
Paper 95-28

1

Taking Control of Macro Variables
Dante diTommaso, Fred Hutchinson Cancer Research Center, Seattle, WA

ABSTRACT
Devised for programmers with some SAS® Macro Language
experience, this paper reviews fundamental concepts and
discusses essential details of dynamic programming. My goal is
to guide you towards developing solid macro programming skills
through embracing and leveraging SAS features. Nothing (little?)
that SAS does should seem mysterious; strength and dexterity lie
in understanding.

INTRODUCTION
Dynamic programming can lead to uncontrolled and disorganized
macro symbol generation, complicating code development and
future maintenance. Except for the simplest programs,
unnecessary clutter of any kind compromises value; dynamic
programming is no exception and in fact demands greater
diligence in maintaining clarity. SAS version 8.2 provides old and
new features for controlling macro symbols. You can customize
and extend these tools through macro programs. I will review and
demonstrate useful features of the SAS macro language, as well
as my favorite macros that facilitate efficient dynamic
programming and macro development. The reader should have
some experience with SAS macro language.

Macros with examples of use are available electronically; see the
CONTACT INFORMATION.

MACRO REVIEW
• SAS language processes data: numeric and character

variables. SAS Macro Language processes SAS code:
text. Embracing this distinction is crucial to macro dexterity.

Macro programming is essential if you generally know all that a
program should be able to do but need flexibility in execution.

Program flexibility is achieved through macro variables
("symbols") which store compile- and run-time details. Symbols
can contain values, strings, lists, or even a series of instructions
or an entire DATA step or PROC block. To avoid confusion, I will
use "symbols" to refer to values, strings and lists. By comparison
a compiled macro program ("macro") refers to a block of SAS
code and macro instructions bracketed by %MACRO and %MEND
statements. Macro processing adds a compilation layer to
standard SAS language compilation and execution. Once
submitted to SAS, macros are poised to generate SAS code
which SAS subsequently compiles and executes.

Consider a macro that generates daily reports each morning and
additional weekly reports on Fridays. Certain instructions are
fixed when the macro is first submitted and compiled: daily
versus weekly actions, report names (e.g., "TODAY.RPT" and
"THISWEEK.RPT"). Remaining data-driven behavior is the raison
d'être of macro programming: What are today's data sets? Is
today Friday? What is the directory path for today's report(s)?

• Compile-time details are known up front -- at the time of
submitting code to SAS. Run-time details are situation- or
data-driven. This is something of an oversimplification
given the two compilation stages (macro versus code), but
a fairly safe one for developing a basic understanding.

Macro symbols follow SAS variable naming rules and can store
from zero up to 32k of text (potential SAS code). Macros store
any combination of SAS and macro language expressions.

SYMBOL TABLES AND SCOPE
SAS categorizes symbols along two related dimensions based on
declaration and scope.

AUTOMATIC VERSUS USER-DEFINED
Macro symbols are either automatic or user-defined. SAS
creates automatic symbols during initialization (the single
exception is &SYSPBUFF when including /PARMBUFF in a macro
definition). Automatic symbols provide information on the current
date, user, operating environment, SAS version, et cetera. The
programmer subsequently creates user-defined symbols, either
global or local.

GLOBAL VERSUS LOCAL
SAS stores symbols in symbol tables ("tables"). Global symbols
are available for the duration of a SAS session; SAS stores them
in a single global symbol table. Automatic symbols (again with
the single exception noted above) are global.

User-defined symbols are global if created outside any macro
program or created inside but first declared a global symbol (see
%Global and %Local below).

If a programmer first declares or defines a symbol inside a
macro, SAS creates a local symbol table that expires when the
macro ends. Local symbols are only available for the duration of
the enclosing macro.

If a symbol already exists in a table outside the current macro,
SAS does not store a new instance in the local table unless first
declared a local symbol (see %Global and %Local below).
Multiple nested tables are possible when macros are called within
macros.

Symbol table is equivalent to symbol scope. Symbols in the
global table have global scope; those in a local table have local
scope. Understanding and managing symbol scope is essential
for developing clean, clear and efficient dynamic programs.

• Symbols in the immediate table are available during macro
execution.

• Symbols in outer local tables and the global table that have
unique names are also available during macro execution.

• Symbols in outer local tables and the global table that have
the same name as a symbol in the immediate local table
are not available; the local table dominates (name hiding).

MACRO SYMBOL RESOLUTION
The SAS Word Scanner parses code into recognized pieces or
tokens. Tokens are string literals ('HELLO'), variable names,
numeric values or special characters (+-/.;&%). The scanner
typically passes tokens to the Data Step Compiler or a particular
SAS Procedure which check program syntax. Two special
characters (macro triggers % and &) followed by nonblank
characters prompt the word scanner to first divert code to the
Macro Processor which attempts to resolve symbols into SAS
language. For a detailed discussion of how SAS resolves symbol
references see "Using Macro Variable" (1, Macro Variables
chapter).

As the macro compiler encounters symbols, it attempts to resolve
them using the most local table first, then working outward to the
global table. If SAS first encounters %MACRO, it checks and

SUGI 28 Coders' Corner

2

compiles macro logic (e.g., matching %IF and %END statements),
and simply stores other code as text (e.g., SAS code or symbol
references). This compilation of a macro definition ends upon
reaching %MEND.

SAS FEATURES
SAS makes it quite easy for programmers to control symbols and
tables. Never wonder where a symbol definition will end up, or
assume it will end up where you intend. Determine the
appropriate approach and specify it in your code.

%GLOBAL AND %LOCAL
Explicit declarations of global and local macro symbols not only
make macro programming more intelligible, they eliminate
problems that are otherwise difficult to discover. Consider the
following code fragment from a common macro that returns the
number of observations in a data set:

%MACRO NUMOBS (DS);
 %GLOBAL NUMOBS;
... * ACCESS NUMBER OF OBS & *;
 * STORE IN &NUMOBS) *; ...
%MEND NUMOBS;

%NUMOBS(DATA01)

Without the %GLOBAL declaration and assuming &NUMOBS does
not exist in the global table the remaining code would create
&NUMOBS in the local table, store a value, then erase the local
table upon reaching %MEND, trashing the desired information.

Another example demonstrates the importance of using %LOCAL
declarations, arguably the most underused macro statement:

%MACRO SUBROUTINE (VARS);
 %LOCAL LOOPS;
 %LET LOOPS = 5; * DECLARATION [2] *;
 ... * LOOP THROUGH DATA *;
%MEND;

%LET LOOPS = 25; * DECLARATION [1] *;
...
%SUBROUTINE(&VNAMES)

Without the explicit %LOCAL declaration inside the definition of
%SUBROUTINE(), declaration [2] would update the global symbol
&LOOPS that declaration [1] established earlier. This would almost
certainly put the program in an illegal state, an egregious bug that
would hide until again accessing the global symbol &LOOPS.

• Imagine relying on another programmer’s library of macro
utilities and having your global symbols mysteriously
change due to name conflicts like the one demonstrated
above. I recommend rigorous and enthusiastic use of
%LOCAL declarations.

%PUT AND %SYMDEL
%PUT and %SYMDEL statements are extremely useful for
managing symbols. Combine %PUT with one of the following
keywords to dump the corresponding macro variables to the SAS
log: _ALL_, _AUTOMATIC_, _GLOBAL_, _LOCAL_, _USER_
(user-defined symbols comprise both global and local symbols).

Use %SYMDEL to specify a list of variables to remove from the
global table. %SYMDEL does not accept SAS variable list syntax or
macro expressions that resolve to macro variable names.

Statement [1] below prints user-defined symbols to the log, while
[2] removes &LOOPS and &VNAMES from the global table:

%PUT _USER_; /* [1] */
%SYMDEL LOOPS VNAMES; /* [2] */

Both are valuable during program development. %SYMDEL allows
the programmer to carefully maintain the global table, minimizing
name conflicts and the problems they cause.

FAVORITE DEVELOPMENT MACROS
Macro programming involves careful management of global and
local symbols. I use several macros to facilitate common symbol
management tasks.

These macros, with examples of use, are available in the
appendix or electronically (see the CONTACT INFORMATION).

MANAGE THE GLOBAL SYMBOL TABLE
%GLOBVARS;
%PUT _keyword_; (described above) writes an unordered and
unformatted list of symbols to the log. Initially useful, I find the list
difficult to read. While developing programs that include macro
language, I am most interested in the state of the global symbols
(more so than automatic or even local symbols). In particular, I
am interested in when symbols expire, at which point they
deserve %SYMDEL. Maintaining a clean global table makes it
much easier to later update the middle of a complex program.
Again, any unnecessary clutter is a liability.

I use %GLOBVARS to print a formatted and alphabetical report of
the symbols from the global table. The report includes a count of
symbols, a simple measure of cleanliness.

%CHKGVAR symbol-name;
I tend to reuse symbol names for common functions (counters,
indices, etc.) between and within programs. %CHKGVAR checks
the global symbol table to remind me if a particular symbol is
already in use and, if so, reports its current value.

%DELGVARS;
The next time you want to quickly start from scratch with the
proverbial clean global symbol slate, type just 9 characters (the
semi-colon is optional). %DELGVARS removes user-defined global
symbols using %SYMDEL.

%FRESHSTART;
I have extended the clean slate concept beyond global symbols
with a macro that comes as close as currently possible to re-
initialized SAS' interactive development environment: clear
LIBNAMEs, global symbols and temporary data sets & formats;
restore original system options (which may require site
customization); and finish by launching the original session
AUTOEXEC file.

Quickly switch between programs during development without
shutting down SAS. Now if we could only programmatically clear
compiled temporary macros, although doing so from a temporary
macro is as recursively inconceivable as most time travel tales!
Contact the author for the code.

MANAGE DYNAMIC VARIABLE LISTS
The following macros are designed to work in-line – their
definitions include only macro language. Invoking these macros
generates no SAS code other than inserting the value you ask for
right where you specify. The required parameters for each include
character-delimited (space-delimited by default) lists of variable
names (or similar).

%QUICKCNT(macro-variable-list);
Given a list of variable names, %QUICKCNT returns the number of
names in the list. For example, if the symbol table contains

SUGI 28 Coders' Corner

3

&MNTHS (with value JAN FEB MAR) you can use %QUICKCNT to
declare a dynamic array used to calculate monthly totals:

ARRAY TOTALS[%QUICKCNT(&MNTHS)]
 TEMPORARY (0*%QUICKCNT(&MNTHS));

%COMMVAR(var-list-1, varlist-2);
%COMMVAR() returns the list of variables common to both
var-list-1 and var-list-2. Merging and appending data sets in
dynamic programs come to mind.

%DIFFVAR(var-list-1, varlist-2);
Complementing %COMMVAR(), %DIFFVAR() returns the list of
variables in either list but not the other: the first but not the
second, or the second but not the first. I do not need this often,
but when I do the convenience is thrilling. Contact the author for
the code.

POLITE, CONSIDERATE MACROS
Minimizing macro side effects is somewhat off topic, but in my
mind an essential component of designing high quality macros. I
consider a side effect any change in the SAS system
environment that the macro user does not anticipated, notice,
and perhaps most importantly appreciate. For example, a macro
may change titles, footnotes or system options such as
LINESIZE and PAGESIZE to generate a desired report. Rude
macros do so arrogantly, without reporting such changes and
without later restoring settings to their original values. I use two
pairs of macros to save and restore TITLEs /FOOTNOTEs and
system options.

%SAVETTLFN and %RSTRTTLFN
Invoked without parameter, %SAVETTLFN stores SAS system
titles and footnotes in a temporary data set. After doing so a
macro can freely make necessary changes. At the end of macro
processing, simply %RSTRTTLFN to restore original titles and
footnotes.

Including these statements in macros allows you to label macro
output appropriately without irritating programmers that use your
code. Contact the author for the code.

%SAVEOPT(system-options) and %RSTROPT(system-options)
In a parallel fashion %SAVEOPT(system-options) sets aside
current settings for listed system options. Change page layout,
form delimiter, missing values, etc., with absolute impunity. Once
macro processing is complete, %RSTROPT(system-options)
restores all settings or just those listed.

Given human nature, being polite and considerate is rarely so
easy. Thus rudeness and the irritation of mysterious environment
changes is inexcusable. End of lecture. Contact the author for the
code.

CONCLUSION
Understanding and managing symbols is essential for developing
clear, reliable and maintainable dynamic programs and macro
libraries. Making use of SAS features for working with symbol
tables and developing generic helper macros saves development
time and makes dynamic programming efficient and downright
fun. Explore, experiment and enjoy!

REFERENCES
1. SAS Institute Inc., SAS OnlineDoc®, Version 8, Cary, NC: SAS
Institute Inc., 1999 (SAS Macro Language: Reference section)

2. Art Carpenter, Carpenter’s Complete Guide to the SAS Macro
Language, Cary, NC: SAS Institute, Inc., 1998, 242pp.

CONTACT INFORMATION
I value and encourage your comments and questions:

Dante diTommaso
Fred Hutchinson Cancer Research Center
1100 Fairview Ave N, MW-500
Seattle, Washington 98109
Phone: (206) 667-6470
Fax: (206) 667-4812
Email: dante@scharp.org
Files: http://dantegd.home.mindspring.com/sas/

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Coders' Corner

4

+---+;
| A P P E N D I X |;
--- ---;
| [GLOBVARS] NO PARAMETERS: REPORT GLOBAL SYMBOLS, THEIR |;
| VALUES, AND A COUNT OF GLOBAL SYMBOLS |;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |;
*+---+;
%MACRO GLOBVARS;
 %LOCAL MAXNAME MAXVAL NGLOBVAR;

 DATA GLOBVARS (KEEP=NAME VALUE);
 SET SASHELP.VMACRO (KEEP=SCOPE NAME VALUE
 WHERE=(UPCASE(SCOPE) EQ 'GLOBAL'))
 END=NOMORE;
 RETAIN MAXNAME 10 MAXVAL 20;

 IF (LENGTH(NAME) GT MAXNAME) THEN MAXNAME = LENGTH(NAME);
 IF (LENGTH(VALUE) GT MAXVAL) THEN MAXVAL = LENGTH(VALUE);

 IF (NOMORE) THEN DO;
 CALL SYMPUT('MAXNAME', TRIM(LEFT(PUT(MAXNAME, 8.))));
 CALL SYMPUT('MAXVAL', TRIM(LEFT(PUT(MAXVAL, 8.))));
 END;

 PROC SQL NOPRINT;
 SELECT (NOBS - DELOBS) INTO :NGLOBVAR
 FROM DICTIONARY.TABLES
 WHERE UPCASE(LIBNAME) = 'WORK' AND
 UPCASE(MEMNAME) = 'GLOBVARS';

 %IF &NGLOBVAR. > 0 %THEN %DO;
 %LET NGLOBVAR = %TRIM(%LEFT(&NGLOBVAR.));
 PROC REPORT DATA = GLOBVARS SPLIT = "|" CENTER HEADLINE NOWD;
 COLUMN NAME VALUE;
 DEFINE NAME / ORDER FORMAT=$&MAXNAME.. WIDTH=&MAXNAME.
 SPACING=2 LEFT
 "SYMBOL|NAME|(N=&NGLOBVAR.)";
 DEFINE VALUE / DISPLAY FORMAT=$&MAXVAL.. WIDTH=&MAXVAL.
 SPACING=2 LEFT
 'SYMBOL|VALUE| ';
 %END;

 PROC DATASETS LIB=WORK MEMTYPE=DATA NOLIST NODETAILS;
 DELETE GLOBVARS;
 QUIT;
%MEND GLOBVARS;

-------; %let ONE = a global symbol;
* USAGE *; %let TWO = another global symbol;
-------; %globvars

SUGI 28 Coders' Corner

5

+---+;
| A P P E N D I X (continued) |;
--- ---;
| [CHKGVARS] CHECK GLOBAL SYMBOL DATA SET AND REPORT WHETHER |;
| OR NOT A MACRO SYMBOL ALREADY EXISTS. |;
| PARAMETER: <VN> GLOBAL SYMBOL NAME TO CHECK AGAINST DATA SET|;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |;
*+---+;
%MACRO CHKGVARS(VN);
 DATA _NULL_;
 SET SASHELP.VMACRO (KEEP=SCOPE NAME VALUE
 WHERE=(UPCASE(SCOPE)='GLOBAL')) END=NOMORE;
 RETAIN MATCH 0;
 IF UPCASE(NAME) = UPCASE("&VN.") THEN MATCH = 1;
 IF NOMORE AND MATCH THEN DO;
 PUT '+' 24*'-' '>';
 PUT "+ [CHKGVARS] GLOBAL SYMBOL <%UPCASE(&VN.)> EXISTS: " VALUE;
 PUT '+' 24*'-';
 END;
 ELSE IF NOMORE AND ^MATCH THEN DO;
 PUT '+' 24*'-' '|';
 PUT "+ [CHKGVARS] GLOBAL SYMBOL <%UPCASE(&VN.)> DOES NOT EXIST.";
 PUT '+' 24*'-';
 END;
 RUN;
%MEND CHKGVARS;

-------;
* USAGE *; %let PI = 3.1416; %chkgvars(PI)
-------; %chkgvars(THREE)

+---+;
| A P P E N D I X (continued) |;
--- ---;
| [DELGVARS] NO PARAMETERS, DELETE !!ALL!! GLOBAL SYMBOLS |;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |;
*+---+;
%MACRO DELGVARS;
 DATA DELGVARSTEMP;
 SET SASHELP.VMACRO (KEEP=SCOPE NAME
 WHERE=(SCOPE='GLOBAL'));
 DATA _NULL_;
 SET DELGVARSTEMP;
 CALL EXECUTE('%SYMDEL ' !! TRIM(LEFT(NAME)) !! ';');

 PROC DATASETS LIBRARY=WORK MEMTYPE=DATA NOLIST NODETAILS;
 DELETE DELGVARSTEMP;
 QUIT;
%MEND DELGVARS;

-------; %let PI = 3.1416; %globvars
* USAGE *; %delgvars
-------; %globvars

SUGI 28 Coders' Corner

6

+---+;
| A P P E N D I X (continued) |;
--- ---;
| [QUICKCNT] IN-LINE UTILITY TO COUNT WORDS IN A CHARACTER |;
| DELIMITED STRING (SPACE-DELIMITED BY DEFAULT) |;
| PARAMETERS: <QSTR> REQUIRED -- DELIMITED STRING OF WORDS |;
| NB: QUOTE STRING AS NEC ON MACRO CALL, (EG, IF |;
| <QSTR> HAS SPECIAL CHARS (;,) USE %STR) |;
| <QDLM> OPTIONAL LIST OF DELIMS (SPACE DEFAULT) |;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |;
*+---+;
%MACRO QUICKCNT(QSTR, QDLM=%STR());
 %LOCAL QCN;

 %LET QCN = 0;
 %DO %WHILE (%QSCAN(&QSTR., %EVAL(&QCN.+1), &QDLM.) ^=);
 %LET QCN = %EVAL(&QCN. + 1);
 %END;
 &QCN.
%MEND QUICKCNT;

-------;
* USAGE *; %let VARS = %str(var1,var2^var3#var4 var5);
-------; %put _%QUICKCNT(&VARS., QDLM=%STR(^#,))_;

+---+;
| A P P E N D I X (continued) |;
--- ---;
| [COMVAR] IN-LINE UTILITY RETURNS LIST OF WORDS COMMON TO |;
| THE TWO LISTS PASSED IN AS DELIMITED STRINGS |;
| NB: !!NOT!! CASE SENSITIVE |;
| PARAMETERS: <CLST1> REQUIRED -- DELIMITED STRING OF WORDS |;
| <CLST2> REQUIRED -- DELIMITED STRING OF WORDS |;
| NB: QUOTE STRING AS NEC ON MACRO CALL, (EG, IF |;
| <CLST1> HAS SPECIAL CHARS (;,) USE %STR) |;
| <CDLM> OPTIONAL LIST OF DELIMS (SPACE DEFAULT) |;
| PROGRAMMER: DANTE DITOMMASO (SUGI 28, PAPER 95, MARCH 2003) |;
*+---+;
%MACRO COMVAR(CLST1, CLST2, CDLM=%STR());
 %LOCAL COMVAR;

 %LET COMVAR =;
 %DO CV1 = 1 %TO %QUICKCNT(&CLST1., QDLM=&CDLM.);
 %DO CV2 = 1 %TO %QUICKCNT(&CLST2., QDLM=&CDLM.);
 %IF %UPCASE(%SYSFUNC(scan(&CLST1., &CV1., &CDLM.))) EQ
 %UPCASE(%SYSFUNC(scan(&CLST2., &CV2., &CDLM.))) %THEN
 %LET COMVAR = &COMVAR. %UPCASE(%SYSFUNC(
 scan(&CLST1., &CV1., &CDLM.)));
 %END;
 %END;
 &COMVAR.
%MEND COMVAR;

-------; %let L1 = V1 VARiable2@V3 V5^V6 v7;
* USAGE *; %let L2 = %STR(VARIABLE2!V5 V6;V7 V8);
-------; %put _%COMVAR(&L1., &L2., CDLM=%STR(!@;^))_;

SUGI 28 Coders' Corner

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

