARACTER   |*; 
*|             DELIMITED STRING (SPACE-DELIMITED BY DEFAULT)   |*; 
*| PARAMETERS: <QSTR> REQUIRED -- DELIMITED STRING OF WORDS    |*; 
*|             NB: QUOTE STRING AS NEC ON MACRO CALL, (EG, IF  |*; 
*|                 <QSTR> HAS SPECIAL CHARS ( ;, ) USE %STR)   |*; 
*|             <QDLM> OPTIONAL LIST OF DELIMS (SPACE DEFAULT)  |*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |*;  
*+-------------------------------------------------------------+; 
%MACRO QUICKCNT(QSTR, QDLM=%STR( )); 
  %LOCAL QCN; 
 
  %LET QCN = 0; 
  %DO %WHILE (%QSCAN(&QSTR., %EVAL(&QCN.+1), &QDLM.) ^= ); 
    %LET QCN = %EVAL(&QCN. + 1); 
  %END; 
  &QCN. 
%MEND QUICKCNT; 
 
*-------*;  
* USAGE *; %let VARS = %str(var1,var2^var3#var4 var5); 
*-------*; %put _%QUICKCNT(&VARS., QDLM=%STR( ^#,))_; 
 
 
 
*+-------------------------------------------------------------+*; 
*|                       A P P E N D I X (continued)           |*; 
*---                                                         ---*; 
*| [COMVAR]  IN-LINE UTILITY RETURNS LIST OF WORDS COMMON TO   |*; 
*|           THE TWO LISTS PASSED IN AS DELIMITED STRINGS      |*; 
*|           NB: !!NOT!! CASE SENSITIVE                        |*; 
*| PARAMETERS: <CLST1> REQUIRED -- DELIMITED STRING OF WORDS   |*; 
*|             <CLST2> REQUIRED -- DELIMITED STRING OF WORDS   |*; 
*|             NB: QUOTE STRING AS NEC ON MACRO CALL, (EG, IF  |*; 
*|                 <CLST1> HAS SPECIAL CHARS ( ;, ) USE %STR)  |*; 
*|             <CDLM> OPTIONAL LIST OF DELIMS (SPACE DEFAULT)  |*; 
*| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |*;  
*+-------------------------------------------------------------+; 
%MACRO COMVAR(CLST1, CLST2, CDLM=%STR( )); 
  %LOCAL COMVAR; 
 
  %LET COMVAR =; 
  %DO CV1 = 1 %TO %QUICKCNT(&CLST1., QDLM=&CDLM.); 
    %DO CV2 = 1 %TO %QUICKCNT(&CLST2., QDLM=&CDLM.); 
      %IF %UPCASE(%SYSFUNC( scan(&CLST1., &CV1., &CDLM.) )) EQ 
          %UPCASE(%SYSFUNC( scan(&CLST2., &CV2., &CDLM.) )) %THEN 
          %LET COMVAR = &COMVAR. %UPCASE(%SYSFUNC(  
                        scan(&CLST1., &CV1., &CDLM.) )); 
    %END; 
  %END; 
  &COMVAR. 
%MEND COMVAR; 
 
*-------*; %let L1 = V1 VARiable2@V3 V5^V6 v7; 
* USAGE *; %let L2 = %STR(VARIABLE2!V5 V6;V7 V8); 
*-------*; %put _%COMVAR(&L1., &L2., CDLM=%STR( !@;^))_; 
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