
Paper 44-28

- 1 -

Make Your SAS/ACCESS® Query More Efficient

 Jianming He, Dinesh Jain, Cheng Wang, Ph.D.
 Quest Diagnostics, Inc., Lyndhurst, NJ 07071

ABSTRACT

This paper discusses how to query from relational databases
efficiently by using SAS/ACCESS. It integrates the idea that
database developers perform data query into SAS environment. It
also shows some tips for SAS programmers doing data extraction
and data manipulation.

INTRODUCTION

For some SAS/ACCESS® beginners, they can write elegant SQL
scripts for their tasks. Sometimes to their surprise, the SQL
scripts do not work as they expected. The query might run forever
without anything coming back. However, the database servers
might be in jeopardy since the query occupies a lot of computer
resources. The problems could be a table scan, improper index,
etc.

Extracting large data from relational database (RDB) requires
knowledge more than PROC SQL procedure. It needs
comprehensive understanding of the RDB. SAS/ACCESS®
provides a good tool set for data warehousing. SAS programmers
should have sufficient knowledge and experience as database
developers do in order to query database efficiently.

Though there are some literatures talking about retrieving data
from RDB by SAS/ACCESS, most of them skip the part of RDB
programming. With a mind of the database developer performing
data query, this paper will discuss the data query strategy briefly1.
It will show some tips that might be useful for a SAS/ACCESS ®
programmer by using examples. All examples are for SYBASE
environment. Interested readers may easily move them to other
relational database environment.

DATA QUERY METHODOLOGY

A SQL script is not simply joining with several tables. To optimize
the performance, it needs good understanding of how queries are
handled and how queries are executed inside the database. This
section describes the query execution process and techniques to
write an efficient query.

1) Query Execution Process inside Database server

Once the query is passed to the database server from the SQL
Procedure Pass-Through Facility, the database server parses
and normalizes the query. The parser ensures that the SQL
syntax is correct. Normalization ensures that all the objects
referenced in the query exist. Permissions are also checked
during this process to ensure that the user has permission to
access all tables and columns in the query. Query preprocessing
changes some search arguments to an optimized form and adds
optimized search arguments and join clauses.

If no errors are found, the parsed query is passed to the query
optimizer. The query optimizer uses statistics about the tables,
indexes and columns named in the query, and predicts the cost
of using alternative access methods to resolve a particular query.
The output of the optimizer is the query plan – the plan that is
least costly in terms of I/O. The query plan is compiled with the

1 For further investigation, readers may refer to any database
developer’s handbook. Please see the reference.

code that contains the ordered steps to carry out the query,
including the access methods (table scan or index scan, type of
join to use, join order, and etc.) to access each table. Once the
query execution plan is complete, the database server executes
the query and returns the data to the SQL Procedure Pass-
Through Facility.

2) Working with the optimizer

The goal of the optimizer is to select the access method for each
table that reduces the total time needed to process a query. The
optimizer bases its choice on the statistics available for the tables
being queried and on other factors such as cache strategies,
cache and I/O size. A major component of optimizer decision-
making is the statistics available for the tables, indexes and
columns.

In some situations, the optimizer may seem to make the incorrect
choice of access methods. This may be the result of inaccurate
or incomplete information (such as out-of-date statistics). In other
cases, additional analysis and the use of special query
processing options can determine the source of the problem and
provide solutions. The query optimizer uses I/O cost as the
measure of query execution cost. The significant costs in query
processing are the physical I/O (when pages must be read from
disk) and the logical I/O (when pages in cache are read for a
query). The two significant outputs from the query plan are the
table access method and the order of table access.

3) Table Access method in the optimizer

For each table in the query the optimizer tries to determine the
best path by choosing from the table scan, the index scan (use
clustered index) or covering index scan (use non-clustered index).

Other than situations where the table scan is cheaper than the
index scan, SAS programmers need to avoid the table scan as
much as possible. During the table scan process, the database
server reads every data page in the table because no useful
indexes are available to help retrieve the data it needs. Every
data page access needs disk read, which in turn causes poor
response time from the system. It also affects the performance of
other queries on the server.

To avoid the table scan for the query, SAS programmers can give
hint to the database by choosing a proper index inside the SQL
query. This feature can be used when multiple indexes are
available on the table and the optimizer picks index based on its
statistics, which may not be the fastest one for your query. A hint
suggests that the optimizer use the index defined in the query
instead of index based on its algorithm.

4) Order of Table access defined by optimizer

If multiple tables are accessed through the SQL query, the
optimizer defines the sequence in which all tables will be
accessed. This order is the most important factor for the
performance of a query. The table accessed first returns a set of
rows based on the condition defined in the “where” clause. The
rest of the tables are accessed iteratively based on the results
returned by the first query.

SAS Programmers need to make sure of two things in this
situation. The table accessed first should be a qualifying table for
the query and should return less number of rows or maximum

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

2

number of result rows. The tables accessed forward should not
use table scan and must use a proper index scan, because these
tables will be accessed iteratively for the result rows from the first
table. For example, assume there are two tables in a query and
the first accessed table from the database returns 1000 rows and
the second accessed table performs a table scan for every row
from the first table. This means that on the second table, the
table scan will be performed 1000 times which is not a good thing
for the data warehouse, if the number of rows in the second table
are significant.

In some cases, the number of qualifying tables may be more than
one, where data fetched from first table returns a few rows and
the second table returns most of the qualifying results for other
tables.

5) The definition of a table order in a query

If multiple tables are involved in a query, there are three ways a
programmer can control the order of the table in the query.

Firstly, control the order by defining the hint for the tables. The
optimizer creates a query plan based on statistics and hints given
in a SQL query. If a hint tells the optimizer to use a different index
other than specified in its’ query plan, it forces the optimizer to re-
evaluate everything and reorder table accesses. One can repeat
this trick for every table in the query to get a query plan in the
right order.

Secondly, use the manual query implementation technique.
When performing a join, the query optimizer evaluates all
reasonable joins, permutations and estimates the total I/O costs.
The number of possible joins is a permutation of the number of
tables. The more table joins, the more time the optimizer spends
on calculation. In practice, we do not need to join all the required
tables at once. A series of less than four tables join, may save a
lot of time.

Finally, use the FORCEPLAN option. If none of the pervious
tricks are effective in getting the query plan in the way you want,
then use FORCEPLAN setting for the query. This option once set
forces optimizer to ignore everything and create the query plan
based on the order and indexes defined in the clause of SQL
query. If indexes are defined in the query, optimizer can use its
own algorithm to choose the right index for the table. In any case
optimizer cannot change the order of the table.

SOME TIPS ON EXTRACTION DATA USING SAS

SAS always provides more than one solution for a job. To
perform a table join in SAS/ACCESS, mostly we use the SQL
Procedure Pass-Through Facility, or use ODBC engine treating
the database table as a sas data set. After the system
environment is set up, we can directly parse the SQL scripts
generated following the above method. Since the SAS
programmers are going to manipulate data mining after the data
pull, in a large database, there are some issues for SAS
programmers to think about, like storage space and working
space problems, etc.

1) Break the data pull into small pieces

The purpose for SAS programmers to pull data from a database
is for further data mining and reporting. For the convenience of
later manipulation, it is always a good idea to break a big data
pull into small data pulls and executes the data pull piece by
piece. The advantage is to resume the data pull easily if there is
a problem within the database. Small datasets also cost less
space and time to manipulate like sorting.

In the SQL Procedure Pass-Through Facility using SAS/MACRO,
we may break the data pull into smaller pieces. For instance, for

a data pull for a month, we can break it up by week, so we have
four repeated data pulls.

Assuming we have two tables in a database. Table Beta has a
field called date_of_service. A common key links table Alpha and
Table Beta. Our task is to pull one month data. The code can be
written as following.

 proc sql;
 connect to sybase
 (server= &server database=&database
 user=&user password=&pwd);
 %macro pull(i, startdate,enddate);
 create table data&i
 as
 select *
 from connection to sybase

(
 select a.product1, a.product2, b.date_of_service

 from alpha a,
 beta b
 where
 a.key=b.key

and b.date_of_service between &startdate
 and &enddate
);
 %mend;
 %pull(i=1,startdate=%nrstr(‘20030321’),
 enddate=%nrstr(‘20030331’));

Below are some notes on this approach.

Firstly, do not assume that if one query returns one month data in
X minutes, that the same query, just by changing dates will return
three months data in 3X minutes. Different data ranges forces the
optimizer to use different indexes and a different order for the
tables, which affects query performance.

Secondly, avoid the greater than operator in the range queries,
instead of that operator use greater than equal for the operator.
The greater than operator starts reading pages from the value
defined in the query and scans all the pages until it reaches the
page where it finds the value greater than the value in the where
clause. Greater than equal to operator always starts from the
right values and hence avoids page scans and saves resources.
Also, as stated by the SAS online document, it is more efficient to
use “BETWEEN“ where it applies.

Thirdly, use single quotes when invoking the macro function. If
using the double quotation mark, for both variables “startdate”
and “enddate”, from the above example, resolve to unexpected
strings. SAS is looking for a column name like quoted string, like
‘20030331’ other than searching for date like 20030331. Double
quotation mark is not well resolved.

2) Using the temp table of a relation database

To expedite a data pull, it is common to create a temporary table
in the relation database. SAS/ACCESS provides a lot of tools
solving such a problem, like PROC DBLOAD, the SQL Procedure
Pass-Through Facility, or the ODBC engine, etc.

While using PROC DBLOAD or ODBC engines, make sure that
join columns in the query are of the exact same type. Different
data type columns in join may force the database to perform a
table scan.

The most convenient way is to use ODBC engine. Data step and
any SAS procedure which produces output dataset could be used
for creating a table. To get the right type of field, DBTYPE option
may be used. There are also some other methods to change the
data type in the database. We may choose from either the SQL
Procedure Pass-Through Facility or PROC DBLOAD type

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

3

options.

The option BULKCOPY can save a lot of time if we are going to
insert huge amounts of data into the database. This utility groups
rows so that they are inserted as a unit into a SYBASE table. The
table loading process performance can be significantly increased.

 Libname mydblib sybase database=tempdb server=&server
 user=&user password=&password ;

 /* Indata is a sas dataset with a key variable */;
 /* Master is the table in database to pull variables from */;
 /* Outdata is the sasdata set for output */;
 /* Pullvar is the variable in database we are interested */;

 %macro pull(indata, key, master, outdata, pullvar);

 proc sort data=&indata(keep=&key where=(&key~=.))
 nodupkey out=mydblib.temp (bulkcopy=yes
 dbtype=(&key='data type2')); by &key ;

 proc sql;
 connect to sybase
 (server= &server database=&server user=&user
 password=&pwd);
 execute (create index ind on tempdb..temp (&key))
 by sybase;

 create table &outdata as
 select *
 from connection to sybase
 (
 select
 &pullvar
 from &master b,
 tempdb..temp a (index ind)
 where a.&key=b.&key
);
 quit;
 proc delete data=mydblib.b;
 %mend;

In the above example, it tries to upload a SAS data set into the
database “tempdb” to create a table called “temp”, creates an
index on the new table and joins with another existing table in the
relational database.

3) Other tips for data extraction

Here are some tips worth mentioning:

• Always check the query plan first for the query before
running.

• Keep statistics about data extraction times for the
query. It will work as a guideline for the rest of the
group.

• If you have multiple good query plans, then choose one
that uses the maximum number of processes. Multiple
processes run parallel inside database.

• Index definition in the SQL query does not force
optimizer to use that index, it is just a hint to the
optimizer. When you are forcing indexes, the query
plan may be misleading. Some other database tools
should be used to make sure that the indexes shown in
query plan are used, when query is run.

• Notify DBA instantly if any SAS/ACCESS session is
killed in client’s side. Otherwise, the SAS/ACCESS is
still running in the server.

• Always deleting the temporary table after you finish the
data pull.

2 Check the data type of the variable in your database

• Since order by, group by and distinct clause in the
PROC SQL statement incurs additional processing and
I/O, we suggest to extract the data first and perform the
data summary in the next stage. To save the large data
extraction time, data manipulation can be put into SAS
environment. The Database also needs temporary
statistics to merge that information back to the original
data.

• If the search argument is not indexed, one solution is
that we may ask DBA to create one temporarily. If there
is sufficient space and we perform such a query
frequently, it might be a good idea to download the
whole table into SAS dataset.

• If having space, a SAS data mart with longitudinal data
can be created for research convenience.

 SUMMARY

It is proven that SAS /ACCESS® is a very convenient tool for
data warehousing. SAS programmers need to be familiar with
both RDB warehousing techniques and SAS coding skills to have
their job done. As we have seen, deep research on the query can
save SAS programmers or database valuable time. A good habit
of SAS/ACCESS program coding also helps other people working
in the database using other tools.

Reference:

1) Rankins, R., et al (1996), Sybase SQL Server 11 unleashed,
Indianapolis, IN: Sams publishing.

2) Loren,J. (1996), “SAS Connections to DB2: Tools and
Techniques”, Proceeding of the Twenty-First Annual SUGI
Conference, 21,498-507

3) SAS institute Inc. (1999), SAS Online Document©, Cary,NC:
SAS Institute Inc.

4) Wang C., He J., Mallon P. (2001), “The application of SAS
data mart in Clinical Laboratory Testing”, PharmSUG 2001:
Conference Proceedings

ACKNOWLEDGMENTS

Thanks Darlene Garaffa for proofreading
SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration. Other
brand and product names are trademarks of their respective
companies.

Jianming He
Quest Diagnostics
1200 Wall St. west
Lyndhurst, NJ 07071
(201)729-8716

Dinesh Jain
Quest Diagnostics
1200 Wall St. west
Lyndhurst, NJ 07071
(201)729-7524

Cheng Wang, Ph.D.
Quest Diagnostics
1200 Wall St. west
Lyndhurst, NJ 07071
(201)729-8694

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

