
 1

Paper 42-28

StARScope: A Web-based SAS® Prototype for Clinical Data Visualization

Fang Dong, Pfizer Global Research and Development, Ann Arbor Laboratories
Subra Pilli, Pfizer Global Research and Development, Ann Arbor Laboratories
Scott Pivirotto, Pfizer Global Research and Development, Ann Arbor Laboratories
Jeff Van Domelen, Venturi Technology Partners

Abstract
StARScope is a dynamic, clinical trial data visualization
prototype. It was developed with SAS® version 8.2, including
SAS/IntrNet, SAS Graphics and SAS ODS, and is a web-based
application. The web server is on a Unix machine and the user
interface is Internet Explorer (5.0 or above) running on any
desktop machine. In developing the prototype, we took
advantage of the SAS/IntrNet and SAS Output Delivery System
to publish graphic reports with hyperlinks to relevant data. We
also utilized the newly developed Pfizer corporate data standard-
-Global Reporting and Data Exchange Standards (GRADES),
which follows the proposed pharmaceutical industry standards
defined by the Clinical Data Interchange Standards Consortium
(CDISC) group. This way, the prototype can be used by any
clinical trial studies that comply with the GRADES. StARScope
provides interactive access to clinical trial data to non-
programmer clients, including clinicians, statisticians, and
medical writers. StARScope heavily utilizes graphic
presentations to help clients quickly capture salient information
from the database in a pictorial fashion. Programmers can also
use StARScope for data checking on the research report tables.
Skill Level: Intermediate SAS, Basic HTML including Forms,
Java Script

Background

Research oriented pharmaceutical companies, such as Pfizer,
Inc., conduct clinical trials to evaluate the efficacy and safety of
new drugs. Clinical trials are conducted on thousands of patients
before a drug can gain regulatory approval. During the process
an enormous amount of data is generated. Traditionally, listing
and summary tables are generated for the clinical scientists to
review. The volume of the output can be huge, amounting to
thousands of pages of data displays. Sifting through the
mountain of paperwork quickly and effectively is a daunting task
for clinicians, statisticians, and medical writers. Clearly, there is
an unmet need for data visualization tools in drug development.
Many have tried to fulfill this need, yet successful and user-
friendly tools do not currently exist. Some of the difficulties in
creating data visualization tools are due to the sheer complexity
of clinical trials. Another concern is the lack of data standards,
e.g., the same information of a patient's age can have different
variable names. Efforts to develop user-friendly tools are
ongoing, and "Big Al's World"1 within Pfizer is one example.
"Big Al's World" was well received by the clinicians inside the
company and was recognized by the SAS users community in
the pharmaceutical industy2. StARScope is a next generation
prototype designed to fulfill the future needs of data visualization.
StARScope utilizes corporate data standards and is a data-
driven, dynamic, web-based system powered by SAS software
solutions such as SAS/IntrNet, SAS Graphics and SAS ODS.
Our goal is to help define the requirements and specifications for
a corporate-wide data visualization tool. In the next few sections,
some of the features of StARScope are discussed.

Creating A Standard Data Structure

At Pfizer, Inc., there has been a global initiative to develop a
corporate data standard. When tasked to develop a data
visualization prototype with GRADES, we decided to use an
internally defined Reporting Data Set (RDS) structure as the
input data structure for StARScope3. This has several
advantages. First, the systems to support the GRADES standard
are still in development. By utilizing the existing data structures
defined by the GRADES system, we can focus on the data
visualization functions of StARScope. Second, if we anchor
StARScope to this reporting data set structure, all clinical trials
that comply with GRADES can use StARScope to view data
interactively.

GRADES define standards within data classes, which are sets of
logically grouped data. The data class conceptualizes how users
consider their clinical data. Data Class Definitions (DCDs)
include specifications for data derivation algorithms, reporting
(analysis) dataset structures, table shells, and reporting
algorithms. The system creates reporting datasets using data
derivation algorithms. The reporting dataset contains all the
information and derivations necessary for the production of the
DCD defined data presentations.

Overview of the Technology Used

One major design consideration concerned which tools to use.
Since StARScope is intended to be a web-based application, we
chose SAS/IntrNet, SAS Graphics and SAS ODS because of our
knowledge and experience as SAS programmers. Some basic
HTML was necessary to create the user-interface and we found
that incorporating JavaScript into the Graphical User Interface
(GUI) increased the dynamics of the application. We found
SAS/IntrNet to be easy to use for SAS programmers who wish to
develop web based applications.

The three main web technologies used by StARScope are SAS
IntrNet, JavaScript and Perl. First, we chose SAS/IntrNet as the
CGI component because of its ability to connect to the
underlying SAS data without requiring additional programming
effort. Also, by choosing SAS/IntrNet existing SAS macros and
programs could be easily converted to work with StARScope.

Second, we chose JavaScript for its ability to add dynamic
content to static HTML pages. JavaScript can be easily
incorporated into an HTML page produced with SAS code.
JavaScript has the added benefit of being able to provide HTML
form validation at the browser level without having to interact
with the server. Finally, we chose Perl for its ability to easily
access UNIX directory structures and to provide password
encrypting and verification.

Details of the Application:

StARScope is a dynamic, data-driven web application. The first
screen of the application is the Login screen where the user is
asked to enter his or her userid and password. After successful
login to the application, the user selects a study and a data
version, which is of the reporting dataset structures from the

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

 2

GRADES system. The user then selects one of the modules,
e.g., Demo, AE, or Lab. There are several options available for
each module, including selecting variables and selecting a table
or graph output. After selecting the module and its related
options, the user can then submit the job that will trigger
execution of SAS code and show the output in the form of tables
or graphs on the screen. StARScope will provide an option to
download the output to a file or send it to the printer.

The flowchart for this process is shown in Figure 1.

Passing variables from the web Form to SAS

When developing StARScope, we use SAS/IntrNet as the
Common Gateway Interface (CGI). A CGI is the method of
transferring data from the browser to the server programs that
run the application. SAS IntrNet uses a program called Broker to
read the data submitted with the HTML form and create the SAS
macro variables that are passed to the back end SAS program. It
is important to note that only selected fields will be passed from
the broker to the SAS program. As a result, macro variables will
not be created for non-selected fields on the form. Figure 2
illustrates the selection of information that will be used for
demographics data. Figure 3 lists the HTML code that created
the form in Figure 2.

Figure 2

When the user presses continue, the broker application takes the
fields submitted in the HTML form and passes them to the SAS
program. The HTML form data are passed as macro variables
into the SAS program. System macro variables are also passed
and identified with a” _”.

Figure 4 illustrates the screen after the user has clicked on the
continue button. Here the de-bug feature of SAS/IntrNet is turned
on.

A user can select multiple values on the check boxes on the web
form show in figure 5. It is common to have a specific field
referenced more then once in the HTML form. Figure 5 illustrates
that check boxes for the laboratory tests are all named “lab” in
the form, but take different values if checked.

Figure 3

Figure 4

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

 3

Figure 5

When multiple selections are made for the same field, the broker
passes them in an array (Figure 6).The form field is parsed into
sequential macro variables and a new variable is created,’var0’,
which provides the size of the array. The macro variable &lab0
will contain the number of variables that were created and &lab1
through &labN will contain the values.

Figure 6

 When only one value is selected, the broker passes it as a
variable, not as an array, (see Figures 7 and 8).

Figure 7

Figure 8

If only one laboratory value is selected, the broker will not parse
the field. This means that &lab0 and &lab1 will not be created.
Only ‘&lab’ will be available. This poses a challenge to the
backend SAS processing since values will be passed as either
an array or as a single variable. Therefore the code in Figure 9 is
used in SAS to check whether only a single value was passed,
and if so, render the single variable to a one-dimension array. If

only one value is passed, the value of &lab0 will be null, and the
value &lab will be move to &lab1 and &lab0 will be set to 1. Now
the form data can be processed the same way as when multiple
values are selected. The backend SAS program can then
process consistently using an array regardless how many boxes
the user checked.

Figure 9

Passing the data presentations back to the Form from SAS

SAS ODS was used to send the SAS output to the browser
window. Because StARScope is data driven, there are no static
web pages stored. The HTML is sent back to the browser by
assigning _webout as the output file. The ODS statement in
Figure 10 is the standard ODS statement used with StARScope.
The option ‘no_top_matter' is used because the SAS output is
being appended to HTML code and the ‘no_bottom_matter’ is
used because custom HTML is being added to the bottom of the
SAS output. StARScope uses gif files for graphical output. To
avoid saving the files on the server, the gif files are stored in a
temporary catalog and sent to the browser window. The path
statement below tells SAS IntrNet that the gif files are in its
temporary directory.

Figure 10

The HTML code is written using SAS ‘put’ statements within a
DATA _NULL_ step to create forms and make sure the macro
variables are properly quoted so it is resolved at the desired
time. Since the & symbol is the delimiter within an URL, SAS
must not resolve the & within the string.

Since URL string can contain many different fields, it is easier to
create the string in multiple steps. Then the different strings
representing different values within the data may be
concatenated together to form the whole URL. Figure 11 shows
an example of creating an URL in a data step and putting it out
to the browser. Otherwise it is very confusing to write the long
URL in one 'PUT' statement.

Figure 11

%global lab1 lab0 ;

%if &lab0= %then %do;
 %let lab1 = &lab;
 %let lab0 = 1;
%end;

ods listing close;
ods html body=_webout (no_top_matter
no_bottom_matter)
 path=&_tmpcat (url=&_replay)
 rs=none ;

file _webout;
http='_program=stgm.dem_list.sas&_service=default&ref=load‘;
pop='&POP=' || "&pop";
where='&where=' || "&where"

put ' <a href="';
put "&httpbase" http +(-1) pop +(-1) wher +(-1) ;
put "and trt=''" +(-1) trt '''">';

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

 4

Creating Hyperlinks

One of the main StARScope features is the ability to ‘drill’ down
to the underlying data. This is accomplished by using hyperlinks
within the graphs and reports. Users need the ability to easily
access the source data that produced the graphs and reports.
This is accomplished using SAS graphs with the html and
html_legend options. These options allow the procedure to
create hyperlinks to the underlying data.

The application creates the graph of lab values at baseline
verses the value at the final visit (Figure 12). The legend serves
as a link to the graphs where only the particular treatment group
is displayed (Figure 13). The URL is assigned by the variable in
the html_legend and is created the same way a URL would be
created in a put statement. The html statement assigns the URL
for each point on the graph and is the link to a table of lab values
(Figure 14).

Figure12

Figure 13

Figure 14

The SAS code for the graphs is shown in Figure 15. The variable
“labdrill” is the full URL path for creating the listing of lab values

and “trtdrill” is the URL for running the graph again with the
particular treatment group.

Figure 15

The next example of creating hyperlinks with SAS ODS is in the
graph of Adverse Events (AE). One of the things that the clinical
scientist looks for is the time to onset of an AE and the intensity
of the AE. StARScope enables the scientist choose the AE that
he or she is interested in and display a graph that shows the
duration, intensity and onset of that AE (Figure 16).

Figure 16

The scientist can also drill down to a specific subject’s data via a
hyperlink to look at all the AE information for that subject in the
graph (Figure 17).

Figure 17

Lessons Learned

Overall, we are very pleased with how well the prototype has
been received by the pilot users from the client community. The
prototype is very user friendly and easy to use. With the pilot
study that was used in the prototype, there was a need to break
the blind for one arm (Treatment group) mid-course during the
study. StARScope was used to display safety data for that
treatment group, which helped the clinicians quickly identify any
critical issues. StARScope was also used for identifying data
anomalies, such as discrepant dates or values, which would not
be found in a timely manner with the normal data cleaning cycle.

The developers’ intention was to create a system that was data
driven and did not require file storage on the server. This proved
to be a daunting requirement considering the stateless nature of

proc gplot data=lab uniform ;
plot labf*labb=trtgrp / vaxis=&min to &max by &scal
haxis=&min to &max by &scal

 annotate=triangle html=labdrill HTML_LEGEND=trtdrill;
 label labb='Baseline' labf = "Final (%cmpres(&unit))";
 format labb labf ;
run;

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

 5

the web, where the state information is not kept from page to
page.

Some of the pitfalls in the web applications are inherited from
this stateless nature of the web. It is difficult to pass information
from one web page to subsequent pages at the browser level
and it is inefficient to constantly communicate with the server.
Although we could have resolved this issue by using cookies, we
decided early in development not to use cookies because their
particular complexities, and discussing them is beyond the scope
of this paper. We also chose not to write any intermediate data
back to the server to increase efficiency and decrease storage
on the server. Therefore we designed the application to be
driven by the underlying data, to create output ‘on-the-fly’ (not
stored) and not require intensive user interaction.

As a final note, although SAS/IntrNet only requires basic SAS
knowledge, being well versed in SAS Macro Language is
necessary to develop a comprehensive SAS/IntrNet based
application. Knowledge of HTML is also required along with
some experience with Java Script.

Conclusions

Overall, SAS/IntrNet is a useful tool to design a web based data
browser. It allows one to take full advantage of the SAS
analytical and reporting power to present data graphically and
dynamically. A SAS program can easily be adapted to work with
SAS/IntrNET and deliver the presentation on the web. The
prototype was well received by our pilot clinical users. What the
end users found the most useful is the dynamic and interactive
data browsing for relevant data points.

REFERENCES:
1. Synowiec, R (2001)
Data Visualization of Phase 1 Clinical Studies-"Big Al's World".
Proceedings of the Twenty-Sixth Annual SAS User Group
International Conference, 26.
2. Synowiec, R (2001)
Data Visualization of Phase 1 Clinical Studies-"Big Al's World".
Best Paper, PharmaSUG 2001
3.The name StARScope comes from the department where the
developers work in. StAR stands for Statistical Analysis and
Reporting. StAR plus data visualization becomes StARScope.

ACKNOWLEDGEMENTS:
The authors wish to thank John Arbuckle, Jim Sundberg, Steve
Pohl, Rich Synowiec and many other colleagues for their advice
and support in the StARScope development project.
SAS® and SAS/IntrNet® are registered trademarks or trademarks
of SAS Institute, Inc. in the USA and other countries. ® indicates
USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
Fang Dong, PhD
Ann Arbor Laboratories
Pfizer Global Research & Development
2800 Plymouth Road
Ann Arbor, MI 48105
Email: fang.dong@Pfizer.com

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

 6

Figure 1.

SUGI 28 Beginning TutorialsSUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

