
 1

Make Your Life a Little Easier: A Collection of SAS Macro Utilities

Pete Lund, Northwest Crime and Social Research, Olympia, WA

ABSTRACT

SAS Macros are used in a variety of ways: to
automate the generation of SAS code, to simulate
functions and subroutines, or even to “comment”
out a section of code. This paper focuses on
another use of SAS macros: utilities.

These macros don’t generate any SAS code and
they aren’t “functions,” but they all take tasks I
found myself doing repeatedly and bundled them
in an easy to reference package.

These are examples range in scope from
displaying SAS date values to retrieving
information about external files, from getting the
values of current options to getting a list of
variables in a dataset. They are meant to be just
that – examples. I hope that they will give you
some ideas about how to automate some of the
tasks you find yourself doing repeatedly.

A SAS DATE VIEWER MACRO

I can’t believe that I’m the only one who’s ever had
some data with unformatted SAS dates and
wanted to know quickly what 12843 was. Or,
needed to know the SAS date value of 4/23/1998.

Obviously, if you’re writing code or in a viewer you
can add a format, or remove one, to do this.
Sometimes you just need to quickly check the
value – now! This little macro takes a SAS date or
a “date” value (mm/dd/yy or ccyy) format and
displays the other to the log.

For example, the following calls to the macro would
produce, in the log window, the results shown.

%SASdate(-580)

Note- SAS date -580 is May 31, 1958

%SASdate(5/31/58)
NOTE- 5/31/58 is SAS date -580

Notice that there is only one macro to handle both
input formats. The code to accomplish this is really
quite simple.

%macro sasdate(dt);

 %if %index(&dt,%str(/)) eq 0 %then �

 %put SAS date &dt is �

%sysfunc(left(%qsysfunc(putn(&dt,worddate.))));

 %else %put &dt is SAS date

%sysfunc(inputn(&dt,mmddyy10.)); �

%mend;

� First, we’ll check to see if the value contains a
slash (/). If it does not, we’ll assume that it’s a SAS
date. All we need to do is format it as a date string
�. That’s accomplished with:

%qsysfunc(putn(&dt,worddate.))

By default, the text will be right justified in the
default space allocated to WORDDATE. (18
characters). For this reason, we need to LEFT it
with %sysfunc(left(....)) to avoid unwanted
spaces embedded in the log note.

Note: the nested %QSYSFUNC() is used, as
opposed to %SYSFUNC, to mask the comma that
the WORDDATE. format produces. If it were not
masked the comma would be seen as a parameter
delimiter by the LEFT function. Also note that in
Version 8 there is a %LEFT macro function. I’ll
leave this macro the way it is so that it will function
in 6.12 as well.

Finally, if the incoming value does have a slash,
we assume that it’s a date string and all we need
do is convert that to a SAS date�:

%sysfunc(inputn(&dt,mmddyy10.));

A simple little macro that does a simple little thing,
but one that comes in handy very often.

A DATASET VARIABLE LIST MACRO

There are often times when I need a list of the
variables in a dataset. For example, when merging
two datasets I want to output of the records that
matched but I also want to find out what’s up with
non-matches. So, I output two additional datasets
with the non-matches from each of the two input
datasets. A problem occurs when the input
datasets have a lot of variables. I don’t want to
keep all the extraneous variables in my non-match
datasets and I don’t really want to maintain a long
KEEP or DROP list either.

SUGI 28 Coders' Corner

 2

Wouldn’t if be nice if there were an option to keep
only the variables that correspond to a particular
dataset? This macro does the trick. For example,
I often merge arrest and booking data:

data matches

 OnlyBook(keep=%VarList(Booking))

 OnlyArrest(keep=%VarList(Arrest));

 merge Booking(in=inB)

 Arrest(in=inA);

 by BookingNumber;

 if inA and inB then output Matches;

 else if inA then output OnlyArrest;

 else output OnlyBook;

run;

The %VarList macro will return a list of the
variables in the dataset referenced. So, my
unmatched datasets will only contain the pertinent
variables.

Note: the entire macro is displayed at the end of
the paper. I’ll only reference parts of it here to
demonstrate it’s operation.

Here’s how it works. First, we’ll “open” the dataset
so we get information about it:

%let dsid = %sysfunc(open(&dsn,i));

The OPEN function “opens” the dataset and
assigns an id that we’ll store in the macro variable
&dsid. Now, we’ll start to build a macro variable,
&VarList, that contains the names of all the
variables in the dataset. To start the list we’ll place
the first variable name into &VarList using the
VARNAME function.

%let VarList = %sysfunc(varname(&dsid,1));

Notice that we reference the dataset with the id
(&dsid) that was assigned by the OPEN function.
Now that the first variable name is loaded we can
loop through the rest of the variables in the dataset
and add their names to &VarList, separating the
names with a space.

%do i = 1 %to %sysfunc(attrn(&dsid,nvars));

 %let VarList = &VarList � blank space here
%sysfunc(varname(&dsid,&i));
%end;

The ATTRN function can return a number of
attributes about the dataset. In this case we’re

interested in the number of variables, which is
returned with the NVARS parameter.

Note: There are a couple things to be aware of in
the real macro. First, before opening and
processing the dataset a check is made to see that
the dataset exists. If it does not, the bulk of the
macro is not executed. Second, there is another
parameter, Sep= (separator), that can be passed
to the macro. The default separator is a space, but
any character (or group of characters), can be
passed as the variable name separator.

After we’ve read all the variable names we need to
“close” the dataset using the CLOSE function:

%let rc = %sysfunc(close(&dsid));

At this point, if our Arrest dataset had four
variables (age, race, sex, id), &VarList would
equal:

age race sex id � separated by a space

Finally, it’s time to pass the value of &VarList out to
the compiler that’s waiting for it. The code for this
is simple:

&VarList � notice, no semicolon

In the merge example above the value of &VarList
would be placed into the KEEP option:

...(keep=%VarList(Arrest)); becomes �
...(keep=age race sex id);

We could also reference this in a macro
environment (dataset name shortened to A):

%put The vars in A are %VarList(a).;

The above would produce the following in the log:

The vars in A are age race sex id.

Again, a relatively simple macro that can be used
in a number of settings. A list of variables can be
obtained in a number of other ways: PROC
CONTENTS, DICTIONARY table COLUMN or
SASHELP view VCOLUMNS in a datastep or
PROC SQL query. But these methods all require
SAS code to execute. The %VarList macro does
not and can thus be used in a wider variety of
applications. Also, it is very fast compared with the
other methods.

SUGI 28 Coders' Corner

 3

KEEPING TRACK OF SAS OPTIONS

I often have macros or programs that change SAS
options. Most of the time it would be nice to reset
these options to their prior state so that
subsequent code behave as you, or your users,
expect.

For example, in most of my macros I’ll turn the
SAS notes off (with OPTIONS NONOTES) so as
not to clutter my log. I could turn them back on
again at the end – but, what if they were already
off when I started?

This macro will place the current value of an option
in a macro variable that can be used later to reset
the original value.

%macro HoldOpt(OptName=, �

 OptValue=XX);

 %if &OptValue eq XX %then �

 %let OptValue = Hold&OptName;

 %global &OptValue; �

 %let &OptValue = �

 %sysfunc(getoption(&OptName)); �

%mend;

Note: a more complete listing of the macro is
included at the end of the paper.

Let’s look quickly at how this works. � The only
required parameter is the option name (OptName).
A macro variable name to hold the option value
can also be passed (OptValue).

�If no macro variable name value is passed, and
the value of &OptName is still “XX”, the macro
variable created is “Hold” plus the option name.
For example, if you were going to get the current
value of the line size option (LS) and did not
specify a macro variable name, a variable called
&HoldLS would be created.

�The new variable needs to be made global so
that it can be used later to reset the option.

Now all we need to do it create the macro variable.
�Notice in the %LET statement that a macro
variable reference is used:

%let &OptValue = ...

In our example above &OptValue = HoldLS, so this
statement will resolve to

%let HoldLS = ...

�Finally, we simply use the GetOption() function to
get the current value of the option.

How might we use this? Let’s say we had a
program that has code that reads a number of
datasets and generates a lot of log notes and has
some output that requires a 132-line page. We
can guarantee that the OBS option is set to max,
that the LINESIZE is set to 132 and that the
NOTES and SOURCE are turned off – and then
we can set everything back to what it was.

%HoldOpt(OptName=notes)

%HoldOpt(OptName=obs)

%HoldOpt(OptName=ls)

%HoldOpt(OptName=source,OptValue=HoldSrc)

options nonotes obs=max nosource ls=132;

 :

 : � your SAS code here
 :

options &HoldNotes obs=&HoldObs

 &HoldSrc ls=&HoldLS;

All the options are now set back to their original
values and we didn’t even have to know what
those values were.

GETTING INFO ON EXTERNAL FILES

A common situation is to have a process that runs
on a regular basis and reads in a different raw data
file each time, but with the same fileref. Wouldn’t it
be nice to place information about the file (size,
date, name) in a title or footnote so that there’s
never a doubt as to the file that was used to create
the dataset that any analysis was based on?

The following macro gets the name, size and date
of an external file. A fileref is passed to the macro
and global macro variables are created that
contain the information.

Note: As with some of the other macros above, a
trimmed down version is given below for
discussion purposes. A more complete version,
which includes some error handling and a little
more user control, is included at the end of the
paper. Also, the version presented here will run on
Windows platforms. To run on UNIX platforms
backslash references would need to be changed to

SUGI 28 Coders' Corner

 4

slashes and the method of accessing directory
information would change (from dir to ls).

%macro FileInfo(FileRef);

 %global _FileSize _FileDate _FileName _Path;

 %let xpath =

 %sysfunc(pathname(&FileRef)); �

 %let stop =

 %index(%sysfunc(reverse(&xpath)),\); �

 %let _path =

 "%substr(&xpath,1,

 %eval(%length(&xpath)-&stop))";

 %let _FileName = %scan(&xpath,-1,\); �

 filename _temp pipe "dir %bquote(&_path)";�

 data _null_;

 infile _temp lrecl=120 missover pad;

 length bigline $120;

 input bigline $120.;

 size = substr(bigline,25,14); �

 date = substr(bigline,1,8);

 name = substr(bigline,40,60);

 if upcase(name) = upcase("&_FileName")�

 then

 do;

 call symput("_FileSize", size);

 call symput("_FileDate", date);

 stop;

 end;

 run;

 filename _temp; �

%mend;

For the following explanation, let’s assume that we
have the file c:\monthly data\april.dat referenced by
the fileref MnthData.

The macro receives a fileref as its only parameter
and uses the PATHNAME function to get the path
and file name. � The macro variable XPATH will
equal c:\monthly data\april.dat – the complete path
and file name.

� The next step is to break &XPATH into path
name and file name pieces. We really know how
far from the end of the &XPATH sting the path
name ends by reversing the &XPATH and getting
the position of the first backslash:

%index(%sysfunc(reverse(&xpath)),\)

The %sysfunc(reverse(...)) in the above
statement resolves to:

%index(tad.lirpa\atad ylhtnom\:c,\)

So, in our example result would be 10. We’ll store
this in &STOP and use this to create &PATH,
holding the path name. The statement for creating
&PATH now becomes:

"%substr(&xpath,1,%eval(%length(&xpath)-10))"

Notice that the value includes double quotes. This
is important and will be discussed later.

� It’s only a one step job now to extract the file
name portion of &XPATH. It will always be the last
segment of &XPATH if broken by backslashes.
Version 8 makes this much easier to do with the
addition of negative SCAN function. The “-1” tells
scan to return the first segment from the end of the
string – in other words, the last segment, which
contains the file name.

Now that we know the path and file names, it’s
time to get some information about the file. We’ll
use the Windows directory command to get the
size and date of the file. � By using the PIPE
option on the FILENAME statement we can access
the results of an operating system command, in
this case DIR, from a datastep.

The DIR command expects any path containing
spaces to be enclosed in double quotes. This is
why we put the quotes on the value of &PATH
when we created it. However, consider:

filename _temp pipe "dir &_path"; � resolves to
filename _temp pipe "dir "c:\monthly data"";

You can see that we have a problem here. The
first quote around the path name is going to end
the string and the FILENAME statement will fail.
That’s why we “quote” the value of &PATH with the
%BQUOTE function. This removes any meaning
from the quotes and they are just treated as a
piece of text.

Imagine what you see when you go to a DOS
prompt and type DIR. You see all the file
information fly by on the screen. This is exactly
what the input to our datastep will be when we
reference this “piped” fileref in an INFILE

SUGI 28 Coders' Corner

 5

statement. Each line printed to the screen is an
input line of data.

There will be a line of data about each file in the
directory referenced containing the file name,
creation date and time, size, etc. � All we need do
now is parse it into the pieces we want. An
important note: the values listed here are the
defaults for Windows NT. They are different for
Windows 95/98. The actual macro has parameters
for the start position and length of each element
(size, date, name).

� When we come to the file we’re interested in we
will create macro variable containing the date and
size of the file (we already have the name and path
stored). We can stop the datastep now, since
we’re only looking for information about the one
file.

� A final step is to clean up after ourselves and
release the fileref. It’s always nice to leave as little
evidence as possible that you were there!

So, how might we use this? Let’s look at an
example:

%let Mnth = April;

filename monthly "c:\monthly data\&Mnth..dat";

%FileInfo(monthly)

data &Mnth;

 infile monthly;

 :

 : � file processing here
run;

title "&Mnth Data";

footnote1 "&Mnth file is &_Filename";

footnote2 " Date: &_FileDate";

footnote3 " Size: &_FileSize bytes";

proc ...; � some analysis here
run;

Another way I’ve used this is to use the information
in the label of the dataset being created. For
example:

%let Mnth = April;

filename monthly "c:\monthly data\&Mnth..dat";

%FileInfo(monthly)

data MyData.&Mnth

 (label="&_FileName from &_FileDate");

 infile monthly;

 :

 : � file processing here
run;

Now, the file name and date are stored in the label
of the dataset and I can be much more sure of the
raw data used to create the dataset.

CONCLUSION

As you can see, these macros are related only in
that they all take tasks that you could do “by hand”
and automate it. I hope that this spurs you on to
think of other things that you might let SAS do for
you.

AUTHOR CONTACT

Pete Lund
Northwest Crime and Social Research
215 Legion Way SW
Olympia, WA 98501
(360) 528-8970
pete.lund@nwcsr.com
www.nwcsr.com

Electronic versions of these, and other, macros
can be obtained via e-mail from the author.

TRADEMARK INFORMATION

SAS is a registered trademark of SAS Institute Inc.,
Cary, NC, USA.

COMPLETE MACRO TEXT IS DISPLAYED ON
FOLLOWING PAGES

SUGI 28 Coders' Corner

 6

VARLIST Macro

/***/

/* Macro: GetVarList */

/* Programmer: Pete Lund */

/* Date: September 2000 */

/* Purpose: Create a macro variable that contains all the */

/* variable names in a dataset, separated by any char- */

/* acter(s) specified Can be used in KEEPs, DROPs, SQL */
/* SELECTs, etc. */
/* */
/* Parameters: */
/* DSN - the name of the dataset (libref.member) */
/* Sep - character(s) to separate the variable names */
/* (default is a space) */
/***/

%macro VarList(dsn,
 sep=%str());

 %local i dsid varlist;

 /* Make sure that the dataset exists */

 %if %sysfunc(exist(&dsn)) eq 0 %then
 %do;
 %put WARNING: &DSN does not exist;
 %let varlist = ;
 %goto Quit;
 %end;

 /* If it does exist, open the dataset. We're going to create */
 /* a variable (varlist) which contains the list of variables */
 /* in the dataset, separated by the specified separator char- */
 /* acter(s). Start VarList off with the name of the first */
 /* variable in the dataset. */

 %let dsid=%sysfunc(open(&dsn,i));
 %let varlist = %sysfunc(varname(&dsid,1));

 /* Look through the rest of the variables in the dataset and */
 /* add them to the VarList value (with the separator char in */
 /* between values. */

 %do i = 2 %to %sysfunc(attrn(&dsid,nvars));
 %let varlist = &varlist&sep%sysfunc(varname(&dsid,&i));
 %end;

 /* Close the dataset. */

 %let rc = %sysfunc(close(&dsid));

 %Quit:

 /* Write out the variable name list. */

 &varlist
%mend;

SUGI 28 Coders' Corner

 7

SASDATE Macro

/***/
/* Macro: SASDate */
/* Programmer: Pete Lund */
/* Date: June 1998 */
/* Purpose: Returns the SAS date if a date (mm/dd/yy) */
/* value is passed. Returns the date (mm/dd/yy) if a SAS */
/* date value is passed. */
/* */
/* Parameters: */
/* DT - either a SAS date (numeric) value or a date */
/* (in mm/dd/yy or ccyy format) */
/* */
/* %SASdate(-580) returns */
/* SAS date –580 is May 31, 1958 */
/* %SASdate(5/31/58) returns */
/* 5/31/58 is SAS date -580 */
/***/

%macro sasdate(dt);
 %if %index(&dt,%str(/)) eq 0 %then
 %put SAS date &dt is %sysfunc(left(%qsysfunc(putn(&dt,worddate.))));
 %else %put &dt is SAS date %sysfunc(inputn(&dt,mmddyy10.));
%mend;

SUGI 28 Coders' Corner

 8

HoldOpt Macro

/***/
/* Macro: HoldOpt */
/* Programmer: Pete Lund */
/* Date: September 2000 */
/* Purpose: Holds the value of a SAS option in a macro */
/* variable. The value can then be used to reset options */
/* to a current value if changed. */
/* */
/* Parameters: */
/* OptName - the name of the option to check */
/* OptValue - the name of the macro variable that will */
/* hold the current value of the option */
/* The default name is made up of the word */
/* "Hold" and the option name. For */
/* example, if OptName=Notes, OptValue */
/* would equal HoldNotes */
/* Display - Display current value to the log (Y/N) */
/* The default is N */
/* */
/***/

%macro HoldOpt(OptName=, /* Option to check and hold value */
 OptValue=XX, /* Macro var name to hold value */
 Display=N); /* Display current value to the log */

 %if %substr(&sysver,1,1) eq 6 and %length(&OptName) gt 4 %then
 %do;
 %put WARNING: Default variable name of Hold&OptName is too long for V&sysver..;
 %put WARNING: Please specify a shorter name with the OptValue= macro parameter.;
 %goto Quit;
 %end;
 %if &OptValue eq XX %then %let OptValue = Hold&OptName;

 %global &OptValue;

 %let &OptValue = %sysfunc(getoption(&OptName));

 %if &Display eq Y %then
 %put The current value of &OptName is &&&OptValue;

 %Quit:
%mend;

SUGI 28 Coders' Corner

 9

FileInfo Macro

/***/
/* Macro: FileInfo */
/* Programmer: Pete Lund */
/* Date: September 2000 */
/* Purpose: Gets information about an external file (path, file name, date and */
/* size) based on a fileref. */
/* */
/* Parameters: */
/* FileRef - the fileref of the file for which information in desired */
/* S,D,N - the position-size of the Size, Date and Name portions of the */
/* DIR command data lines. The default values are for Windows NT. */
/* For Windows 98, the values would be: S=15-12,D=29-8,N=45-60 */
/* FS,FD,FN,FP - The names of the macro variables that will contain the file */
/* size, date, name and path. Defaults are _FileSize, _FileDate, */
/* _FileName and _Path. */
/***/

%macro FileInfo(FileRef,S=25-14,D=1-8,N=40-60,
 FS=_FileSize,FD=_FileDate,FN=_FileName,FP=_Path);
 %global &FS &FD &FN &FP;
 %local stop path xpath ErrMsg;

 /* Initialize all the global variables */

 %let ErrMsg = ;
 %let _FileSize = (unknown);
 %let _FileDate = (unknown);
 %let _FileName = (unknown);

 /* Check to see if the fileref passed really exists and points to */
 /* a real file. If not, create an error message and jump out of */
 /* the macro. */

 %if %sysfunc(fileref(&FileRef)) gt 0 %then
 %do;
 %let ErrMsg = ERROR: Fileref "&FileRef" has not been assigned;
 %goto Quit;
 %end;
 %else %if %sysfunc(fileref(&FileRef)) lt 0 %then
 %do;
 %let ErrMsg = ERROR: Fileref "&FileRef" references a nonexistent file;
 %goto Quit;
 %end;

 /* Grab the values for NOTES and XWAIT options so that they can be */
 /* reset at the end. */

 %HoldOption(OptName=notes)
 %HoldOption(OptName=xwait)

 options nonotes noxwait;

 /* Get the path and filename of the passed fileref */

 %let xpath = %sysfunc(pathname(&FileRef));

SUGI 28 Coders' Corner

 10

 /* If the path is in parenthesis it is (probably) a concatenated path */
 /* and I don't want to deal with those. Note this and get out. */

 %if %qsubstr(&xpath,1,1) eq %str(%() %then
 %do;
 %let ErrMsg = ERROR: FILEINFO macro does not support concatenated path filerefs;
 %goto Quit;
 %end;

 /* Find the position of the last backslash in the path name. This will */
 /* be used to split out the path and file portions of the name. */
 /* Actually, now we can use a negative number in the SCAN function to */
 /* get a chunk at the end of a string. Use this to get the filename. */

 /* Note that the path is enclosed in double quotes. The DIR command, */
 /* used below, requires that paths with spaces be in double quotes. */

 %let stop = %index(%sysfunc(reverse(&xpath)),\);
 %let _path = "%substr(&xpath,1,%eval(%length(&xpath)-&stop))";
 %let _FileName = %sysfunc(scan(&xpath,-1,\));

 /* Pipe a directory listing - need to blind quote the path name so that */
 /* double quotes in the path don't screw things up. */

 filename _temp pipe "dir %bquote(&_path)";

 /* Read the directory where the file resides - when the file is found, */
 /* grab the size and date (we already have the name) and write out macro */
 /* variables containing the values. We can stop at this point since we */
 /* only looking for information about one file. */

 data _null_;
 infile _temp lrecl=120 missover pad;

 length bigline $120;
 input bigline $120.;

 size = substr(bigline,%scan(&S,1,-),%scan(&S,2,-));
 date = substr(bigline,%scan(&D,1,-),%scan(&D,2,-));
 name = substr(bigline,%scan(&N,1,-),%scan(&N,2,-));

 if upcase(name) eq upcase("&_FileName") then
 do;
 call symput("_FileSize",trim(left(size)));
 call symput("_FileDate",trim(left(date)));
 stop;
 end;
 run;

 /* Clean things up - clear the fileref and reset the NOTES and XWAIT options */

 filename _temp;
 options &HoldNotes;
 options &HoldXWait;

 %Quit:
 %put &ErrMsg;
%mend;

SUGI 28 Coders' Corner

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

	pnum85-28: Paper 85-28

