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Abstract 
StARScope is a dynamic, clinical trial data visualization 
prototype. It was developed with SAS® version 8.2, including 
SAS/IntrNet, SAS Graphics and SAS ODS, and is a web-based 
application. The web server is on a Unix machine and the user 
interface is Internet Explorer (5.0 or above) running on any 
desktop machine. In developing the prototype, we took 
advantage of the SAS/IntrNet and SAS Output Delivery System 
to publish graphic reports with hyperlinks to relevant data. We 
also utilized the newly developed Pfizer corporate data standard-
-Global Reporting and Data Exchange Standards (GRADES), 
which follows the proposed pharmaceutical industry standards 
defined by the Clinical Data Interchange Standards Consortium 
(CDISC) group. This way, the prototype can be used by any 
clinical trial studies that comply with the GRADES. StARScope 
provides interactive access to clinical trial data to non-
programmer clients, including clinicians, statisticians, and 
medical writers. StARScope heavily utilizes graphic 
presentations to help clients quickly capture salient information 
from the database in a pictorial fashion. Programmers can also 
use StARScope for data checking on the research report tables.  
Skill Level: Intermediate SAS, Basic HTML including Forms, 
Java Script 
 
Background 
 
Research oriented pharmaceutical companies, such as Pfizer, 
Inc., conduct clinical trials to evaluate the efficacy and safety of 
new drugs. Clinical trials are conducted on thousands of patients 
before a drug can gain regulatory approval. During the process 
an enormous amount of data is generated. Traditionally, listing 
and summary tables are generated for the clinical scientists to 
review. The volume of the output can be huge, amounting to 
thousands of pages of data displays. Sifting through the 
mountain of paperwork quickly and effectively is a daunting task 
for clinicians, statisticians, and medical writers. Clearly, there is 
an unmet need for data visualization tools in drug development. 
Many have tried to fulfill this need, yet successful and user-
friendly tools do not currently exist. Some of the difficulties in 
creating data visualization tools are due to the sheer complexity 
of clinical trials. Another concern is the lack of data standards, 
e.g., the same information of a patient's age can have different 
variable names. Efforts to develop user-friendly tools are 
ongoing, and  "Big Al's World"1 within Pfizer is one example.  
"Big Al's World" was well received by the clinicians inside the 
company and was recognized by the SAS users community in 
the pharmaceutical industy2. StARScope is a next generation 
prototype designed to fulfill the future needs of data visualization.  
StARScope utilizes corporate data standards and is a data-
driven, dynamic, web-based system powered by SAS software 
solutions such as SAS/IntrNet, SAS Graphics and SAS ODS. 
Our goal is to help define the requirements and specifications for 
a corporate-wide data visualization tool. In the next few sections, 
some of the features of StARScope are discussed. 
 
  
Creating A Standard Data Structure 
 

At Pfizer, Inc., there has been a global initiative to develop a 
corporate data standard. When tasked to develop a data 
visualization prototype with GRADES, we decided to use an 
internally defined Reporting Data Set (RDS) structure as the 
input data structure for StARScope3. This has several 
advantages. First, the systems to support the GRADES standard 
are still in development. By utilizing the existing data structures 
defined by the GRADES system, we can focus on the data 
visualization functions of StARScope. Second, if we anchor 
StARScope to this reporting data set structure, all clinical trials 
that comply with GRADES can use StARScope to view data 
interactively.  
 
GRADES define standards within data classes, which are sets of 
logically grouped data.  The data class conceptualizes how users 
consider their clinical data. Data Class Definitions (DCDs) 
include specifications for data derivation algorithms, reporting 
(analysis) dataset structures, table shells, and reporting 
algorithms. The system creates reporting datasets using data 
derivation algorithms. The reporting dataset contains all the 
information and derivations necessary for the production of the 
DCD defined data presentations. 
 
Overview of the Technology Used  
 
One major design consideration concerned which tools to use. 
Since StARScope is intended to be a web-based application, we 
chose SAS/IntrNet, SAS Graphics and SAS ODS because of our 
knowledge and experience as SAS programmers. Some basic 
HTML was necessary to create the user-interface and we found 
that incorporating JavaScript into the Graphical User Interface 
(GUI) increased the dynamics of the application. We found 
SAS/IntrNet to be easy to use for SAS programmers who wish to 
develop web based applications.  

 
The three main web technologies used by StARScope are SAS 
IntrNet, JavaScript and Perl.  First, we chose SAS/IntrNet as the 
CGI component because of its ability to connect to the 
underlying SAS data without requiring additional programming 
effort. Also, by choosing SAS/IntrNet existing SAS macros and 
programs could be easily converted to work with StARScope.  
 
Second, we chose JavaScript for its ability to add dynamic 
content to static HTML pages. JavaScript can be easily 
incorporated into an HTML page produced with SAS code. 
JavaScript has the added benefit of being able to provide HTML 
form validation at the browser level without having to interact 
with the server. Finally, we chose Perl for its ability to easily 
access UNIX directory structures and to provide password 
encrypting and verification.   
 
Details of the Application: 
 
StARScope is a dynamic, data-driven web application. The first 
screen of the application is the Login screen where the user is 
asked to enter his or her userid and password. After successful 
login to the application, the user selects a study and a data 
version, which is of the reporting dataset structures from the 
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GRADES system. The user then selects one of the modules, 
e.g., Demo, AE, or Lab. There are several options available for 
each module, including selecting variables and selecting a table 
or graph output. After selecting the module and its related 
options, the user can then submit the job that will trigger 
execution of SAS code and show the output in the form of tables 
or graphs on the screen. StARScope will provide an option to 
download the output to a file or send it to the printer.  
 
The flowchart for this process is shown in Figure 1.  
 
Passing variables from the web Form to SAS 
 
When developing StARScope, we use SAS/IntrNet as the 
Common Gateway Interface (CGI). A CGI is the method of 
transferring data from the browser to the server programs that 
run the application.  SAS IntrNet uses a program called Broker to 
read the data submitted with the HTML form and create the SAS 
macro variables that are passed to the back end SAS program. It 
is important to note that only selected fields will be passed from 
the broker to the SAS program. As a result, macro variables will 
not be created for non-selected fields on the form. Figure 2 
illustrates the selection of information that will be used for 
demographics data.  Figure 3 lists the HTML code that created 
the form in Figure 2.  
 
 
Figure 2 
 

 
 
 
When the user presses continue, the broker application takes the 
fields submitted in the HTML form and passes them to the SAS 
program. The HTML form data are passed as macro variables 
into the SAS program.  System macro variables are also passed 
and identified with a” _”.   
 
Figure 4 illustrates the screen after the user has clicked on the 
continue button. Here the de-bug feature of SAS/IntrNet is turned 
on. 
 
A user can select multiple values on the check boxes on the web 
form show in figure 5. It is common to have a specific field 
referenced more then once in the HTML form. Figure 5 illustrates 
that check boxes for the laboratory tests are all named “lab” in 
the form, but take different values if checked.  
 
 
 
 
 
 
 
 

Figure 3 
 

 
 
 
 
Figure 4 
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Figure 5 
 

 
 
 
When multiple selections are made for the same field, the broker 
passes them in an array (Figure 6).The form field is parsed into 
sequential macro variables and a new variable is created,’var0’, 
which provides the size of the array. The macro variable &lab0 
will contain the number of variables that were created and &lab1 
through &labN will contain the values. 
 
 
Figure 6 
 

 
 
 
 
 When only one value is selected, the broker passes it as a 
variable, not as an array, (see Figures 7 and 8).  
 
 
Figure 7 
 

 
 
 
Figure 8 
 

 
 
If only one laboratory value is selected, the broker will not parse 
the field. This means that &lab0 and &lab1 will not be created.   
Only ‘&lab’ will be available. This poses a challenge to the 
backend SAS processing since values will be passed as either 
an array or as a single variable. Therefore the code in Figure 9 is 
used in SAS to check whether only a single value was passed, 
and if so, render the single variable to a one-dimension array.  If 

only one value is passed, the value of &lab0 will be null, and the 
value &lab will be move to &lab1 and &lab0 will be set to 1.  Now 
the form data can be processed the same way as when multiple 
values are selected. The backend SAS program can then 
process consistently using an array regardless how many boxes 
the user checked.   
 
Figure 9 
 
 
 
 
   
 
 
 
 
 
Passing the data presentations back to the Form from SAS 

 
SAS ODS was used to send the SAS output to the browser 
window. Because StARScope is data driven, there are no static 
web pages stored. The HTML is sent back to the browser by 
assigning _webout as the output file. The ODS statement in 
Figure 10 is the standard ODS statement used with StARScope.   
The option ‘no_top_matter' is used because the SAS output is 
being appended to HTML code and the ‘no_bottom_matter’ is 
used because custom HTML is being added to the bottom of the 
SAS output. StARScope uses gif files for graphical output. To 
avoid saving the files on the server, the gif files are stored in a 
temporary catalog and sent to the browser window. The path 
statement below tells SAS IntrNet that the gif files are in its 
temporary directory.   
 
Figure 10 
 
 
 
 
 
 
 
The HTML code is written using SAS ‘put’ statements within a 
DATA _NULL_ step to create forms and make sure the macro 
variables are properly quoted so it is resolved at the desired 
time. Since the & symbol is the delimiter within an URL, SAS 
must not resolve the & within the string.   
 
Since URL string can contain many different fields, it is easier to 
create the string in multiple steps. Then the different strings 
representing different values within the data may be 
concatenated together to form the whole URL. Figure 11 shows 
an example of creating an URL in a data step and putting it out 
to the browser. Otherwise it is very confusing to write the long 
URL in one 'PUT' statement. 
 
Figure 11 
 
 
 
 
 
 
 
 
 
 
 
 

%global lab1 lab0 ; 
 
%if &lab0= %then %do; 
   %let lab1 = &lab; 
   %let lab0 = 1; 
%end;

ods listing close; 
ods html body=_webout ( no_top_matter 
no_bottom_matter) 
         path=&_tmpcat (url=&_replay) 
         rs=none ; 

file _webout; 
http='_program=stgm.dem_list.sas&_service=default&ref=load‘;
pop='&POP=' || "&pop"; 
where='&where=' || "&where" 
 
put ' <a href="'; 
put "&httpbase" http +(-1) pop +(-1) wher +(-1)  ; 
put "and trt=''" +(-1) trt  '''">'; 
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Creating Hyperlinks 
 
One of the main StARScope features is the ability to ‘drill’ down 
to the underlying data. This is accomplished by using hyperlinks 
within the graphs and reports. Users need the ability to easily 
access the source data that produced the graphs and reports. 
This is accomplished using SAS graphs with the html and 
html_legend options. These options allow the procedure to 
create hyperlinks to the underlying data.     
 
The application creates the graph of lab values at baseline 
verses the value at the final visit (Figure 12).  The legend serves 
as a link to the graphs where only the particular treatment group 
is displayed (Figure 13). The URL is assigned by the variable in 
the html_legend and is created the same way a URL would be 
created in a put statement. The html statement assigns the URL 
for each point on the graph and is the link to a table of lab values 
(Figure 14).   
 
Figure12   
 
 

 
 
Figure 13 
 
 

 
 
Figure 14 
 
 

 
The SAS code for the graphs is shown in Figure 15. The variable 
“labdrill” is the full URL path for creating the listing of lab values 

and “trtdrill” is the URL for running the graph again with the 
particular treatment group.   
 
Figure 15 
 
 
 
 
 
 
 
 
 
 
 
The next example of creating hyperlinks with SAS ODS is in the 
graph of Adverse Events (AE).  One of the things that the clinical 
scientist looks for is the time to onset of an AE and the intensity 
of the AE. StARScope enables the scientist choose the AE that 
he or she is interested in and display a graph that shows the 
duration, intensity and onset of that AE (Figure 16).   
 
Figure 16 
 

 
 
The scientist can also drill down to a specific subject’s data via a 
hyperlink to look at all the AE information for that subject in the 
graph (Figure 17).   
 
Figure 17 
 

 
 
 
Lessons Learned 
 
Overall, we are very pleased with how well the prototype has 
been received by the pilot users from the client community. The 
prototype is very user friendly and easy to use. With the pilot 
study that was used in the prototype, there was a need to break 
the blind for one arm (Treatment group) mid-course during the 
study. StARScope was used to display safety data for that 
treatment group, which helped the clinicians quickly identify any 
critical issues. StARScope was also used for identifying data 
anomalies, such as discrepant dates or values, which would not 
be found in a timely manner with the normal data cleaning cycle.  
 
The developers’ intention was to create a system that was data 
driven and did not require file storage on the server. This proved 
to be a daunting requirement considering the stateless nature of 

proc gplot data=lab uniform ; 
plot  labf*labb=trtgrp /  vaxis=&min to &max by &scal          
haxis=&min to &max by &scal  

     annotate=triangle  html=labdrill HTML_LEGEND=trtdrill;
     label labb='Baseline' labf = "Final (%cmpres(&unit))"; 
     format labb labf ; 
run;
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the web, where the state information is not kept from page to 
page.  
 
Some of the pitfalls in the web applications are inherited from 
this stateless nature of the web. It is difficult to pass information 
from one web page to subsequent pages at the browser level 
and it is inefficient to constantly communicate with the server.  
Although we could have resolved this issue by using cookies, we 
decided early in development not to use cookies because their 
particular complexities, and discussing them is beyond the scope 
of this paper. We also chose not to write any intermediate data 
back to the server to increase efficiency and decrease storage 
on the server. Therefore we designed the application to be 
driven by the underlying data, to create output ‘on-the-fly’ (not 
stored) and not require intensive user interaction. 
 
As a final note, although SAS/IntrNet only requires basic SAS 
knowledge, being well versed in SAS Macro Language is 
necessary to develop a comprehensive SAS/IntrNet based 
application. Knowledge of HTML is also required along with 
some experience with Java Script.  
 
Conclusions 
 
Overall, SAS/IntrNet is a useful tool to design a web based data 
browser. It allows one to take full advantage of the SAS 
analytical and reporting power to present data graphically and 
dynamically. A SAS program can easily be adapted to work with 
SAS/IntrNET and deliver the presentation on the web. The 
prototype was well received by our pilot clinical users. What the 
end users found the most useful is the dynamic and interactive 
data browsing for relevant data points.  
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