
- 1 -

Paper 43-28

Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
Michael Molter, Excellus Blue Cross and Blue Shield, Rochester, NY

Scott Millard, Excellus Blue Cross and Blue Shield, Utica, NY
Steve Paciocco, Excellus Blue Cross and Blue Shield, Rochester, NY

ABSTRACT
The introduction of SAS/ACCESS has allowed SAS users to
process information contained in a variety of database formats.
The relative ease with which SAS/ACCESS makes this possible is
often offset with poor performance caused by inefficient use of
native database services. The addition of SQL pass-thru does
allow users to process native databases efficiently but requires a
solid understanding of SQL. The challenge of many data
warehousing efforts today is one of balancing efficient database
design (STAR schemas) and ease of use. Often times this
challenge is met by purchasing additional software to administer
complex join structures and generate the SQL needed. This
paper addresses this challenge of generating efficient SQL easily
from within the SAS environment. It makes use of Base SAS and
the macro facility as well as SAS Access. It is not limited to any
operating system, and is intended for intermediate and above
audiences.

INTRODUCTION
After five years with an Oracle star schema database and an
SQL-generating query tool from a separate software vendor, our
health care organization decided to re-assess its choice of query
tools. Among the six different products under consideration was
SAS’s Enterprise Guide. One of the leading factors in making
this decision was how easy it is for a non-programmer to create
and submit a query. The complexities of the database had to be
completely hidden from the end user. Unfortunately, because it
was the only one of the six that required users to define their own
SQL joins from table to table, Enterprise Guide was immediately
dismissed.

Fortunately, the power that is available through the Base SAS
language and the macro processor allows a programmer to fill in
holes that may exist in some of the pre-packaged products. For
us, this became a necessity. Despite missing out on the sale of
several hundred licenses for Enterprise Guide, SAS still maintains
a presence of Base SAS and SAS ACCESS on twenty-five
desktops within our analytical department. To facilitate the flow
from data extract to data manipulation and analysis, we needed
SAS solutions to our Oracle databases. Because of the
complexities inherent within the database structure, and therefore,
the complexities of the SQL code necessary to query from it, we
were charged with developing what Enterprise Guide was missing
– an SQL generator that produced joins between tables based on
user input. It was to be written as a macro for people with at least
a basic knowledge of SAS or Oracle syntax. This paper
describes the development and use of metadata tables to derive
the SELECT and FROM clauses as well as the JOIN conditions
for such a tool using SAS’s macro language.

THE APPROACH
The goal for this paper is to resolve the macro variables in the
following code, found at the end of the macro.

SELECT &SLCT
FROM &FRM
WHERE &JN

What should be clear, if not by the macro variable names, then by
the location of their references within the query, is an idea of what
these variables resolve to. &SLCT is a list of fields to be kept,
separated by commas. &FRM is a list of tables separated by
commas. &JN is the collection of join conditions separated by the

word AND. Alternatively, these variables may be replaced by
%DO loops that generate the lists. The mystery, and the theme
of the paper, is in how these are derived. To get an idea of where
the process would begin, consider any other SQL generator. How
does it know which fields to pull? Which tables are needed?
Which joins need to be created? As you point and click or drag
and drop icons that represent database fields, the software
interprets and translates your input and generates a SELECT
clause. But a good query tool does not need to require you to
know which tables contain the chosen fields, or how such tables
are related. So how does the tool know which tables to list in the
FROM clause, and which JOIN conditions to invoke in the
WHERE clause? In what form does “the brain behind the
software” exist, and how is it used? Somewhere, somehow, a
storage facility must be in place that contains this information.

The macro method described here makes use of metadata tables
to store such information. Of course, the macro’s method of input
is the macro parameter, in this case, SELECT=, in which you
enter the fields you wish to see. Just as a point-and-click
application does not need you to click on table names or primary
keys to define JOIN conditions, a macro query tool does not need
FROM and JOIN parameters. Instead, a separate database (or
meta-database) is created. The macro enters the meta-database
with SELECT= fields, and for each field, finds table, primary key,
and foreign key information. The ability to create an SQL-
generating SAS macro depends on the ability to set up these
meta-databases

AN EXAMPLE
The layout of the metadata table(s) depends entirely on the
structure of the database. With the right metadata, most, if not all
of the SQL can be generated from macro code that uses this
table. Ideally, little, if any SQL would be forced by macro code
that was independent of the table (e.g. %LET statements).
Consider an example in which a company keeps track of its sales
in a basic star database with four tables. In such a database,
each of three tables has a connection to the fourth, and none of
the three is connected to each other (see figure 1). In other
words, the fourth has among all of its fields, one foreign key for
each of the other three tables. Often times, this fourth table is
used to keep track of transactions, while the other three tables
each provide more information about certain aspects of the fourth.
For this example, suppose information about each sale is
recorded in a table called TRANSACTIONS. A second table,
EMPLOYEES, has information about each employee. A third
table, CLIENTS, contains information about clients, and a fourth
table, DATES, contains fields such as YEAR, MONTH, and
QUARTER pertaining to any given date. TRANSACTIONS has
fields for employee and client codes as well as a date field that
each serve as foreign keys to their respective tables.

Figure 1: A basic four-table star schema

Table 4

Table 1 Table 2

Table 3

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

- 2 -

SETTING UP THE METADATA
Based on this structure, one metadata table (call it META) could
be set up to generate the SQL for the query. META consists of
four fields – FIELD, TABLE, PRIM_KEY, and FOR_KEY. The
values of FIELD are all the field names that occur in the database.
For any value of FIELD, the value of TABLE is the name of the
table that contains that field. For rows where the value of TABLE
is DATES, EMPLOYEES, or CLIENTS, the value of PRIM_KEY is
the name of the primary key from that table, and the value of
FOR_KEY is the value of the foreign key in TRANSACTIONS that
links to PRIM_KEY. For rows where the value of TABLE is
TRANSACTIONS, these two fields are blank. Assume in this
example that no field name is found in more than one table so
that table aliases are not necessary. See table 1.

Table 1: META

Field Table PRIM_KEY FOR_KEY
CLIENTCODE TRANSACTIONS
EMPCODE TRANSACTIONS
DATE TRANSACTIONS
SALESAMT TRANSACTIONS
COMMISSION TRANSACTIONS
PPLAN TRANSACTIONS
DPLAN TRANSACTIONS
FNAME EMPLOYEES EMPKEY EMPCODE
LNAME EMPLOYEES EMPKEY EMPCODE
PHONE EMPLOYEES EMPKEY EMPCODE
ADDRESS EMPLOYEES EMPKEY EMPCODE
ZIP EMPLOYEES EMPKEY EMPCODE
QUARTER DATES DATEKEY DATE
MONTH DATES DATEKEY DATE
YEAR DATES DATEKEY DATE
YYYYMM DATES DATEKEY DATE
TYPE CLIENTS CLIENTKEY CLIENTCODE
CITY CLIENTS CLIENTKEY CLIENTCODE
STATE CLIENTS CLIENTKEY CLIENTCODE

ACCESSING META
The first step in generating any particular SELECT and FROM
lists and the JOIN conditions is to create a data set (or table) that
is a subset of META, containing only the observations where the
value of FIELD is one of the fields specified in the SELECT=
parameter. Call this table SUBSET. The values of FIELD in
SUBSET will make up the SELECT list, the values of TABLE will
make up the FROM clause, and the values of PRIM_KEY and
FOR_KEY will help generate the JOIN conditions. SUBSET can
be created with a simple DATA step or a SQL procedure. The IN
list in the WHERE statement or clause would be made up of the
fields specified in the SELECT= parameter, and can be read from
the parameter in one of a number of ways, such as the following:

 proc sql;
 create table subset as
 select *
 from sugi28.meta
 where field in (
 %let a=1 ;
 %let token=%scan(&select,1,%str()) ;
 %do %until(&token=%str());

 %if &a=1 %then "&token" ;
 %else ,"&token" ;
 %let a=%eval(&a+1) ;
 %let token=%scan(&select,&a,%str()) ;
 %end ;
)
order by table ;
quit;

Each iteration of the %DO loop, corresponds to a selected
database field and inserts this field into the IN list. On all except
the first iteration, the field name is preceded by a comma. Note
the ORDER BY clause. This will allow you to use TABLE in a BY
statement in the upcoming DATA step.

You now have a data set that contains the fields you need, and is
ordered by TABLE. It also contains all of the JOIN relationships
that are necessary. The question remains, what and how do you
transfer the information in the data set to an SQL query against
the database. The question of how is easy. The CALL SYMPUT
routine, invoked inside a DATA step, allows you to remember
values from a data set after the DATA step has completed, by
assigning these values to macro variables. Therefore, the next
step is to read SUBSET and assign its values to macro variables.
To answer the question of what can be used from SUBSET, start
with the SELECT clause. Every value of FIELD is needed in the
SELECT clause, so assign each value a macro variable as
follows:

 select=compress('S' || put(_n_,3.));
 call symput(select,trim(left(field)));

To generate the FROM clause, note that since any particular
value of TABLE is likely to appear on multiple observations of
SUBSET, not every value on every observation will need to be
assigned a macro variable. Therefore, assign a macro variable
only at LAST.TABLE.

 if last.table then do;
 tbl_nbr+1;
 from=compress('F'||put(tbl_nbr,3.));
 call symput(from,trim(left(table)));

Finally, just as with the macro variables that build the FROM
clause, macro variables to build JOIN conditions are also needed
only once per table, and are not needed at all when that table is
TRANSACTIONS. So within the same DO block stated above,
include the following:

if key1 ne ' ' then do; /* this is one way to identify when
TRANSACTIONS is the table */

 jn_nbr+1;
 join=compress('J' || put(jn_nbr,3.));
 call symput(join,trim(left(key1)) || "=" || trim(left(key2)));
 end;

The entire data step is shown below:

 data _null_;
 set subset end=lastone nobs=sel_nbr;
 by table;
 length from $ 4 select $ 4 join $4 ;
 retain jn_nbr 0 ;

 select=compress('S' || put(_n_,3.));
 call symput(select,trim(left(field)));

 If last.table then do;
 tbl_nbr+1;
 from=compress('F' || put(tbl_nbr,3.));
 call symput(from,trim(left(table)));

 if key1 ne ' ' then do;
 jn_nbr+1;

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

- 3 -

 join=compress('J' || put(jn_nbr,3.));
 call symput(join,trim(left(key1)) || "=" || trim(left(key2)));
 end;
 end;

 if lastone then do;
 call symput("sel_nbr",sel_nbr);
 call symput("tbl_nbr",tbl_nbr);
 call symput("jn_nbr",jn_nbr);
 end;

 run;

Throughout the DATA step above, the variables SEL_NBR
(created in the NOBS= option), TBL_NBR, and JN_NBR are
used. TBL_NBR, and JN_NBR serve two purposes. One is to
uniquely assign table names and join conditions to macro
variables. _N_ serves the same purpose for assigning field
names. The second purpose, served by all three variables, is to
set an upper limit on %DO loops that will be used to generate the
SQL. Once the last observation of SUBSET is read, CALL
SYMPUT is used to assign these upper limits to macro variables.

GENERATING THE SQL
Returning now to the model query you started with,

 select &SLCT
 from &FRM
 where &JN

armed with unique macro variables that represent field names,
table names, and join conditions, as well upper limits on how
many of each of these are needed, you are now ready to replace
&SLCT, &FRM, and &JN with %DO loops of the following form:

 %do i=1 %to &upperlimit ;
 %if &i^=&upperlimit %then &&X&I , ;
 %else &&X&I ;
 %end ;

X is either S, F, or J, and upperlimit is either sel_nbr, tbl_nbr, or
jn_nbr, depending on which clause the loop is used in. In the
SELECT clause, &&S&I resolves to the ith field name, and
&sel_nbr is the number of fields. In the FROM clause, &&F&I is
the ith table, and &tbl_nbr is the number of tables that contain the
requested database fields. In the WHERE clause, &&J&I is the
ith JOIN condition, and &jn_nbr is the number of JOIN conditions
needed.

Two points are worthy of noting here. One, suppose your
SELECT= parameter contains fields from more than one table,
but none from TRANSACTIONS. The nature of the star database
dictates that these two tables can only be joined through
TRANSACTIONS. Unfortunately, SUBSET will not contain this
table name as a value of TABLES. Therefore, logic must be used
to force this table into the FROM clause if it is not there already.

 %let tran=N;
 %do i=1 %to &tbl_nbr;
 %if &i^=&tbl_nbr %then sugi28.&&F&i,;
 %else sugi28.&&F&i;
 %if &tran=N and &&F&i=TRANSACTIONS %then %let
tran=Y;
 %end;
 %if &tran=N and &tbl_nbr>1 %then ,sugi28.TRANSACTIONS ;

With this technique, a flag (&tran) is created and turned on once
TRANSACTIONS is found to be a table. If the flag is never turned
on and TRANSACTIONS is needed, then it is forced into the
FROM clause.

Second, joins are not necessary if only one table is being used.
Therefore, make the WHERE clause conditional on at least two
tables being needed. &TBL_NBR can be used for this.

ADVANCED DATABASES
The above example demonstrated the use of metadata tables that
were built based on a relatively simple database structure with
only four tables. This led to relatively simple meta-code, or the
code used against the metadata tables to generate an SQL query
against the database. Though this may serve as a model for
bigger databases, the nature of the data may require some twists
in what otherwise may be a simple structure. This in turn may
require some twists in the setup of the metadata tables and
hence, some twists in the meta-code. Such is the case at our
health care organization.

 In a basic star schema, a central table has a connection to each
of the other tables. However, in some of the stars, we have
tables that don’t link to the central table. I’ll refer to these as
secondary tables. Such a table can fall into one of two
categories.

SECONDARY/TERTIARY CODES
In one category, the secondary table is linked to one other table
referred to as a bridge, and the bridge is linked to the central
table. Occasionally, the same set of codes is needed to populate
multiple fields. Such is the case when a doctor makes a primary
diagnosis and a secondary diagnosis, and maybe more, using
diagnosis codes. As is the case with a basic star, descriptive
information for these codes is kept in a separate table. At this
point, you may think that each of the diagnoses (say three for the
sake of discussion) will have its own field in the central table, and
each can be used as a key to the descriptive table. However, as
soon as any of these combinations is repeated on a separate
record in the central table, space is wasted. Therefore, as an
added efficiency, the combination of the three diagnoses can be
represented in the central table with one field. A separate table is
then created with a link to the central table by this field. The new
table, otherwise called the bridge, also contains a field for each
diagnosis, and each combination is unique. Each of these three
diagnosis fields can then be joined to the secondary table to get
descriptive information (See Figure 2).

Figure 2: A Bridge structure in a star schema

Note that BRIDGE KEY is a foreign key in the central table, and a
primary key of the bridge. PRIM_KEY, FOR_KEY, and KEY3 are
foreign keys of the bridge, linking to a primary key of the
secondary table.
Think of the path from the central table to the secondary table
through PRIM_KEY as a primary code, the path through
FOR_KEY as a secondary code, etc.

ZIP CODES
The second type of secondary table is one that may link to
multiple tables, each of which links to the central table. This is
well illustrated with zip codes. Geographical information such as
zip codes can pertain to anyone. Of course, your star structure
may already have different tables for different kinds of people.
For example, our database has a table for doctors and a separate
table for members. Though much of what is in these tables is
relevant only to a doctor or only to a member, zip code
information may be relevant for both. Since both may be subject
to the same zip codes, one zip code table can link to the member
table and the doctor table.

RENAMING
In each of these cases and others, the presence of multiple fields
that use the same variable name has forced us into using aliases
for table names, and developing a re-naming convention for the

Central Table
Bridge key

Bridge Table
Bridge key
key1
key2
key3

Secondary Table
Secondary key

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

- 4 -

field names that are used for multiple fields. After all, if the user
asks for zip code, then do they want the doctor’s zip code or the
member’s. The combination of all these twists has led to the
development of three metadata tables and meta-code that
combines joins between all pairs of metadata tables. The first
table maps a rename to its corresponding database name with a
table alias. Now, &&S&I may resolve to alias.database_field as
rename. The second table contains JOIN information between
pairs of tables that don’t include the central table (e.g. secondary
table to a bridge). The third table contains JOIN information
between the central table and those directly connected to it. With
techniques similar to those mentioned above, SUBSET data sets
are created and CALL SYMPUTS are used to create macro
variables that are used to generate the SQL.

OTHER CONSIDERATIONS
This paper has focused on getting a FROM clause and JOIN
conditions from your SELECT variables. However, an SQL-
generator should allow you access to the other basic clauses of
an SQL query.

• GROUP BY – the ability to summarize data rather than
extract all of the detail

• summary functions in your SELECT that summarize by
the GROUP BY variables

• ORDER BY – the ability to sort the data
• WHERE – the ability to filter criteria
• parameters that help further define the business focus

to be added to the WHERE clause
• parameters that make use of efficiencies of the

database (e.g. indexes) to be added to the WHERE
clause

With efficient use of metadata and parameters that address
database as well as business needs, SQL can be generated that
runs efficiently and with relative ease to the user.

CONCLUSION
We come from a health care organization that maintains a small
SAS presence. However, over 90% of health care organizations
in this country are more significantly invested in SAS. As these
companies grow and expand their customer base and their
personnel, databases may grow larger and more complex. The
programming and database knowledge Enterprise Guide requires
of users may be more than what can be expected of people
without programming experience. Investment in another vendor
may be necessary at this point. In this paper, we have
demonstrated that this may not be necessary. We have
demonstrated that with a good set of metadata tables, relatively
simple macro code can be written to automate the process of
generating an SQL query. We have seen it with a hypothetical
database in this paper. We have made it work for a complex star
schema that features many twists in our health care data
environment, and we believe it can be applied to other database
structures as well. We also believe that in conjunction with
techniques such as these, Enterprise Guide can compete better
with other easy-to-use tools.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact authors at

Mike Molter
Blue Cross and Blue Shield of Rochester
165 Court Street
Rochester, NY 14647
(585) 238-4272
mike.molter@excellus.com

Scott Millard
Blue Cross and Blue Shield of Utica-Watertown
(315) 798-4314
scott.millard@excellus.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries.  indicates USA registration.

Other brands and product names are registered trademarks or
trademarks of their respective companies.

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

