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ABSTRACT  
 
This paper discusses how to query from relational databases 
efficiently by using SAS/ACCESS. It integrates the idea that 
database developers perform data query into SAS environment. It 
also shows some tips for SAS programmers doing data extraction 
and data manipulation. 

INTRODUCTION  
 
For some SAS/ACCESS® beginners, they can write elegant SQL 
scripts for their tasks. Sometimes to their surprise, the SQL 
scripts do not work as they expected. The query might run forever 
without anything coming back. However, the database servers 
might be in jeopardy since the query occupies a lot of computer 
resources. The problems could be a table scan, improper index, 
etc.  
 
Extracting large data from relational database (RDB) requires 
knowledge more than PROC SQL procedure. It needs 
comprehensive understanding of the RDB. SAS/ACCESS® 
provides a good tool set for data warehousing. SAS programmers 
should have sufficient knowledge and experience as database 
developers do in order to query database efficiently. 
   
Though there are some literatures talking about retrieving data 
from RDB by SAS/ACCESS, most of them skip the part of RDB 
programming. With a mind of the database developer performing 
data query, this paper will discuss the data query strategy briefly1. 
It will show some tips that might be useful for a SAS/ACCESS ® 
programmer by using examples. All examples are for SYBASE 
environment. Interested readers may easily move them to other 
relational database environment. 
 
DATA QUERY METHODOLOGY 
 
A SQL script is not simply joining with several tables. To optimize 
the performance, it needs good understanding of how queries are 
handled and how queries are executed inside the database. This 
section describes the query execution process and techniques to 
write an efficient query. 
  
1) Query Execution Process inside Database server 
 
Once the query is passed to the database server from the SQL 
Procedure Pass-Through Facility, the database server parses 
and normalizes the query. The parser ensures that the SQL 
syntax is correct. Normalization ensures that all the objects 
referenced in the query exist. Permissions are also checked 
during this process to ensure that the user has permission to 
access all tables and columns in the query. Query preprocessing 
changes some search arguments to an optimized form and adds 
optimized search arguments and join clauses. 

 
If no errors are found, the parsed query is passed to the query 
optimizer. The query optimizer uses statistics about the tables, 
indexes and columns named in the query, and predicts the cost 
of using alternative access methods to resolve a particular query. 
The output of the optimizer is the query plan – the plan that is 
least costly in terms of I/O. The query plan is compiled with the 
                                                           
1 For further investigation, readers may refer to any database 
developer’s handbook. Please see the reference. 

code that contains the ordered steps to carry out the query, 
including the access methods (table scan or index scan, type of 
join to use, join order, and etc.) to access each table. Once the 
query execution plan is complete, the database server executes 
the query and returns the data to the SQL Procedure Pass-
Through Facility. 

 
2) Working with the optimizer   
 
The goal of the optimizer is to select the access method for each 
table that reduces the total time needed to process a query. The 
optimizer bases its choice on the statistics available for the tables 
being queried and on other factors such as cache strategies, 
cache and I/O size. A major component of optimizer decision-
making is the statistics available for the tables, indexes and 
columns. 
 
In some situations, the optimizer may seem to make the incorrect 
choice of access methods. This may be the result of inaccurate 
or incomplete information (such as out-of-date statistics). In other 
cases, additional analysis and the use of special query 
processing options can determine the source of the problem and 
provide solutions. The query optimizer uses I/O cost as the 
measure of query execution cost. The significant costs in query 
processing are the physical I/O (when pages must be read from 
disk) and the logical I/O (when pages in cache are read for a 
query). The two significant outputs from the query plan are the 
table access method and the order of table access. 
 
3) Table Access method in the optimizer 
 
For each table in the query the optimizer tries to determine the 
best path by choosing from the table scan, the index scan (use 
clustered index) or covering index scan (use non-clustered index). 
 
Other than situations where the table scan is cheaper than the 
index scan, SAS programmers need to avoid the table scan as 
much as possible. During the table scan process, the database 
server reads every data page in the table because no useful 
indexes are available to help retrieve the data it needs. Every 
data page access needs disk read, which in turn causes poor 
response time from the system. It also affects the performance of 
other queries on the server. 
 
To avoid the table scan for the query, SAS programmers can give 
hint to the database by choosing a proper index inside the SQL 
query. This feature can be used when multiple indexes are 
available on the table and the optimizer picks index based on its 
statistics, which may not be the fastest one for your query. A hint 
suggests that the optimizer use the index defined in the query 
instead of index based on its algorithm. 
 
4) Order of Table access defined by optimizer 
 
If multiple tables are accessed through the SQL query, the 
optimizer defines the sequence in which all tables will be 
accessed. This order is the most important factor for the 
performance of a query. The table accessed first returns a set of 
rows based on the condition defined in the “where” clause. The 
rest of the tables are accessed iteratively based on the results 
returned by the first query.   
 
SAS Programmers need to make sure of two things in this 
situation. The table accessed first should be a qualifying table for 
the query and should return less number of rows or maximum 
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number of result rows. The tables accessed forward should not 
use table scan and must use a proper index scan, because these 
tables will be accessed iteratively for the result rows from the first 
table. For example, assume there are two tables in a query and 
the first accessed table from the database returns 1000 rows and 
the second accessed table performs a table scan for every row 
from the first table. This means that on the second table, the 
table scan will be performed 1000 times which is not a good thing 
for the data warehouse, if the number of rows in the second table 
are significant. 
 
In some cases, the number of qualifying tables may be more than 
one, where data fetched from first table returns a few rows and 
the second table returns most of the qualifying results for other 
tables. 
 
5) The definition of a table order in a query  
 
If multiple tables are involved in a query, there are three ways a 
programmer can control the order of the table in the query. 
 
Firstly, control the order by defining the hint for the tables. The 
optimizer creates a query plan based on statistics and hints given 
in a SQL query. If a hint tells the optimizer to use a different index 
other than specified in its’ query plan, it forces the optimizer to re-
evaluate everything and reorder table accesses. One can repeat 
this trick for every table in the query to get a query plan in the 
right order.  

 
Secondly, use the manual query implementation technique. 
When performing a join, the query optimizer evaluates all 
reasonable joins, permutations and estimates the total I/O costs. 
The number of possible joins is a permutation of the number of 
tables. The more table joins, the more time the optimizer spends 
on calculation. In practice, we do not need to join all the required 
tables at once. A series of less than four tables join, may save a 
lot of time.   

 
Finally, use the FORCEPLAN option. If none of the pervious 
tricks are effective in getting the query plan in the way you want, 
then use FORCEPLAN setting for the query. This option once set 
forces optimizer to ignore everything and create the query plan 
based on the order and indexes defined in the clause of SQL 
query. If indexes are defined in the query, optimizer can use its 
own algorithm to choose the right index for the table. In any case 
optimizer cannot change the order of the table. 
 
 
SOME TIPS ON EXTRACTION DATA USING SAS 
 
SAS always provides more than one solution for a job. To 
perform a table join in SAS/ACCESS, mostly we use the SQL 
Procedure Pass-Through Facility, or use ODBC engine treating 
the database table as a sas data set. After the system 
environment is set up, we can directly parse the SQL scripts 
generated following the above method. Since the SAS 
programmers are going to manipulate data mining after the data 
pull, in a large database, there are some issues for SAS 
programmers to think about, like storage space and working 
space problems, etc. 
 
1) Break the data pull into small pieces 

 
The purpose for SAS programmers to pull data from a database 
is for further data mining and reporting. For the convenience of 
later manipulation, it is always a good idea to break a big data 
pull into small data pulls and executes the data pull piece by 
piece. The advantage is to resume the data pull easily if there is 
a problem within the database. Small datasets also cost less 
space and time to manipulate like sorting.  
 
In the SQL Procedure Pass-Through Facility using SAS/MACRO, 
we may break the data pull into smaller pieces. For instance, for 

a data pull for a month, we can break it up by week, so we have 
four repeated data pulls.   
 
Assuming we have two tables in a database. Table Beta has a 
field called date_of_service. A common key links table Alpha and 
Table Beta. Our task is to pull one month data. The code can be 
written as following. 
      
    proc sql; 
    connect to sybase 
    (server= &server  database=&database   
     user=&user   password=&pwd);  
        %macro pull(i, startdate,enddate); 
           create table data&i 
              as 
                select * 
                  from connection to sybase 

( 
   select   a.product1, a.product2,  b.date_of_service 

                    from     alpha a,   
                                beta   b 
                    where 
                                a.key=b.key 

and b.date_of_service  between &startdate  
                                and &enddate 
                                ); 
         %mend; 
         %pull(i=1,startdate=%nrstr(‘20030321’), 
                           enddate=%nrstr(‘20030331’)); 
 
Below are some notes on this approach.  
 
Firstly, do not assume that if one query returns one month data in 
X minutes, that the same query, just by changing dates will return 
three months data in 3X minutes. Different data ranges forces the 
optimizer to use different indexes and a different order for the 
tables, which affects query performance. 
 
Secondly, avoid the greater than operator in the range queries, 
instead of that operator use greater than equal for the operator. 
The greater than operator starts reading pages from the value 
defined in the query and scans all the pages until it reaches the 
page where it finds the value greater than the value in the where 
clause. Greater than equal to operator always starts from the 
right values and hence avoids page scans and saves resources. 
Also, as stated by the SAS online document, it is more efficient to 
use “BETWEEN“ where it applies. 
 
Thirdly, use single quotes when invoking the macro function. If 
using the double quotation mark, for both variables “startdate” 
and “enddate”, from the above example, resolve to unexpected 
strings. SAS is looking for a column name like quoted string, like 
‘20030331’ other than searching for date like 20030331. Double 
quotation mark is not well resolved. 

 
2) Using the temp table of a relation database 
 
To expedite a data pull, it is common to create a temporary table 
in the relation database. SAS/ACCESS provides a lot of tools 
solving such a problem, like PROC DBLOAD, the SQL Procedure 
Pass-Through Facility, or the ODBC engine, etc.  
 
While using PROC DBLOAD or ODBC engines, make sure that 
join columns in the query are of the exact same type. Different 
data type columns in join may force the database to perform a 
table scan. 
 
The most convenient way is to use ODBC engine. Data step and 
any SAS procedure which produces output dataset could be used 
for creating a table. To get the right type of field, DBTYPE option 
may be used. There are also some other methods to change the 
data type in the database. We may choose from either the SQL 
Procedure Pass-Through Facility or PROC DBLOAD type 
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options.   
 
The option BULKCOPY can save a lot of time if we are going to 
insert huge amounts of data into the database. This utility groups 
rows so that they are inserted as a unit into a SYBASE table. The 
table loading process performance can be significantly increased. 
  
      Libname mydblib sybase database=tempdb  server=&server     
                                              user=&user password=&password ; 
 
      /* Indata is a sas dataset with a key variable                     */; 
     /*  Master is the table in database to pull variables from     */; 
     /*  Outdata is the sasdata set for output                              */; 
     /*  Pullvar is the variable in database we are interested      */; 
 
     %macro pull(indata, key, master, outdata, pullvar); 
 
     proc sort data=&indata(keep=&key where=(&key~=.))  
     nodupkey out=mydblib.temp (bulkcopy=yes    
                                          dbtype=(&key='data type2')); by &key ; 
 
     proc sql; 
         connect to sybase 
             (server= &server  database=&server  user=&user 
               password=&pwd); 
         execute (create index ind on tempdb..temp (&key))  
                       by sybase; 
 
         create table &outdata    as 
            select * 
                from connection to sybase 
                 ( 
                 select 
                          &pullvar 
                                from &master  b, 
                                        tempdb..temp a (index ind) 
                  where a.&key=b.&key 
           ); 
        quit; 
       proc delete data=mydblib.b; 
       %mend; 
 
In the above example, it tries to upload a SAS data set into the 
database  “tempdb” to create a table called “temp”, creates an 
index on the new table and joins with another existing table in the 
relational database.  

 
3) Other tips for data extraction 
 
Here are some tips worth mentioning: 
 

• Always check the query plan first for the query before 
running.  

• Keep statistics about data extraction times for the 
query. It will work as a guideline for the rest of the 
group. 

• If you have multiple good query plans, then choose one 
that uses the maximum number of processes. Multiple 
processes run parallel inside database. 

• Index definition in the SQL query does not force 
optimizer to use that index, it is just a hint to the 
optimizer. When you are forcing indexes, the query 
plan may be misleading. Some other database tools 
should be used to make sure that the indexes shown in 
query plan are used, when query is run. 

• Notify DBA instantly if any SAS/ACCESS session is 
killed in client’s side. Otherwise, the SAS/ACCESS is 
still running in the server. 

• Always deleting the temporary table after you finish the 
data pull. 

                                                           
2 Check the data type of the variable in your database 

• Since order by, group by and distinct clause in the 
PROC SQL statement incurs additional processing and 
I/O, we suggest to extract the data first and perform the 
data summary in the next stage. To save the large data 
extraction time, data manipulation can be put into SAS 
environment. The Database also needs temporary 
statistics to merge that information back to the original 
data. 

• If the search argument is not indexed, one solution is 
that we may ask DBA to create one temporarily. If there 
is sufficient space and we perform such a query 
frequently, it might be a good idea to download the 
whole table into SAS dataset. 

• If having space, a SAS data mart with longitudinal data 
can be created for research convenience.  

 
 SUMMARY  
 
It is proven that SAS /ACCESS® is a very convenient tool for 
data warehousing. SAS programmers need to be familiar with 
both RDB warehousing techniques and SAS coding skills to have 
their job done. As we have seen, deep research on the query can 
save SAS programmers or database valuable time. A good habit 
of SAS/ACCESS program coding also helps other people working 
in the database using other tools. 
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