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ABSTRACT 
The introduction of SAS/ACCESS has allowed SAS users to 
process information contained in a variety of database formats. 
The relative ease with which SAS/ACCESS makes this possible is 
often offset with poor performance caused by inefficient use of 
native database services. The addition of SQL pass-thru does 
allow users to process native databases efficiently but requires a 
solid understanding of SQL.  The challenge of many data 
warehousing efforts today is one of balancing efficient database 
design (STAR schemas) and ease of use. Often times this 
challenge is met by purchasing additional software to administer 
complex join structures and generate the SQL needed.  This 
paper addresses this challenge of generating efficient SQL easily 
from within the SAS environment. It makes use of Base SAS and 
the macro facility as well as SAS Access.  It is not limited to any 
operating system, and is intended for intermediate and above 
audiences. 
 
INTRODUCTION 
After five years with an Oracle star schema database and an 
SQL-generating query tool from a separate software vendor, our 
health care organization decided to re-assess its choice of query 
tools.  Among the six different products under consideration was 
SAS’s Enterprise Guide.  One of the leading factors in making 
this decision was how easy it is for a non-programmer to create 
and submit a query.  The complexities of the database had to be 
completely hidden from the end user.  Unfortunately, because it 
was the only one of the six that required users to define their own 
SQL joins from table to table, Enterprise Guide was immediately 
dismissed. 
 
Fortunately, the power that is available through the Base SAS 
language and the macro processor allows a programmer to fill in 
holes that may exist in some of the pre-packaged products.  For 
us, this became a necessity.  Despite missing out on the sale of 
several hundred licenses for Enterprise Guide, SAS still maintains 
a presence of Base SAS and SAS ACCESS on twenty-five 
desktops within our analytical department.  To facilitate the flow 
from data extract to data manipulation and analysis, we needed 
SAS solutions to our Oracle databases.  Because of the 
complexities inherent within the database structure, and therefore, 
the complexities of the SQL code necessary to query from it, we 
were charged with developing what Enterprise Guide was missing 
– an SQL generator that produced joins between tables based on 
user input.  It was to be written as a macro for people with at least 
a basic knowledge of SAS or Oracle syntax.  This paper 
describes the development and use of metadata tables to derive 
the SELECT and FROM clauses as well as the JOIN conditions 
for such a tool using SAS’s macro language. 
 
THE APPROACH 
The goal for this paper is to resolve the macro variables in the 
following code, found at the end of the macro. 
 
SELECT &SLCT 
FROM &FRM 
WHERE &JN  
 
What should be clear, if not by the macro variable names, then by 
the location of their references within the query, is an idea of what 
these variables resolve to.  &SLCT is a list of fields to be kept, 
separated by commas.  &FRM is a list of tables separated by 
commas.  &JN is the collection of join conditions separated by the 

word AND.  Alternatively, these variables may be replaced by 
%DO loops that generate the lists.  The mystery, and the theme 
of the paper, is in how these are derived.  To get an idea of where 
the process would begin, consider any other SQL generator.  How 
does it know which fields to pull?  Which tables are needed?  
Which joins need to be created?  As you point and click or drag 
and drop icons that represent database fields, the software 
interprets and translates your input and generates a SELECT 
clause.  But a good query tool does not need to require you to 
know which tables contain the chosen fields, or how such tables 
are related.  So how does the tool know which tables to list in the 
FROM clause, and which JOIN conditions to invoke in the 
WHERE clause?  In what form does “the brain behind the 
software” exist, and how is it used?  Somewhere, somehow, a 
storage facility must be in place that contains this information. 
 
The macro method described here makes use of metadata tables 
to store such information.  Of course, the macro’s method of input 
is the macro parameter, in this case, SELECT=,  in which you 
enter the fields you wish to see.  Just as a point-and-click 
application does not need you to click on table names or primary 
keys to define JOIN conditions, a macro query tool does not need 
FROM and JOIN parameters.  Instead, a separate database (or 
meta-database) is created. The macro enters the meta-database 
with SELECT= fields, and for each field, finds table, primary key, 
and foreign key information.  The ability to create an SQL-
generating SAS macro depends on the ability to set up these 
meta-databases 
 
AN EXAMPLE 
The layout of the metadata table(s) depends entirely on the 
structure of the database.  With the right metadata, most, if not all 
of the SQL can be generated from macro code that uses this 
table.  Ideally, little, if any SQL would be forced by macro code 
that was independent of the table (e.g. %LET statements). 
Consider an example in which a company keeps track of its sales 
in a basic star database with four tables.  In such a database, 
each of three tables has a connection to the fourth, and none of 
the three is connected to each other (see figure 1).  In other 
words, the fourth has among all of its fields, one foreign key for 
each of the other three tables.  Often times, this fourth table is 
used to keep track of transactions, while the other three tables 
each provide more information about certain aspects of the fourth.  
For this example, suppose information about each sale is 
recorded in a table called TRANSACTIONS.  A second table, 
EMPLOYEES, has information about each employee.  A third 
table, CLIENTS, contains information about clients, and a fourth 
table, DATES, contains fields such as YEAR, MONTH, and 
QUARTER pertaining to any given date.  TRANSACTIONS has 
fields for employee and client codes as well as a date field that 
each serve as foreign keys to their respective tables.   
 
Figure 1:  A basic four-table star schema 
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SETTING UP THE METADATA 
Based on this structure, one metadata table (call it META) could 
be set up to generate the SQL for the query.  META consists of 
four fields – FIELD, TABLE, PRIM_KEY, and FOR_KEY.  The 
values of FIELD are all the field names that occur in the database.  
For any value of FIELD, the value of TABLE is the name of the 
table that contains that field.  For rows where the value of TABLE 
is DATES, EMPLOYEES, or CLIENTS, the value of PRIM_KEY is 
the name of the primary key from that table, and the value of 
FOR_KEY is the value of the foreign key in TRANSACTIONS that 
links to PRIM_KEY.  For rows where the value of TABLE is 
TRANSACTIONS, these two fields are blank.  Assume in this 
example that no field name is found in more than one table so 
that table aliases are not necessary.  See table 1. 
 
 
 
Table 1:  META 
 

Field Table PRIM_KEY FOR_KEY 
CLIENTCODE  TRANSACTIONS       
EMPCODE  TRANSACTIONS       
DATE  TRANSACTIONS       
SALESAMT  TRANSACTIONS       
COMMISSION  TRANSACTIONS       
PPLAN  TRANSACTIONS       
DPLAN  TRANSACTIONS       
FNAME  EMPLOYEES  EMPKEY  EMPCODE 
LNAME  EMPLOYEES  EMPKEY  EMPCODE 
PHONE  EMPLOYEES  EMPKEY  EMPCODE 
ADDRESS  EMPLOYEES  EMPKEY  EMPCODE 
ZIP  EMPLOYEES  EMPKEY  EMPCODE 
QUARTER  DATES  DATEKEY  DATE 
MONTH  DATES  DATEKEY  DATE 
YEAR  DATES  DATEKEY  DATE 
YYYYMM  DATES  DATEKEY  DATE 
TYPE  CLIENTS  CLIENTKEY  CLIENTCODE 
CITY  CLIENTS  CLIENTKEY  CLIENTCODE 
STATE  CLIENTS  CLIENTKEY  CLIENTCODE 
 
 
ACCESSING META 
The first step in generating any particular SELECT and FROM 
lists and the JOIN conditions is to create a data set (or table) that 
is a subset of META, containing only the observations where the 
value of FIELD is one of the fields specified in the SELECT= 
parameter.  Call this table SUBSET.  The values of FIELD in 
SUBSET will make up the SELECT list, the values of TABLE will 
make up the FROM clause, and the values of PRIM_KEY and 
FOR_KEY will help generate the JOIN conditions.  SUBSET can 
be created with a simple DATA step or a SQL procedure.  The IN 
list in the WHERE statement or clause would be made up of the 
fields specified in the SELECT= parameter, and can be read from 
the parameter in one of a number of ways, such as the following: 
 
   proc sql; 
   create table subset as 
   select * 
   from sugi28.meta 
   where field in ( 
 %let a=1 ; 
 %let token=%scan(&select,1,%str( )) ; 
 %do %until(&token=%str()); 

  %if &a=1 %then "&token" ; 
  %else ,"&token" ; 
  %let a=%eval(&a+1) ; 
  %let token=%scan(&select,&a,%str( )) ; 
 %end ; 
) 
order by table ; 
quit;  
 
Each iteration of the %DO loop, corresponds to a selected 
database field and inserts this field into the IN list.  On all except 
the first iteration, the field name is preceded by a comma.  Note 
the ORDER BY clause.  This will allow you to use TABLE in a BY 
statement in the upcoming DATA step. 
 
You now have a data set that contains the fields you need, and is 
ordered by TABLE.  It also contains all of the JOIN relationships 
that are necessary.  The question remains, what and how do you 
transfer the information in the data set to an SQL query against 
the database.  The question of how is easy.  The CALL SYMPUT 
routine, invoked inside a DATA step, allows you to remember 
values from a data set after the DATA step has completed, by 
assigning these values to macro variables.  Therefore, the next 
step is to read SUBSET and assign its values to macro variables.  
To answer the question of what can be used from SUBSET, start 
with the SELECT clause.  Every value of FIELD is needed in the 
SELECT clause, so assign each value a macro variable as 
follows: 
 
   select=compress('S' || put(_n_,3.)); 
   call symput(select,trim(left(field))); 
 
To generate the FROM clause, note that since any particular 
value of TABLE is likely to appear on multiple observations of 
SUBSET, not every value on every observation will need to be 
assigned a macro variable.  Therefore, assign a macro variable 
only at LAST.TABLE. 
 
   if last.table then do; 
 tbl_nbr+1; 
 from=compress('F'||put(tbl_nbr,3.)); 
 call symput(from,trim(left(table))); 
 
Finally, just as with the macro variables that build the FROM 
clause, macro variables to build JOIN conditions are also needed 
only once per table, and are not needed at all when that table is 
TRANSACTIONS.  So within the same DO block stated above, 
include the following: 
 

if key1 ne ' ' then do; /* this is one way to identify when   
TRANSACTIONS is the table */ 

 jn_nbr+1; 
 join=compress('J' || put(jn_nbr,3.)); 
 call symput(join,trim(left(key1)) || "=" || trim(left(key2))); 
 end; 
 
The entire data step is shown below: 
 
   data _null_; 
   set subset end=lastone nobs=sel_nbr;  
   by table; 
   length from $ 4 select $ 4 join $4 ; 
   retain jn_nbr 0 ; 
 
   select=compress('S' || put(_n_,3.)); 
   call symput(select,trim(left(field))); 
 
   If last.table then do; 
 tbl_nbr+1; 
 from=compress('F' || put(tbl_nbr,3.)); 
 call symput(from,trim(left(table))); 
 
 if key1 ne ' ' then do; 
 jn_nbr+1; 
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 join=compress('J' || put(jn_nbr,3.)); 
 call symput(join,trim(left(key1)) || "=" || trim(left(key2))); 
 end; 
   end; 
 
   if lastone then do; 
 call symput("sel_nbr",sel_nbr); 
 call symput("tbl_nbr",tbl_nbr); 
 call symput("jn_nbr",jn_nbr); 
   end; 
 
   run; 
 
Throughout the DATA step above, the variables SEL_NBR 
(created in the NOBS= option), TBL_NBR, and JN_NBR are 
used.  TBL_NBR, and JN_NBR serve two purposes.  One is to 
uniquely assign table names and join conditions to macro 
variables.  _N_ serves the same purpose for assigning field 
names.  The second purpose, served by all three variables, is to 
set an upper limit on %DO loops that will be used to generate the 
SQL.  Once the last observation of SUBSET is read, CALL 
SYMPUT is used to assign these upper limits to macro variables. 
 
GENERATING THE SQL 
Returning now to the model query you started with,  
 
   select &SLCT 
   from &FRM 
   where &JN  
 
armed with unique macro variables that represent field names, 
table names, and join conditions, as well upper limits on how 
many of each of these are needed, you are now ready to replace 
&SLCT, &FRM, and &JN with %DO loops of the following form: 
 
   %do i=1 %to &upperlimit ; 
   %if &i^=&upperlimit %then &&X&I , ; 
   %else &&X&I ; 
   %end ; 
 
X is either S, F, or J, and upperlimit is either sel_nbr, tbl_nbr, or 
jn_nbr, depending on which clause the loop is used in.  In the 
SELECT clause, &&S&I resolves to the ith field name, and 
&sel_nbr is the number of fields.  In the FROM clause, &&F&I is 
the ith table, and &tbl_nbr is the number of tables that contain the 
requested database fields.  In the WHERE clause, &&J&I is the 
ith JOIN condition, and &jn_nbr is the number of JOIN conditions 
needed.   
 
Two points are worthy of noting here.  One, suppose your 
SELECT= parameter contains fields from more than one table, 
but none from TRANSACTIONS.  The nature of the star database 
dictates that these two tables can only be joined through 
TRANSACTIONS.  Unfortunately, SUBSET will not contain this 
table name as a value of TABLES.  Therefore, logic must be used 
to force this table into the FROM clause if it is not there already. 
 
   %let tran=N; 
   %do i=1 %to &tbl_nbr; 
      %if &i^=&tbl_nbr %then sugi28.&&F&i,; 
      %else sugi28.&&F&i; 
      %if &tran=N and &&F&i=TRANSACTIONS %then %let         
tran=Y; 
   %end; 
   %if &tran=N and &tbl_nbr>1 %then ,sugi28.TRANSACTIONS ; 
 
With this technique, a flag (&tran) is created and turned on once 
TRANSACTIONS is found to be a table.  If the flag is never turned 
on and TRANSACTIONS is needed, then it is forced into the 
FROM clause. 
 
Second, joins are not necessary if only one table is being used.  
Therefore, make the WHERE clause conditional on at least two 
tables being needed.  &TBL_NBR can be used for this. 

 
ADVANCED DATABASES 
The above example demonstrated the use of metadata tables that 
were built based on a relatively simple database structure with 
only four tables.  This led to relatively simple meta-code, or the 
code used against the metadata tables to generate an SQL query 
against the database.  Though this may serve as a model for 
bigger databases, the nature of the data may require some twists 
in what otherwise may be a simple structure.  This in turn may 
require some twists in the setup of the metadata tables and 
hence, some twists in the meta-code.  Such is the case at our 
health care organization. 
 
 In a basic star schema, a central table has a connection to each 
of the other tables.  However, in some of the stars, we have 
tables that don’t link to the central table.  I’ll refer to these as 
secondary tables.  Such a table can fall into one of two 
categories.   
 
SECONDARY/TERTIARY CODES 
In one category, the secondary table is linked to one other table 
referred to as a bridge, and the bridge is linked to the central 
table.  Occasionally, the same set of codes is needed to populate 
multiple fields.  Such is the case when a doctor makes a primary 
diagnosis and a secondary diagnosis, and maybe more, using 
diagnosis codes.  As is the case with a basic star, descriptive 
information for these codes is kept in a separate table.  At this 
point, you may think that each of the diagnoses (say three for the 
sake of discussion) will have its own field in the central table, and 
each can be used as a key to the descriptive table.  However, as 
soon as any of these combinations is repeated on a separate 
record in the central table, space is wasted.  Therefore, as an 
added efficiency, the combination of the three diagnoses can be 
represented in the central table with one field.  A separate table is 
then created with a link to the central table by this field.  The new 
table, otherwise called the bridge, also contains a field for each 
diagnosis, and each combination is unique.  Each of these three 
diagnosis fields can then be joined to the secondary table to get 
descriptive information (See Figure 2).   
 
Figure 2:  A Bridge structure in a star schema                                                          
 
 
 
 
 
 
 
 
Note that BRIDGE KEY is a foreign key in the central table, and a 
primary key of the bridge.  PRIM_KEY, FOR_KEY, and KEY3 are 
foreign keys of the bridge, linking to a primary key of the 
secondary table. 
Think of the path from the central table to the secondary table 
through PRIM_KEY as a primary code, the path through 
FOR_KEY as a secondary code, etc.   
 
ZIP CODES 
The second type of secondary table is one that may link to 
multiple tables, each of which links to the central table.  This is 
well illustrated with zip codes.  Geographical information such as 
zip codes can pertain to anyone.  Of course, your star structure 
may already have different tables for different kinds of people.  
For example, our database has a table for doctors and a separate 
table for members.  Though much of what is in these tables is 
relevant only to a doctor or only to a member, zip code 
information may be relevant for both.  Since both may be subject 
to the same zip codes, one zip code table can link to the member 
table and the doctor table. 
 
RENAMING 
In each of these cases and others, the presence of multiple fields 
that use the same variable name has forced us into using aliases 
for table names, and developing a re-naming convention for the 

Central Table 
Bridge key 

Bridge Table 
Bridge key 
key1 
key2 
key3 

Secondary Table 
Secondary key 
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field names that are used for multiple fields.  After all, if the user 
asks for zip code, then do they want the doctor’s zip code or the 
member’s. The combination of all these twists has led to the 
development of three metadata tables and meta-code that 
combines joins between all pairs of metadata tables.  The first 
table maps a rename to its corresponding database name with a 
table alias.  Now, &&S&I may resolve to alias.database_field as 
rename.  The second table contains JOIN information between 
pairs of tables that don’t include the central table (e.g. secondary 
table to a bridge).  The third table contains JOIN information 
between the central table and those directly connected to it.  With 
techniques similar to those mentioned above, SUBSET data sets 
are created and CALL SYMPUTS are used to create macro 
variables that are used to generate the SQL. 
 
OTHER CONSIDERATIONS 
This paper has focused on getting a FROM clause and JOIN 
conditions from your SELECT variables.  However, an SQL-
generator should allow you access to the other basic clauses of 
an SQL query. 

• GROUP BY – the ability to summarize data rather than 
extract all of the detail 

• summary functions in your SELECT that summarize by 
the GROUP BY variables 

• ORDER BY – the ability to sort the data 
• WHERE – the ability to filter criteria 
• parameters that help further define the business focus 

to be added to the WHERE clause 
• parameters that make use of efficiencies of the 

database (e.g. indexes) to be added to the WHERE 
clause 

 
With efficient use of  metadata and parameters that address 
database as well as business needs, SQL can be generated that 
runs efficiently and with relative ease to the user. 
 
CONCLUSION 
We come from a health care organization that maintains a small 
SAS presence.  However, over 90% of health care organizations 
in this country are more significantly invested in SAS.  As these 
companies grow and expand their customer base and their 
personnel, databases may grow larger and more complex.  The 
programming and database knowledge Enterprise Guide requires 
of users may be more than what can be expected of people 
without programming experience.  Investment in another vendor 
may be necessary at this point.  In this paper, we have 
demonstrated that this may not be necessary.  We have 
demonstrated that with a good set of metadata tables, relatively 
simple macro code can be written to automate the process of 
generating an SQL query.  We have seen it with a hypothetical 
database in this paper.  We have made it work for a complex star 
schema that features many twists in our health care data 
environment, and we believe it can be applied to other database 
structures as well.  We also believe that in conjunction with 
techniques such as these, Enterprise Guide can compete better 
with other easy-to-use tools.  
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