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ABSTRACT 
There are several methods for accessing the SAS System 
through the Web to provide Web-enabled information-
delivery solutions.  The Application Dispatcher is a SAS 
System server that executes SAS programs from a Web 
browser, which is easily implemented by those with 
knowledge of the SAS DATA Step and Procedures.  This 
makes it a good method for moving existing SAS 
programs to the Web. 
 
This paper will provide an introduction to Application 
Dispatcher including installation and the development of 
Web pages and SAS programs that connect the SAS 
System to the Web.1 

INTRODUCTION 
SAS/IntrNet provides several methods of accessing the 
SAS System from the Web.  These methods can be 
broken into two main categories 1) data services, which 
allow users to update and query data from a Web 
browser with SQL-type queries, and 2) compute services, 
which allow users to execute SAS programs from a Web 
browser.  
 
SAS/IntrNet Application Dispatcher is a compute service 
that allows users to pass parameter selections from a 
Web page to the appropriated SAS program that 
executes on a server, sending the results back to the 
user’s Web browser.  Because the program is executed 
on the server, end users only need a Web browser.  
There is no need for SAS on their workstations.  
Application Dispatcher can execute four types of 
programs that take advantage of all data access, 
manipulation, reporting and analysis capabilities of the 
SAS System: SAS programs stored in external files, 
source entries, SCL entries, and macro entries. 
 
Application Dispatcher is an excellent choice for those 
who have SAS programming experience and little or no 
experience with CGI programs or other methods of Web 
application development.  Many SAS programs can be 
adapted to work with Application Dispatcher with few 
coding changes.  

APPLICATION DISPATCHER OVERVIEW 
Application Dispatcher consists of two components.  A 
Common Gateway Interface (CGI) program called the 
Application Broker resides on a Web server.  The second 
component is the Application Server that is simply a SAS 
session running on a server that executes the SAS 
programs.  

                                                        
1 The information presented in this paper is specific to 
SAS Release 8.2 for the Windows operating system. 

 
An Application Dispatcher program usually starts with a 
Web page where users make selections or enter data on 
a form.  When a user submits the form the items are 
passed to the broker.  The name of the Application Server 
that is to process the request and the name of the 
program to run is also sent from the Web form to the 
broker.  These two items are usually hidden fields on the 
form that the user is unaware of.  Using a configuration 
file that contains the locations of Application Servers, the 
broker directs user selections along with the program 
name to the appropriate Application Server.  The SAS 
program receives the parameters selected or entered on 
the Web form as SAS macro variables that are resolved 
in the SAS program.  The program is executed and the 
results are sent back to the user’s browser.   It is that 
simple! 
 
The sample application below creates a sales report for 
selected regions.  When the form is submitted the broker  
will send the selected region and the program name to 
the Application Server for execution.  The program will 
receive the region selected as a macro that will be 
resolved in a WHERE statement to restrict the report to 
the region selected. ODS will create HTML output from a 
PROC REPORT procedure and direct it back to the 
browser. 
 

APPLICATION DISPATCHER INSTALLATION 
Installation of the Application Dispatcher includes 
installing the Application Broker on a Web server and 
installing the Application Server on a SAS server. 
 
APPLICATION SERVER INSTALLATION / SETUP 
The installation of the Application Server begins by 
including SAS/IntrNet in the installation of the SAS 
System on the server.  This will install the necessary 
components on the SAS Server.  However, at this point 
the Application Server has not been created or 
configured.  
 
 “Application Server” is a general term referring to the 
SAS session that processes the request.  A specific 
instance of an Application Server like the one created in 
the next section is called a “service.”   In the remainder of 
this paper the term “service” refers to the Application 
Server. 
 
An Application Server is created by selecting Programs, 
The SAS System, IntrNet and Create a New IntrNet 
Service from the Start button. From the Welcome 
window that appears (not shown here), click the Next 
button and the Select Configuration Task window will 
appear as shown in Figure 1. 
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Figure 1: Select Configuration Task window 
 
There are several types of services (Application Servers).  
A socket service is an Application Server that remains 
running at all times waiting for requests.  A launch service 
is an Application Server that starts when a request is 
received from the Application Broker and stops when the 
request is completed.  A poll service is an Application 
Server that starts when a request is received and remains 
running until a specified time of inactivity has passed 
before stopping.  Pool services can also be defined to run 
multiple Application Servers.  If one server is busy when 
a new request is received, the pool service can start a 
second Application Server.  The Load Manager is a 
program that manages requests and servers by sending 
requests to servers that are idle and starting servers as 
needed.  For this paper, a socket service will be used.  
See the SAS/IntrNet documentation for more detail on all 
types of services and the load manager. 
 
With socket service selected, click Next and the Enter 
Service Name window will appear as shown in Figure 2. 
 

 
Figure 2 – Enter Service Name window 
 
Any name can be used for the service name.  However, 
“default” will be used in this paper.  It is a good idea to 
use “default” as the service name when getting started 
with Application Dispatcher because the sample 
applications provided with the software are written to use 
the “default” service.  

Click Next to record the service name and the Choose 
Service Directory window will open as shown in Figure 3.   
 

 
Figure 3: Choose Service Directory window 
 
The service directory is the subdirectory where files for 
the service are located.  These files include a SAS 
program file containing the commands for starting the 
service and log files.  To change the default location of 
the service directory, click on the Browse button to open 
the Choose Folder window (not shown).  Click Next to 
record the service directory and open the Enter Service 
Ports window shown in Figure 4. 
 

 
Figure 4: Enter Service Ports window 
 
The port number entered here is the TCP-IP port the 
broker and the service use to communicate.  A port 
number not in use by another application should be used. 
For this example enter 5001.  After clicking the Next 
button the Enter Admin Password window will open (not 
shown).  The password entered will be required when 
performing administrative tasks from a Web browser 
such as stopping the service.  If a password is not 
entered, administrative tasks may be performed without a 
password.  Click Next to save the administrative 
password and the Create Service window will open with a 
summary of all selections for review, as shown in Figure 
5.  
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Figure 5: Create Service window 
 
After reviewing the information, click the Next button in 
this window and the next three windows to complete the 
creation of the socket service. 
 
BROKER INSTALLATION AND CONFIGURATION 
The Application Broker is installed on a Web server from 
the Client Side Components CD.  The broker is typically 
installed in the cgi-bin directory that is in the Web server 
root directory.  The sasweb directory containing 
SAS/IntrNet samples will also be created in the Web 
server root directory. 
 
After the broker is installed, it will need to be configured 
by editing the broker.cfg file found in the cgi-bin directory.  
This file contains several configuration options with 
documentation including sections for all three types of 
services: socket, launch and pool.   
 
The section of the broker.cfg file below is the 
configuration for the socket service named “default” 
located on the SAS server at the address 
appsrv.yourcomp.com and communicating on port 5001. 
 
SocketService default "Reuse existing session" 
ServiceDescription "Pages reference this 
generic server when they don't care which 
service is used." 
ServiceAdmin "Your Name" 
ServiceAdminMail "yourname@yoursite" 
Server appsrv.yourcomp.com 
Port 5001 
#  Remove the following line for any servers 
before V8.1 
FullDuplex  True 

 
In the configuration of the “default” service, enter the 
information specific to your site for each item.  For 
“Server” replace appsrv.yourcomp.com with the DSN or 
IP address for the “default” Application Server service 
previously created. 
 
It should be noted that a broker.cfg file could contain 
configurations for multiple services.  This is done by 
copying the configuration for a service and making the 
required changes. 
 

After the Application Server and Application Broker have 
been installed and the broker.cfg file has been modified 
the Application Dispatcher is ready to test. 
 
TESTING APPLICATION DISPATCHER 
Before testing, the “default” service must be started. 
Select Programs, The SAS System, IntrNet, Default 
Service and Start Interactively from the Start menu.  
With the service started, testing can begin. 
 
To test the broker, enter the address for the Web server 
where the broker is installed followed by the path to the 
broker.exe file in the address field of a Web browser.  For 
example, http://localhost/cgi-bin/broker.exe, where 
“localhost” is the address for the Web server.  Replace 
“localhost” with the address of the Web server where the 
broker is installed.  If the broker is working properly the 
Web page shown in Figure 6 will be returned. 
 

 
Figure 6: Application Broker 
 
With the Broker working properly, the “default” service 
can be tested by entering the following address in the 
Web browser. 
 
http://localhost/cgi-bin/broker.exe 
?_SERVICE=default&_PROGRAM=sample.webhello.sas 

 
This Web address illustrates the _SERVICE and 
_PROGRAM  parameters that are passed to the broker.  
The broker will send the request to the “default” service 
which will execute the webhello.sas program.  The results 
are returned to the browser as shown in Figure 7. 
 

 
Figure 7: Hello World! 
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With the broker and “default” service installed and tested, 
the Application Dispatcher is ready for use. 
 

SAMPLE APPLICATION 
 
APPSTART.SAS PROGRAM 
Before building the sample application, the program and 
data file locations for the application must be defined for 
the “default” service.  The service is started with the SAS 
program named appstart.sas.  This file is located in the 
service directory entered during creation of the “default” 
service.  This directory can be opened by selecting 
Programs, The SAS System, IntrNet, Default Service 
and Service Directory from the Start menu.  
 
The appstart.sas program contains a PROC APPSRV 
procedure which starts the service.  The ALLOCATE FILE 
statement associates a SAS file reference with an 
external file or directory containing SAS programs while 
the ALLOCATE LIBRARY statement associates a SAS 
library reference to a SAS data library.  For the service to 
use the file and library allocations they must be explicitly 
listed in PROGLIBS and DATALIBS statements. 
 
The statements below will create the file and library 
allocations for the example that follows and should be 
placed directly above the RUN statement in the 
appstart.sas file 
 
allocate library sugidata 'c:\sugi28\data'; 
allocate file sugicode 'c:\sugi28\code'; 
proglibs sugicode; 
datalibs sugidata; 
 

SAS programs and data set files for the sample 
application are located in the subdirectories as shown in 
the allocation statements above.  The SAS data set 
“shoes” used in the sample application is a sample data 
set that comes with the SAS System and can be found in 
the SASHELP library.   
 
ODS OUTPUT 
The sample application below creates a sales report for 
selected regions.  A region can be selected from a list on 
the Web form.  When the form is submitted the broker 
will send the selected region and the program name to 
the Application Server for execution.  The program will 
receive the region selected as a macro variable that will 
be resolved in a WHERE statement to restrict the report 
to the region selected. ODS will create HTML output from 
a PROC REPORT procedure and direct it back to the 
browser. 
 
The Web page containing the region selection is shown in 
Figure 8 with the HTML code following. 
 

 
Figure 8: Shoe Sales by Subsidiary 
 
<HTML> 
 <HEAD> 

<TITLE>SUGI 28 SAS/IntrNet Example</TITLE> 
</HEAD> 
<BODY> 
<FORM ACTION="/cgi-bin/broker.exe" 
METHOD="POST"> 
<INPUT TYPE="HIDDEN" NAME="_service" 
VALUE="default"> 
<INPUT TYPE="HIDDEN" NAME="_program" 
VALUE="sugicode.sales_by_sub.sas"> 
<H2>SUGI 28 SAS/IntrNet Example</H2> 
<H3>Shoe Sales by Subsidiary</H3> 
<P><BR>Select Region:</P> 
<P> 
<SELECT NAME="region" SIZE="6"> 
<OPTION SELECTED>Africa</OPTION> 
<OPTION>Asia</OPTION> 
<OPTION>Canada</OPTION> 
<OPTION>Central America/Caribbean</OPTION> 
<OPTION>Eastern Europe</OPTION> 
<OPTION>Middle East</OPTION> 
<OPTION>Pacific</OPTION> 
<OPTION>South America</OPTION> 
<OPTION>United States</OPTION> 
<OPTION>Western Europe</OPTION> 

</SELECT> 
</P> 
<INPUT TYPE="SUBMIT" NAME="Submit" 
VALUE="Submit"> 

</FORM> 
</BODY> 

</HTML> 
 

The most important part of this Web page is the form.  
The action attribute of the FORM tag contains the path to 
the broker.exe file.  Following the FORM tag are two 
INPUT tags with the type attribute of “HIDDEN” which 
keeps them from being displayed on the Web page.  The 
first INPUT tag with “_services” as the name attribute and 
“default”  as the value attribute tells the broker that the 
“default” service is to receive the request.  The second 
INPUT tag with “_program” as the name attribute 
contains the name of the program to be executed by the 
“default” service.  Notice that the program has a three-
part name.  The first part, sugicode, is the program 
library that was allocated in the appstart.sas file.  This 
tells the service where to find the program 
sales_by_sub.sas.  The SELECTION tag defines the 
selection list named “region.”  This item is passed to the 
“default” service by the broker and is received into the 
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program as a macro variable named “region” and 
contains the value selected on the Web page. 
 

 
Figure 9: Asia Shoe Sales Report 
 
The report in Figure 9 was produced when the “default” 
service executed the sales_by_sub.sas program listed 
below. 
 
ods html body=_webout (dynamic) rs=none; 
 
title1 'Shoe Sales by Subsidiary'; 
title2 "&region"; 
 
proc report data=sugidata.shoes; 
where region="&region"; 
column subsidiary sales; 
define subsidiary / group; 
define sales / analysis sum; 
rbreak after  / ol summarize suppress skip; 

run; 
 
ods html close;  
 
The program sales_by_sub.sas uses ODS to create 
HTML output from the PROC REPORT procedure. 
The BODY option on the ODS statement directs ODS to 
send the output to the “_webout” destination.  “_webout” 
is a predefined file reference that sends the output back 
to the Web server and then to the Web browser.  The 
WHERE statement in the PROC REPORT procedure 
resolves the macro variable “region” to restrict the report 
to the region selected. 
 
Adding a graph to the report is quite simple.  The code 
shown below includes additional parameters on the ODS 
statement, a GOPTIONS statement and a PROC 
GCHART procedure.  The PATH and URL parameters 
allow the graphic to be added to the ODS output properly.  
The GOPTIONS statement sets graphic options for the 
production of the graph as a .GIF file.  With these 
additions, the PROC GCHART procedure will add a 
graph to the report as shown in Figure 10. 
 
ods html body=_webout (dynamic) path=&_tmpcat 
(url=&_replay) rs=none; 
 
title1 'Shoe Sales by Subsidiary'; 
title2 "&region"; 

 
proc report data=sugidata.shoes; 
where region="&region"; 
column Subsidiary sales; 
define Subsidiary / group; 
define sales / analysis sum; 
rbreak after  / ol summarize suppress skip; 

run; 
 
goptions device=gif570 
ftext=swissl transparency 
noninterlaced htitle=1.5; 

 
proc gchart data=sugidata.shoes; 
 where region="&region"; 
hbar3d region / sumvar=sales sum 
subgroup=product 
shape=cylinder 
patternid=subgroup 
legend=legend1; 
label product='Shoe Style'; 

run; 
 
ods html close; 

 

 
Figure 10: Shoe Sales Report With Graph 
 
CUSTOM OUTPUT 
There are times when information from a data set needs 
to be included in a Web page that is not generated by 
ODS.  An example is the first Web page in this 
application where a region is selected for the shoe sales 
report.  It is possible that the regions change, and it 
would be best to have the list populated dynamically from 
the data. 
 
This custom Web page can be dynamically generated 
using a  _NULL_ DATA Step with PUT statements to 
write the HTML to the “_webout” file definition which 
directs the HTML back to the browser.  To illustrate this 
technique, the code from shoe_sales_report.sas listed 
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below dynamically produces the first Web page in the 
example above from which a region is selected for the 
shoe sales report. 
 
data regions; 
 set sugidata.shoes (keep=region); 
 proc sort nodupkey; 
  by region; 
run; 
 
data _null_; 
 set regions end=eof; 
 file _webout; 
 if _n_=1 then put  
  /'<HTML>' 
  /' <HEAD>' 

/' <TITLE>SUGI 28 SAS/IntrNet 
Example</TITLE>' 

  /' </HEAD>' 
  /' <BODY>' 

/' <FORM NAME="form" ACTION="' "&_url" '" 
METHOD="POST">'  

/' <INPUT TYPE="HIDDEN" NAME="_service" 
VALUE="' "&_service" '">'  

/' <INPUT TYPE="HIDDEN" NAME="_program" 
VALUE="' "&_pgmlib" '.sales_by_sub.sas">' 

/' <H2>SUGI 28 SAS/IntrNet Example</H2>' 
  /'  <H3>Shoe Sales by Subsidiary</H3>' 
  /'  <P><BR>Select Region:</P>' 

/'  <P><SELECT NAME="region" SIZE="6">'; 
 put 
  / '   <OPTION>' region '</OPTION>'; 
 if eof then put 
  /'   </SELECT>' 
  /'   </P>' 

/' <INPUT TYPE="SUBMIT" NAME="Submit" 
VALUE="Submit">' 

  /'  </FORM>' 
  /' </BODY>' 
  / '</HTML>'; 
run; 

 
The first DATA step produces an unduplicated data set 
containing the variable region.  This data set is read into 
the  _NULL_ DATA Step that uses a PUT statement to 
write all the HTML down to the SELECT tag.  This PUT 
statement only executes on the first observation in the 
data set , if _n_=1.  The second PUT statement is 
executed for every observation and writes an HTML 
OPTION tag for each region.  The last PUT statement is 
executed only for the last observation in the data set and 
writes the remainder of the HTML for the page. 
 
Portions of the FORM and INPUT tags in this Web page 
are also dynamically generated.  As mentioned above, 
when the broker sends the request to the service the 
HTML form items are received as macro variables in the 
SAS program.  The SAS program also has reserved and 
special variables available as macro variables.  Most of 
these variables contain information about the request 
being processed.  These variables include the DSN or IP 
addresses of the Web server and Application Server, the 
path for the broker.exe, the program library, and the 
name of the service.   
 
In the FORM tag the _URL macro variable is resolved to 
write the path for the broker.  This will result in the 
following FORM tag. 
 
<FORM NAME="form" ACTION="/cgi-bin/broker.exe" 
METHOD="POST"> 
 

The first INPUT tag includes the macro variable 
_SERVICE that will write the name of the service to 
produce the INPUT tag below. 
 
<INPUT TYPE="HIDDEN" NAME="_service" 
VALUE="default"> 

 

In the second INPUT tag the macro variable _PGMLIB 
will write the name of the program library to produce the 
following INPUT tag.  
 
<INPUT TYPE="HIDDEN" NAME="_program" 
VALUE="sugicode.sales_by_sub.sas"> 

 

Using the macro variables to insert these items can make 
the application more flexible.  For example, if the 
application needs to be moved to a different Application 
Dispatcher service or the name of the program library 
needs to be changed, the SAS code will not need to be 
modified. 
 
Because this program does not receive any user selected 
parameters it does not need to be called from an HTML 
form.  It can be called by entering the Web address with 
the parameters _SERVICE and _PROGRAM in the Web 
browser or link on a Web page as shown below. 
 
http://localhost/cgi-bin/broker.exe 
?_service=default 
&_program=sugicode.sales_report.sas 

 
Entering this address in the browser will send the 
_SERVICE and _PROGRAM parameters to the broker 
which will send the _PROGRAM parameter to the default 
service where the program will execute and send the Web 
page back to the browser as shown in Figure 8 above. 
 

SESSIONS 
The sample application above has illustrated the basics 
of developing a Web-enabled information delivery 
solution with Application Dispatcher.  While these 
techniques can be used to develop more complex 
applications, the addition of “sessions”  expands the 
possibilities for application development with Application 
Dispatcher. 
 
When sessions are not used, requests to the Application 
Server are independent from one another.  There is no 
easy way to have one request use information from 
another request.  Sessions make it possible for one 
request to save macro variables and data sets that can 
be used by future requests.  This is often referred to as 
“persistence” because the macro variables and data sets 
“persist” from one request to another.  This is also known 
as “maintaining state.” 
 
A session is created with a call to the 
APPSERV_SESSION function as shown in the following 
code. 
 
In macro: 
%let rc=%sysfunc(appsrv_session(create)); 
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In data step or SCL: 
rc=appsrv_session('create'); 
 

When the session is created, the automatic variables 
_THISSESSION, _REPLAY, _SESSIONID, and 
_SESSIONCOOKIE are set to reflect the session id for 
the session.  These variables can be used to create URLs 
or HTML pages that make new requests to the same 
session. 
 
Macro variables to be saved in a session must begin with 
SAVE_.  For example, the statement 
 
%let save_region=Europe; 

 
would create the macro variable “save_region” with the 
value “Europe” that would be available to future requests.  
Data sets saved in the library named “save” will be saved 
in the session for future use. 
 
To access the macro variables and data sets in a 
session, the “_session” parameter with the session 
number must be passed to the broker which passes it on 
to the Application Server. 
 
Sessions have a timeout setting which will cause the 
session to expire and all session data to be deleted.  The 
timeout can be set with the following call to the 
APPSRVSET function with the timeout entered in 
seconds. 
 
In macro: 
%let rc=%sysfunc(appsrvset(session 
timeout,300)); 
 

In DATA step or SCL: 
rc=appsrvset('session timeout',300); 
 

Sessions can be explicitly deleted with the following 
function call. 
 
In macro: 
%let rc=%sysfunc(appsrv_session(delete)); 

 
In DATA step or SCL: 
rc=appsrv_session('delete'); 

 
To illustrate the use of sessions, the sales_by_sub.sas 
program has been modified below to create a session 
that will be used to save the region selection and data set 
for use in a report of sales by product for a selected 
subsidiary. 
 
ods html body=_webout (dynamic) rs=none; 
 
%let rc=%sysfunc(appsrv_session(create)); 
%let save_region=&region; 
 
data save.shoes; 
length lsubsidiary $300; 
set sugidata.shoes 
(where=(region="&region")); 
 
lsubsidiary = '<A HREF="' || 
"%superq(_thissession) "  ||  
'&_program=' || "&_pgmlib" ||

 '.sales_by_prod.sas&subsidiary=' ||  
urlencode(trim(subsidiary)) || '">' ||  
htmlencode(trim(subsidiary)) || '</A>'; 
 

run; 
 
title1 'Shoe Sales by Subsidiary'; 
title2 "&region"; 
 
proc report data=save.shoes; 
column lsubsidiary sales; 
define lsubsidiary / group "Subsidiary"; 
define sales / analysis sum; 
rbreak after  / ol summarize suppress skip; 

run; 
 
ods html close; 

 
The first change is to create the session with the 
APPSRV_SESSON function call in the first %LET 
statement.  The second %LET statement sets the session 
macro variable “save_region” to the value of the macro 
variable “region” passed from the HTML form.  
“save_region” will be available to the second report. 
 
The DATA Step added to the program reads the shoes 
data base with a WHERE option to include only the 
region selected.  The variable “lsubsidiary” contains a 
hypertext link that calls the second report.  This is a 
technique often referred to as “Drill Down.”  The 
necessary HTML with required parameters are added to 
the values of the variable subsidiary to created links that 
will call the next report.  The “_thissession”  macro 
variable resolves to provide the path for the broker and all 
parameters to identify the Application Server service, port 
and session, as show below. 
 
/cgi-bin/broker.exe?_service=default 
&_server=127.0.0.1&_port=5001 
&_sessionid=5job.B0lH52 

 
The shoes data set containing records for the selected 
region written to the “save” library will be saved in the 
session. 
 
The new version of sales_by_sub.sas will produce the 
Web page shown in Figure 11 with each subsidiary being 
a hypertext link to the sales by product report for the 
subsidiary selected. 
 

 
Figure 11: Shoe Sales by Subsidiary 

SUGI 28 Beginning Tutorials



 

8 

When a link in the Shoe Sales by Subsidiary report is 
selected, the Shoe Sales by Product report as shown in 
Figure 12 is produced for the subsidiary selected. 
 

 
Figure 12: Shoe Sales by Product 
 
The sales_by_prod.sas program listed below is quite 
simple.  Because the program is executed in the session 
created by the previous report the saved macro variable 
and data set are available.  The save_region session 
macro variable is resolved in the second TITLE 
statement.  The PROC REPORT procedure uses the 
save.shoes data set that was saved in the session from 
the previous report.  
 
ods html body=_webout (dynamic) rs=none; 
 
title1 "Shoe Sales by Product"; 
title2 "&save_region"; 
title3 "&subsidiary"; 
 
proc report data=save.shoes; 
where subsidiary="&subsidiary"; 
column product sales; 
define product / group; 
define sales / analysis sum; 
rbreak after  / ol summarize suppress skip; 

run; 
 
ods html close;  

 
This example illustrates how macro variables and data 
sets can be saved in a session and accessed by 
subsequent requests.  This can greatly increases 
possibilities for application development. 
 

CONCLUSION 
SAS/IntrNet Application Dispatcher is one of several 
choices for developing Web-enabled information-delivery 
solutions.  It is an excellent choice for those with SAS 
programming experience and little or no experience with 
Web application development.  It is also an excellent 
choice for connecting existing SAS applications to the 
Web.  While the techniques used in the sample 
application are very basic, they provide the basis for 
developing more complex applications that connect the 
SAS System to the Web. 
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