
Paper 54-28

1

Connecting the SAS System to the Web: An Introduction to SAS/IntrNet
Application Dispatcher

Vincent Timbers, Penn State, University Park, PA

ABSTRACT
There are several methods for accessing the SAS System
through the Web to provide Web-enabled information-
delivery solutions. The Application Dispatcher is a SAS
System server that executes SAS programs from a Web
browser, which is easily implemented by those with
knowledge of the SAS DATA Step and Procedures. This
makes it a good method for moving existing SAS
programs to the Web.

This paper will provide an introduction to Application
Dispatcher including installation and the development of
Web pages and SAS programs that connect the SAS
System to the Web.1

INTRODUCTION
SAS/IntrNet provides several methods of accessing the
SAS System from the Web. These methods can be
broken into two main categories 1) data services, which
allow users to update and query data from a Web
browser with SQL-type queries, and 2) compute services,
which allow users to execute SAS programs from a Web
browser.

SAS/IntrNet Application Dispatcher is a compute service
that allows users to pass parameter selections from a
Web page to the appropriated SAS program that
executes on a server, sending the results back to the
user’s Web browser. Because the program is executed
on the server, end users only need a Web browser.
There is no need for SAS on their workstations.
Application Dispatcher can execute four types of
programs that take advantage of all data access,
manipulation, reporting and analysis capabilities of the
SAS System: SAS programs stored in external files,
source entries, SCL entries, and macro entries.

Application Dispatcher is an excellent choice for those
who have SAS programming experience and little or no
experience with CGI programs or other methods of Web
application development. Many SAS programs can be
adapted to work with Application Dispatcher with few
coding changes.

APPLICATION DISPATCHER OVERVIEW
Application Dispatcher consists of two components. A
Common Gateway Interface (CGI) program called the
Application Broker resides on a Web server. The second
component is the Application Server that is simply a SAS
session running on a server that executes the SAS
programs.

1 The information presented in this paper is specific to
SAS Release 8.2 for the Windows operating system.

An Application Dispatcher program usually starts with a
Web page where users make selections or enter data on
a form. When a user submits the form the items are
passed to the broker. The name of the Application Server
that is to process the request and the name of the
program to run is also sent from the Web form to the
broker. These two items are usually hidden fields on the
form that the user is unaware of. Using a configuration
file that contains the locations of Application Servers, the
broker directs user selections along with the program
name to the appropriate Application Server. The SAS
program receives the parameters selected or entered on
the Web form as SAS macro variables that are resolved
in the SAS program. The program is executed and the
results are sent back to the user’s browser. It is that
simple!

The sample application below creates a sales report for
selected regions. When the form is submitted the broker
will send the selected region and the program name to
the Application Server for execution. The program will
receive the region selected as a macro that will be
resolved in a WHERE statement to restrict the report to
the region selected. ODS will create HTML output from a
PROC REPORT procedure and direct it back to the
browser.

APPLICATION DISPATCHER INSTALLATION
Installation of the Application Dispatcher includes
installing the Application Broker on a Web server and
installing the Application Server on a SAS server.

APPLICATION SERVER INSTALLATION / SETUP
The installation of the Application Server begins by
including SAS/IntrNet in the installation of the SAS
System on the server. This will install the necessary
components on the SAS Server. However, at this point
the Application Server has not been created or
configured.

 “Application Server” is a general term referring to the
SAS session that processes the request. A specific
instance of an Application Server like the one created in
the next section is called a “service.” In the remainder of
this paper the term “service” refers to the Application
Server.

An Application Server is created by selecting Programs,
The SAS System, IntrNet and Create a New IntrNet
Service from the Start button. From the Welcome
window that appears (not shown here), click the Next
button and the Select Configuration Task window will
appear as shown in Figure 1.

SUGI 28 Beginning Tutorials

2

Figure 1: Select Configuration Task window

There are several types of services (Application Servers).
A socket service is an Application Server that remains
running at all times waiting for requests. A launch service
is an Application Server that starts when a request is
received from the Application Broker and stops when the
request is completed. A poll service is an Application
Server that starts when a request is received and remains
running until a specified time of inactivity has passed
before stopping. Pool services can also be defined to run
multiple Application Servers. If one server is busy when
a new request is received, the pool service can start a
second Application Server. The Load Manager is a
program that manages requests and servers by sending
requests to servers that are idle and starting servers as
needed. For this paper, a socket service will be used.
See the SAS/IntrNet documentation for more detail on all
types of services and the load manager.

With socket service selected, click Next and the Enter
Service Name window will appear as shown in Figure 2.

Figure 2 – Enter Service Name window

Any name can be used for the service name. However,
“default” will be used in this paper. It is a good idea to
use “default” as the service name when getting started
with Application Dispatcher because the sample
applications provided with the software are written to use
the “default” service.

Click Next to record the service name and the Choose
Service Directory window will open as shown in Figure 3.

Figure 3: Choose Service Directory window

The service directory is the subdirectory where files for
the service are located. These files include a SAS
program file containing the commands for starting the
service and log files. To change the default location of
the service directory, click on the Browse button to open
the Choose Folder window (not shown). Click Next to
record the service directory and open the Enter Service
Ports window shown in Figure 4.

Figure 4: Enter Service Ports window

The port number entered here is the TCP-IP port the
broker and the service use to communicate. A port
number not in use by another application should be used.
For this example enter 5001. After clicking the Next
button the Enter Admin Password window will open (not
shown). The password entered will be required when
performing administrative tasks from a Web browser
such as stopping the service. If a password is not
entered, administrative tasks may be performed without a
password. Click Next to save the administrative
password and the Create Service window will open with a
summary of all selections for review, as shown in Figure
5.

SUGI 28 Beginning Tutorials

3

Figure 5: Create Service window

After reviewing the information, click the Next button in
this window and the next three windows to complete the
creation of the socket service.

BROKER INSTALLATION AND CONFIGURATION
The Application Broker is installed on a Web server from
the Client Side Components CD. The broker is typically
installed in the cgi-bin directory that is in the Web server
root directory. The sasweb directory containing
SAS/IntrNet samples will also be created in the Web
server root directory.

After the broker is installed, it will need to be configured
by editing the broker.cfg file found in the cgi-bin directory.
This file contains several configuration options with
documentation including sections for all three types of
services: socket, launch and pool.

The section of the broker.cfg file below is the
configuration for the socket service named “default”
located on the SAS server at the address
appsrv.yourcomp.com and communicating on port 5001.

SocketService default "Reuse existing session"
ServiceDescription "Pages reference this
generic server when they don't care which
service is used."
ServiceAdmin "Your Name"
ServiceAdminMail "yourname@yoursite"
Server appsrv.yourcomp.com
Port 5001
Remove the following line for any servers
before V8.1
FullDuplex True

In the configuration of the “default” service, enter the
information specific to your site for each item. For
“Server” replace appsrv.yourcomp.com with the DSN or
IP address for the “default” Application Server service
previously created.

It should be noted that a broker.cfg file could contain
configurations for multiple services. This is done by
copying the configuration for a service and making the
required changes.

After the Application Server and Application Broker have
been installed and the broker.cfg file has been modified
the Application Dispatcher is ready to test.

TESTING APPLICATION DISPATCHER
Before testing, the “default” service must be started.
Select Programs, The SAS System, IntrNet, Default
Service and Start Interactively from the Start menu.
With the service started, testing can begin.

To test the broker, enter the address for the Web server
where the broker is installed followed by the path to the
broker.exe file in the address field of a Web browser. For
example, http://localhost/cgi-bin/broker.exe, where
“localhost” is the address for the Web server. Replace
“localhost” with the address of the Web server where the
broker is installed. If the broker is working properly the
Web page shown in Figure 6 will be returned.

Figure 6: Application Broker

With the Broker working properly, the “default” service
can be tested by entering the following address in the
Web browser.

http://localhost/cgi-bin/broker.exe
?_SERVICE=default&_PROGRAM=sample.webhello.sas

This Web address illustrates the _SERVICE and
_PROGRAM parameters that are passed to the broker.
The broker will send the request to the “default” service
which will execute the webhello.sas program. The results
are returned to the browser as shown in Figure 7.

Figure 7: Hello World!

SUGI 28 Beginning Tutorials

4

With the broker and “default” service installed and tested,
the Application Dispatcher is ready for use.

SAMPLE APPLICATION

APPSTART.SAS PROGRAM
Before building the sample application, the program and
data file locations for the application must be defined for
the “default” service. The service is started with the SAS
program named appstart.sas. This file is located in the
service directory entered during creation of the “default”
service. This directory can be opened by selecting
Programs, The SAS System, IntrNet, Default Service
and Service Directory from the Start menu.

The appstart.sas program contains a PROC APPSRV
procedure which starts the service. The ALLOCATE FILE
statement associates a SAS file reference with an
external file or directory containing SAS programs while
the ALLOCATE LIBRARY statement associates a SAS
library reference to a SAS data library. For the service to
use the file and library allocations they must be explicitly
listed in PROGLIBS and DATALIBS statements.

The statements below will create the file and library
allocations for the example that follows and should be
placed directly above the RUN statement in the
appstart.sas file

allocate library sugidata 'c:\sugi28\data';
allocate file sugicode 'c:\sugi28\code';
proglibs sugicode;
datalibs sugidata;

SAS programs and data set files for the sample
application are located in the subdirectories as shown in
the allocation statements above. The SAS data set
“shoes” used in the sample application is a sample data
set that comes with the SAS System and can be found in
the SASHELP library.

ODS OUTPUT
The sample application below creates a sales report for
selected regions. A region can be selected from a list on
the Web form. When the form is submitted the broker
will send the selected region and the program name to
the Application Server for execution. The program will
receive the region selected as a macro variable that will
be resolved in a WHERE statement to restrict the report
to the region selected. ODS will create HTML output from
a PROC REPORT procedure and direct it back to the
browser.

The Web page containing the region selection is shown in
Figure 8 with the HTML code following.

Figure 8: Shoe Sales by Subsidiary

<HTML>
 <HEAD>

<TITLE>SUGI 28 SAS/IntrNet Example</TITLE>
</HEAD>
<BODY>
<FORM ACTION="/cgi-bin/broker.exe"
METHOD="POST">
<INPUT TYPE="HIDDEN" NAME="_service"
VALUE="default">
<INPUT TYPE="HIDDEN" NAME="_program"
VALUE="sugicode.sales_by_sub.sas">
<H2>SUGI 28 SAS/IntrNet Example</H2>
<H3>Shoe Sales by Subsidiary</H3>
<P>
Select Region:</P>
<P>
<SELECT NAME="region" SIZE="6">
<OPTION SELECTED>Africa</OPTION>
<OPTION>Asia</OPTION>
<OPTION>Canada</OPTION>
<OPTION>Central America/Caribbean</OPTION>
<OPTION>Eastern Europe</OPTION>
<OPTION>Middle East</OPTION>
<OPTION>Pacific</OPTION>
<OPTION>South America</OPTION>
<OPTION>United States</OPTION>
<OPTION>Western Europe</OPTION>

</SELECT>
</P>
<INPUT TYPE="SUBMIT" NAME="Submit"
VALUE="Submit">

</FORM>
</BODY>

</HTML>

The most important part of this Web page is the form.
The action attribute of the FORM tag contains the path to
the broker.exe file. Following the FORM tag are two
INPUT tags with the type attribute of “HIDDEN” which
keeps them from being displayed on the Web page. The
first INPUT tag with “_services” as the name attribute and
“default” as the value attribute tells the broker that the
“default” service is to receive the request. The second
INPUT tag with “_program” as the name attribute
contains the name of the program to be executed by the
“default” service. Notice that the program has a three-
part name. The first part, sugicode, is the program
library that was allocated in the appstart.sas file. This
tells the service where to find the program
sales_by_sub.sas. The SELECTION tag defines the
selection list named “region.” This item is passed to the
“default” service by the broker and is received into the

SUGI 28 Beginning Tutorials

5

program as a macro variable named “region” and
contains the value selected on the Web page.

Figure 9: Asia Shoe Sales Report

The report in Figure 9 was produced when the “default”
service executed the sales_by_sub.sas program listed
below.

ods html body=_webout (dynamic) rs=none;

title1 'Shoe Sales by Subsidiary';
title2 "®ion";

proc report data=sugidata.shoes;
where region="®ion";
column subsidiary sales;
define subsidiary / group;
define sales / analysis sum;
rbreak after / ol summarize suppress skip;

run;

ods html close;

The program sales_by_sub.sas uses ODS to create
HTML output from the PROC REPORT procedure.
The BODY option on the ODS statement directs ODS to
send the output to the “_webout” destination. “_webout”
is a predefined file reference that sends the output back
to the Web server and then to the Web browser. The
WHERE statement in the PROC REPORT procedure
resolves the macro variable “region” to restrict the report
to the region selected.

Adding a graph to the report is quite simple. The code
shown below includes additional parameters on the ODS
statement, a GOPTIONS statement and a PROC
GCHART procedure. The PATH and URL parameters
allow the graphic to be added to the ODS output properly.
The GOPTIONS statement sets graphic options for the
production of the graph as a .GIF file. With these
additions, the PROC GCHART procedure will add a
graph to the report as shown in Figure 10.

ods html body=_webout (dynamic) path=&_tmpcat
(url=&_replay) rs=none;

title1 'Shoe Sales by Subsidiary';
title2 "®ion";

proc report data=sugidata.shoes;
where region="®ion";
column Subsidiary sales;
define Subsidiary / group;
define sales / analysis sum;
rbreak after / ol summarize suppress skip;

run;

goptions device=gif570
ftext=swissl transparency
noninterlaced htitle=1.5;

proc gchart data=sugidata.shoes;
 where region="®ion";
hbar3d region / sumvar=sales sum
subgroup=product
shape=cylinder
patternid=subgroup
legend=legend1;
label product='Shoe Style';

run;

ods html close;

Figure 10: Shoe Sales Report With Graph

CUSTOM OUTPUT
There are times when information from a data set needs
to be included in a Web page that is not generated by
ODS. An example is the first Web page in this
application where a region is selected for the shoe sales
report. It is possible that the regions change, and it
would be best to have the list populated dynamically from
the data.

This custom Web page can be dynamically generated
using a _NULL_ DATA Step with PUT statements to
write the HTML to the “_webout” file definition which
directs the HTML back to the browser. To illustrate this
technique, the code from shoe_sales_report.sas listed

SUGI 28 Beginning Tutorials

6

below dynamically produces the first Web page in the
example above from which a region is selected for the
shoe sales report.

data regions;
 set sugidata.shoes (keep=region);
 proc sort nodupkey;
 by region;
run;

data _null_;
 set regions end=eof;
 file _webout;
 if _n_=1 then put
 /'<HTML>'
 /' <HEAD>'

/' <TITLE>SUGI 28 SAS/IntrNet
Example</TITLE>'

 /' </HEAD>'
 /' <BODY>'

/' <FORM NAME="form" ACTION="' "&_url" '"
METHOD="POST">'

/' <INPUT TYPE="HIDDEN" NAME="_service"
VALUE="' "&_service" '">'

/' <INPUT TYPE="HIDDEN" NAME="_program"
VALUE="' "&_pgmlib" '.sales_by_sub.sas">'

/' <H2>SUGI 28 SAS/IntrNet Example</H2>'
 /' <H3>Shoe Sales by Subsidiary</H3>'
 /' <P>
Select Region:</P>'

/' <P><SELECT NAME="region" SIZE="6">';
 put
 / ' <OPTION>' region '</OPTION>';
 if eof then put
 /' </SELECT>'
 /' </P>'

/' <INPUT TYPE="SUBMIT" NAME="Submit"
VALUE="Submit">'

 /' </FORM>'
 /' </BODY>'
 / '</HTML>';
run;

The first DATA step produces an unduplicated data set
containing the variable region. This data set is read into
the _NULL_ DATA Step that uses a PUT statement to
write all the HTML down to the SELECT tag. This PUT
statement only executes on the first observation in the
data set , if _n_=1. The second PUT statement is
executed for every observation and writes an HTML
OPTION tag for each region. The last PUT statement is
executed only for the last observation in the data set and
writes the remainder of the HTML for the page.

Portions of the FORM and INPUT tags in this Web page
are also dynamically generated. As mentioned above,
when the broker sends the request to the service the
HTML form items are received as macro variables in the
SAS program. The SAS program also has reserved and
special variables available as macro variables. Most of
these variables contain information about the request
being processed. These variables include the DSN or IP
addresses of the Web server and Application Server, the
path for the broker.exe, the program library, and the
name of the service.

In the FORM tag the _URL macro variable is resolved to
write the path for the broker. This will result in the
following FORM tag.

<FORM NAME="form" ACTION="/cgi-bin/broker.exe"
METHOD="POST">

The first INPUT tag includes the macro variable
_SERVICE that will write the name of the service to
produce the INPUT tag below.

<INPUT TYPE="HIDDEN" NAME="_service"
VALUE="default">

In the second INPUT tag the macro variable _PGMLIB
will write the name of the program library to produce the
following INPUT tag.

<INPUT TYPE="HIDDEN" NAME="_program"
VALUE="sugicode.sales_by_sub.sas">

Using the macro variables to insert these items can make
the application more flexible. For example, if the
application needs to be moved to a different Application
Dispatcher service or the name of the program library
needs to be changed, the SAS code will not need to be
modified.

Because this program does not receive any user selected
parameters it does not need to be called from an HTML
form. It can be called by entering the Web address with
the parameters _SERVICE and _PROGRAM in the Web
browser or link on a Web page as shown below.

http://localhost/cgi-bin/broker.exe
?_service=default
&_program=sugicode.sales_report.sas

Entering this address in the browser will send the
_SERVICE and _PROGRAM parameters to the broker
which will send the _PROGRAM parameter to the default
service where the program will execute and send the Web
page back to the browser as shown in Figure 8 above.

SESSIONS
The sample application above has illustrated the basics
of developing a Web-enabled information delivery
solution with Application Dispatcher. While these
techniques can be used to develop more complex
applications, the addition of “sessions” expands the
possibilities for application development with Application
Dispatcher.

When sessions are not used, requests to the Application
Server are independent from one another. There is no
easy way to have one request use information from
another request. Sessions make it possible for one
request to save macro variables and data sets that can
be used by future requests. This is often referred to as
“persistence” because the macro variables and data sets
“persist” from one request to another. This is also known
as “maintaining state.”

A session is created with a call to the
APPSERV_SESSION function as shown in the following
code.

In macro:
%let rc=%sysfunc(appsrv_session(create));

SUGI 28 Beginning Tutorials

7

In data step or SCL:
rc=appsrv_session('create');

When the session is created, the automatic variables
_THISSESSION, _REPLAY, _SESSIONID, and
_SESSIONCOOKIE are set to reflect the session id for
the session. These variables can be used to create URLs
or HTML pages that make new requests to the same
session.

Macro variables to be saved in a session must begin with
SAVE_. For example, the statement

%let save_region=Europe;

would create the macro variable “save_region” with the
value “Europe” that would be available to future requests.
Data sets saved in the library named “save” will be saved
in the session for future use.

To access the macro variables and data sets in a
session, the “_session” parameter with the session
number must be passed to the broker which passes it on
to the Application Server.

Sessions have a timeout setting which will cause the
session to expire and all session data to be deleted. The
timeout can be set with the following call to the
APPSRVSET function with the timeout entered in
seconds.

In macro:
%let rc=%sysfunc(appsrvset(session
timeout,300));

In DATA step or SCL:
rc=appsrvset('session timeout',300);

Sessions can be explicitly deleted with the following
function call.

In macro:
%let rc=%sysfunc(appsrv_session(delete));

In DATA step or SCL:
rc=appsrv_session('delete');

To illustrate the use of sessions, the sales_by_sub.sas
program has been modified below to create a session
that will be used to save the region selection and data set
for use in a report of sales by product for a selected
subsidiary.

ods html body=_webout (dynamic) rs=none;

%let rc=%sysfunc(appsrv_session(create));
%let save_region=®ion;

data save.shoes;
length lsubsidiary $300;
set sugidata.shoes
(where=(region="®ion"));

lsubsidiary = '<A HREF="' ||
"%superq(_thissession) " ||
'&_program=' || "&_pgmlib" ||

 '.sales_by_prod.sas&subsidiary=' ||
urlencode(trim(subsidiary)) || '">' ||
htmlencode(trim(subsidiary)) || '';

run;

title1 'Shoe Sales by Subsidiary';
title2 "®ion";

proc report data=save.shoes;
column lsubsidiary sales;
define lsubsidiary / group "Subsidiary";
define sales / analysis sum;
rbreak after / ol summarize suppress skip;

run;

ods html close;

The first change is to create the session with the
APPSRV_SESSON function call in the first %LET
statement. The second %LET statement sets the session
macro variable “save_region” to the value of the macro
variable “region” passed from the HTML form.
“save_region” will be available to the second report.

The DATA Step added to the program reads the shoes
data base with a WHERE option to include only the
region selected. The variable “lsubsidiary” contains a
hypertext link that calls the second report. This is a
technique often referred to as “Drill Down.” The
necessary HTML with required parameters are added to
the values of the variable subsidiary to created links that
will call the next report. The “_thissession” macro
variable resolves to provide the path for the broker and all
parameters to identify the Application Server service, port
and session, as show below.

/cgi-bin/broker.exe?_service=default
&_server=127.0.0.1&_port=5001
&_sessionid=5job.B0lH52

The shoes data set containing records for the selected
region written to the “save” library will be saved in the
session.

The new version of sales_by_sub.sas will produce the
Web page shown in Figure 11 with each subsidiary being
a hypertext link to the sales by product report for the
subsidiary selected.

Figure 11: Shoe Sales by Subsidiary

SUGI 28 Beginning Tutorials

8

When a link in the Shoe Sales by Subsidiary report is
selected, the Shoe Sales by Product report as shown in
Figure 12 is produced for the subsidiary selected.

Figure 12: Shoe Sales by Product

The sales_by_prod.sas program listed below is quite
simple. Because the program is executed in the session
created by the previous report the saved macro variable
and data set are available. The save_region session
macro variable is resolved in the second TITLE
statement. The PROC REPORT procedure uses the
save.shoes data set that was saved in the session from
the previous report.

ods html body=_webout (dynamic) rs=none;

title1 "Shoe Sales by Product";
title2 "&save_region";
title3 "&subsidiary";

proc report data=save.shoes;
where subsidiary="&subsidiary";
column product sales;
define product / group;
define sales / analysis sum;
rbreak after / ol summarize suppress skip;

run;

ods html close;

This example illustrates how macro variables and data
sets can be saved in a session and accessed by
subsequent requests. This can greatly increases
possibilities for application development.

CONCLUSION
SAS/IntrNet Application Dispatcher is one of several
choices for developing Web-enabled information-delivery
solutions. It is an excellent choice for those with SAS
programming experience and little or no experience with
Web application development. It is also an excellent
choice for connecting existing SAS applications to the
Web. While the techniques used in the sample
application are very basic, they provide the basis for
developing more complex applications that connect the
SAS System to the Web.

CONTACT INFORMATION
The author may be contacted at:

Vince Timbers
Penn State
201 Shields Building
University Park, PA 16802
Phone: (814) 865-4253
e-mail: vlt@psu.edu

SAS and all other SAS Institute Inc. product or service
names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. indicates
USA registration.

Other brands and product names are registered
trademarks or trademarks of their respective companies.

SUGI 28 Beginning Tutorials

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

