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ABSTRACT 
 
Organizing the programming effort for large projects can be 
a daunting task. Programming teams are under pressure to 
complete work accurately and rapidly, while using standard 
templates and macros whenever possible. Add to that 
several levels of documentation and a manager’s need for 
frequent status updates and you have an administrative 
nightmare.  A system is necessary to integrate programming 
documentation, validation checklists, and real-time status 
reports. 
 
After deciding to centralize our project management 
spreadsheet, program header documentation, and validation 
documents, we found that we had the beginnings of a web-
based programming development environment (PDE) for 
SAS programs.   This paper describes a database-driven 
system for organizing SAS programs written using Active 
Server Pages, Visual Basic, and Javascript. 
 

INTRODUCTION  
 
PRA International is one of the fastest growing Contract 
Research Organizations (CROs) providing programming services 
to pharmaceutical and biotechnology companies. 
Competitiveness in this industry increasingly requires 
globalization (Labore and Burger, 2001).   Expansion of PRA to 
Trials Management Centers (TMCs) around the globe has 
fostered cooperative teamwork and the need to develop 
standardized, steady-state processes that apply not only to SAS 
program coding practices, but also to the software used to 
manage the corresponding documentation and validation 
processes.  The staff in our various offices all use a similar 
approach, but over time some individuals may add improvements 
to methods without informing the rest of the company.  As 
Tiggemen (1997) noted, “Learning is often the cumulative result 
of many small improvements rather than major breakthroughs 
and tends to vary depending on the amount of management 
attention devoted to capturing it." 
 
With an increase in workload comes the need for a strategy to 
maximize efficiency while maintaining rigorous quality standards 
and adherence to the regulatory requirements of the Food and 
Drug Administration (FDA).  A major challenge for programmers, 
managers, and administrators is how to efficiently organize an 
access all the programs and documentation required for the 
many projects they work on. 
  
As drug companies race to get their products to market, this time 
pressure is passed along to the CROs to whom they outsource 
many projects.  While companies attempt to shorten 
development cycles, high quality standards must be maintained 
and this requires new ways to write, document, and validate 
programs.  How then can a CRO differentiate itself from its many 
competitors in the drug development arena?  A successful 
philosophy must include the pursuit of new and innovative 
approaches that streamline operations and yield a competitive 
advantage. 
 

BACKGROUND 
 
Tools to organize and integrate programs with documentation and 
quality assurance methods would greatly increase the efficiency 
of managing projects.  However, these programming adjuncts are 
very specific to an industry, company, and even to the individual 
programmer, so it is not surprising that such a facility is not a part 
of the SAS system. 
  
A solution to this predicament requires more than just software – 
it requires a fundamental change in how team members interface 
with the information. Success will only be obtained if the people 
who perform these tasks on a daily basis are involved in 
remodeling the system. Such an obvious statement may not 
seem worth mentioning, except for the fact that consensus 
building is one of the most challenging aspects of development. 
 
The Analysis Programming Department at PRA has well-defined 
quality assurance methods for code development and program 
validation. We use a variety of tools to assist us in these activities 
(Figure 1), including: 

• Detailed headers in every SAS program 
• A "Table of Programs" (TOP) spreadsheet to  organize 

and document programs within a project 
• Validation Checklists in Microsoft Word. 

 

 
Figure 1 :  SAS programs and related files prior to 
integration.  
 
Program Header Documentation 
 
Documentation of programs is one of the least favorite activities 
of programmers and is often put off until the last minute.  As a 
result, documentation may be sparse, incomplete, inaccurate, or 
nonexistent.  By making this task an integral part of the project 
setup and program validation process it becomes a more 
seamless and less burdensome activity. 
 
Gill (1997) states that narrative documentation of program code is 
essentially internal (such as program headers and in-line 
comments) and external (such as our Table of Programs 
spreadsheet).   Program headers serve not only as a guide to our 
programmers, but also to our clients who may request the source 
code as part of the deliverable product.  Hence, any 
documentation stored externally to the program code must 
become part of the program or be adequately referenced and 
accompany it.  
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PRA's Standard Operating Procedures define a structure for our 
program headers (Appendix 1) that includes client and study 
name, code author, abstract, validation information and other 
details about the program.  
 
The Table of Programs (TOP) 
 
Our standard TOP Excel spreadsheet allows programmers to 
rapidly determine program status and dependencies, as well as 
providing an overview of the entire project.  Information for each 
program must be entered, including most of the items already 
mentioned in the program header.   A summary page allows the 
team leader to identify project status by summarizing how many 
programs have been written and validated.   
 
Program Validation Checklists  
 
These checklists are Microsoft Word documents that vary 
depending on the type of SAS program. Clearly, a program that 
involves complex data derivations must undergo a different 
validation procedure than one that simply lists data.  In addition to 
the checklist items, certain redundant elements must be entered 
into these documents, such as: program author and date, 
validation author and date, amendment author, etc. 
 
No off-the-shelf solution was available that would allow the 
integration of our header documentation, TOP, and validation 
checklists. The choice to develop our own customized solution 
was an easy one to make and the concept of PRA SAS Manager 
(PRASM) was born. 

COMPLIANCE WITH INDUSTRY REGULATIONS 
 
This paper does not deal with the validation of the SAS system, 
but instead focuses on how to make programming with SAS more 
compliant with industry regulations, specifically those in the 
pharmaceutical industry.  
 
21 CFR Part 11 
 
The FDA provides compliance guidelines for the pharmaceutical 
industry.  "Guidance for Industry.  Computerized Systems used in 
Clinical Trials,” (FDA, 1999) addresses the requirements of  
“Electronic Records/Electronic Signatures" rule of 21 CFR Part 
11 (FDA, 1997) and applies to any source documents created; be 
they hard copy entered into a computer system, direct human 
entry into the system, or generated automatically by a 
computerized system.   Therefore, SAS programs are governed 
by these regulations when producing data for submission to the 
FDA. 
 
Maintaining an audit trail is a critical requirement.  The FDA 
(1999) defines an audit trail as: 
 

“...a secure, computer generated, time-stamped electronic 
record that allows reconstruction of the course of events 
relating to the creation, modification, and deletion of an 
electronic record.”  
 
“Changes to data that are stored on electronic media will 
always require an audit trail, in accordance with 21 CFR 
11.10(e).  Documentation should include who made the 
changes, when, and why they were made.” 

 
These requirements highlight why a compliant system must: (1) 
allow access only by authorized personnel and (2) provide a 
detailed log of their activities that result in changes to data or 
documentation. 
 
 

System Security 
  

“Security measures should be in place to prevent 
unauthorized access to the data and to the computerized 
system.”  (21 CFR Part 11, 11.10(k) ) 

 
By extension, only authorized team members should access a 
project's programs and documentation.  PRASM will capture the 
Windows 2000 username from the initial workstation logon.  The 
logon name will be looked up in a security table (maintained by 
the PRASM Administrator) and access to projects is granted to 
approved staff members. 
 
The staff altering electronic records “…should not be able to 
modify the audit trails.” (FDA, 1999)  PRASM will make this 
possible by storing all actions in a secure log file. 
 
Activity Log 
 
Capturing an audit log is of utmost importance in complying with 
21 CFR part 11:    
 

 “Use of secure, computer-generated, time-stamped audit 
trails to independently record the date and time of operator 
entries and actions that create, modify, or delete electronic 
records.  Record changes shall not obscure previously 
recorded information.”  (FDA 21 CFR Part 11, 11.10 (e)  ) 

 
A SAS programming team must accurately record actions that 
result in changes to data.  Many SAS programming environments 
strive toward this goal, but it often remains out of reach.  
Documentation of changes to programs is left in the hands of 
individual programmers whose compliance may fall short of the 
required standard.  A more automated and accurate audit trail is 
a desirable goal when moving toward FDA compliance. 
 
As stated by Sporon-Fiedler et al. (2002), “A computer system 
like SAS is a mixture of development and data processing 
environment with the capability of producing self-contained 
systems.”  They further state, “Proving that a log and output file 
has it’s origin from an exact copy of a specific program requires a 
finely synchronized monitoring tool to prove that no tampering 
has taken place... Proving that a database (e.g. SAS datasets) is 
in complete control, requires that all modifications (updates) are 
tracked.”  
 
The FDA guidance details how the date and time of operator 
entries must be separately recorded for all actions that create, 
modify, or delete electronic records. While this has become an 
integral part of the data entry process in many organizations, 
compliance is often less than optimal for SAS programmers when 
they make changes to programs that alter data sets or summary 
displays (tables, listings, and graphs).   Such information must be 
recorded when alterations are made to programs that result in 
changes to output.    
 
We must ensure that all program amendments are documented 
and that no alterations remain unaccounted for. PRASM will do 
this by comparing the file system date on the SAS program with 
the date of the last entry in the database for the corresponding 
program. If the file system date is more than one day younger 
than the date in PRASM, then warnings are issued alerting the 
lead programmer to investigate the offending program. 
 
Dating of all changes will be handled automatically by the system, 
which relies on a validated system clock.  PRASM complies with 
the FDA (1999) requirement that, “Dates and times are to be local 
to the activity being documented and should include the year, 
month, day, hour, and minute.”  All actions by staff using the 
system are logged with staff identifiers and detailed time stamps. 
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When programmers work across TMC’s in multiple time zones, 
the time stamps will reflect local time where the change was 
made.  As a browser-based system, the time stamp is obtained 
from the clock on the programmer's workstation, which in turn is 
synchronized with the validated time-server on their local 
network.  Hence, all times in the system are local to the 
programmer making the change. 
 
Version Control 
 
A compliant system contains: 

“Revision and change control procedures to maintain an 
audit trail that documents time sequenced development and 
modification of systems documentation.” (21 CFR Part 11, 
11.10 (k) ) 
 

SAS programming lacks a strict means of version control 
(Williams, 2002) because it takes place outside of a formal 
Integrated Development Environment (IDE).  Implementation of 
such a controlled environment adds additional overhead to the 
process and may not be readily accepted by some programmers. 
Making version control an integral part of program documentation 
and validation procedures will avoid the perception of increased 
workload.  Version control becomes part of the programming 
process with little or no additional input from individual 
programmers. 
 
PRASM will not include a full-scale version control solution.  It 
will, however, provide automatic archiving of files.  The time-
stamped backups can be compared using version comparison 
tools, such as the freeware utility ExamDiff (PrestoSoft, 2002), in 
conjunction with a log of program amendments that exist as part 
of the program header. 
 
Separating Development and Production Environments 
 
Another important aspect of compliance with FDA guidelines is 
the separation of development or testing code from finalized 
production code.  By using separate folder structures for finalized, 
validated programs, we can ensure that the programs and the 
output they produce are synchronized.  Once programs have 
been validated the system will allow the programmer to move the 
file to production at the click of a button. If a file requires editing, 
it is removed from production folder and placed back in the 
development folder until the changes have been validated.  
Additionally, programs, log files, and output will be automatically 
archived into a time-stamped shipment folder each time output is 
sent to a client. 
 
The key points of compliance with 21 CFR Part 11 – data 
security, audit trails, and management of programs and 
documentation, can all be attained to some degree through the 
use of PRASM along with a standardized management 
methodology.   Much of PRASM’s approach to the data security 
issue is indirect, controlling access to the programs that produce 
SAS datasets, instead of controlling access to the SAS datasets 
themselves.  
 
Audit trails are dependent on programmers accurately 
documenting amendments to programs. Automatic backups of 
programs provide a means of comparing previous versions of 
code. Documentation exists by integrating the program header 
information with validation documentation in a single location - 
the PRASM database. 

 

 

DEVELOPING THE SYSTEM 
 
CONCEPTUAL FRAMEWORK 
 
Related elements of the coding process will be integrated into a 
web-based system as illustrated in Figure 2.  A centralized 
database will hold information about each program for display 
and updating through a dynamically generated web interface.  
These pages will also provide the ability to launch programs into 
a code editor or submit them to various remote SAS sessions.  
 
   

 
Figure 2 :  Integrated approach to managing SAS programs 
and related files.  
 
Our goal is not to produce a full-scale Program Development 
Environment (PDE).  We already have tools for code editing and 
syntax highlighting (UltraEdit (Mead, 2002) and the SAS 
Enhanced Editor).  Other software adjuncts are available for 
diagramming program flow (ComplementSoft, 2002) and our 
Standard Operating Procedures govern our code writing 
methodology.   The main goals of our system are to: 

• Standardize and reduce redundancy in validation and 
documentation procedures 

• Link programs to their documentation and validation 
information 

• Facilitate rapid programming using inter-office 
programming teams 

• Rapidly communicate project and program status 
• Increase compliance with FDA requirements. 

 
The scope of the project quickly expanded from merely a 
documentation tool to a more integral part of our programming 
methodology and philosophy.  It will allow us to review our 
processes and answer such questions as: "How many hours are 
required for a Phase III Oncology trial versus a Phase III Anti-
Infectives trial?"; "Which offices are under or over staffed?"; "Are 
the code writing and validation tasks shared equally among 
programmers?"  
 
PUTTING THE PIECES TOGETHER  
 
We are following, “7 Practices for Excellent Software,” (Barnes 
Nelson and Grasse, 2002) during construction of the application.  
Early development has started on a workstation running Personal 
Web Server and a Microsoft Access database.  We are applying 
the principle of "Orthogonality" by using structures and naming 
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conventions that will facilitate later porting to an Oracle database 
and the .NET architecture.   
 
Our initial focal point was one of the most critical areas of the 
system: the linking of program header documentation to the SAS 
program.   Each time the program header page of PRASM 
(Appendix 2) is updated, the ASP code reads in the appropriate 
SAS program file and starts searching for a standard marker line:  
 
    /*!!--DO NOT EDIT THIS LINE OR ABOVE--!!*/ 
 
When it finds the marker, all code above that line is discarded 
(deleting the now outdated header information) and the new 
header information is written in its place.  The application 
appends the remainder of the program below the marker line. 
Only the header is updated and the program code itself remains 
intact.  A time-stamped backup copy of the program is also 
created and archived. 
 
Once the program header issue was solved, we turned back to 
the topic that had started our development in the first place, the 
linking of validation checklists to each SAS program.  Our 
Microsoft Word checklists account for additional redundancy, so 
we can further streamline our processes by making them part of 
the new solution as forms in the web application. 
 
Programmers and team leaders also need a quick way to check 
the status of a program and determine if it: 

• Has been written 
• Is ready for validation 
• Has been validated 
• Is in production. 

 
This will be available to programmers at a glance on a web page 
that provides status traffic lighting for each program in a project. 
(Appendix 3). 
 
Once the documentation is linked to the program and its status is 
easily determined, we can launch a selected program into a code 
editor and remote SAS sessions. This presented a technical 
obstacle, since browsers are generally not permitted to launch 
desktop applications due to security concerns.  We overcame the 
challenge by using "Launch-In-IE" (RockinFewl, 2002).  After 
installing the supplied .DLL and making minor changes to the 
Windows 2000 registry, we set up a trusted URL for the PRASM 
website.  We can now send SAS programs directly into our code 
editor and to local or remote SAS sessions from a web browser.  
Since our database associates projects with offices, PRASM will 
automatically know which SAS server to use for running the 
program.  
  
STATUS  
 
Our staffing and workload constraints lead us to adopt the staged 
delivery model of software development (McConnell, 1996). 
Staged delivery, also known as incremental implementation, 
makes content available to users in successive stages as the 
application is developed.  In this way our staff will see tangible 
benefits of the system without having to wait for its full 
implementation.  
 
In the current version of PRASM, programmers are presented 
with an initial screen where they select a client and then drill 
down to an individual project. From there, a list of all programs 
within a project and their individual status appears on a web page 
that resembles our original Table of Programs (Appendix 3).  On 
this page programmers can quickly determine the status of a 
program based on a series of traffic lighting indicators.  They will 
know at a glance if a program has been completed, if it has been 
validated, and if it has been moved from the development folder 

to production.  At the click of a button they can: edit and update 
the program header (Appendix 2); fill out the program validation 
documentation; move the program into a production directory; 
send the program into the program editor; submit it to a remote or 
local SAS session; or archive all programs, logs, and outputs into 
an archive directory.  
 
At this time we have identified a small project on which to pilot 
test the system. A small group of programmers will run through 
the project, provide feedback, and assist in further refinements to 
the application.  
 

FUTURE DIRECTIONS 
 
Future enhancements to PRASM may include: parsing SAS 
program log files to identify ERROR, WARNING and user-defined 
problem statements; reporting summary information such as the 
number of programs written, checked, validated over a specified 
time period; forecasting the amount of hours required to finish 
projects; customizable templates for program headers and 
validation checklists.   

CONCLUSION 
 
The PRA SAS Manager System is currently in its infancy but 
shows great promise.  What started out as an idea to link 
program and validation documentation has grown into a much 
larger endeavor.  
 
Our program documentation will soon no longer exist as 
disconnected elements, but will instead share fields with the 
Table of Programs and SAS program headers in a database.  
Redundancy of data entry will be greatly reduced as the entire 
process becomes streamlined due to the centralization of 
information.  Programmers can spend more hours on client-
oriented project work and less time laboriously filling out 
redundant information.  
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APPENDIX 1 : EXAMPLE SAS PROGRAM HEADER  

 

/****************************************************************************** 
STUDY           : Drug Co, DRUGCO001 
PROGRAM NAME    : m_demog.sas 
PURPOSE         : Derive Demographic data set. 
PROGRAMMER      : Tim Williams 
DATE            : 08/12/2002 
QC        BY,DT : Jimbo Jones, 08/13/2002 
INPUT FILES     : //FileServer/DrugCo/DrugCo001/data/datasets/raw/demog.sd2 
OUTPUT FILES    : //FileServer/DrugCo/DrugCo001/data/datasets/final/demog.sd2 
MACROS USED     : %CI, %AGECALC 
NOTES           : Derived data set is used in l_demog.sas and t_demog.sas 
                :  
AMEND[1]BY,DT   : Nelson Muntz, 08/20/2002 
AMEND[1]DETAILS : Added age calculation to Demog data set 
AMEND[1]QC BY,DT: Jimbo Jones, 08/22/2002 
                :  
Header last updated 11:19 Thursday, August 22, 2002 
Copyright (C) 2002, Pharmaceutical Research Associates, Inc. 
All Rights Reserved.       
******************************************************************************/ 
/*!!--DO NOT EDIT THIS LINE OR ABOVE--!!*/ 
  
data _null_; 
   put "Example data step..."; 
run; 

SUGI 28 Applications Development



 

- 6 - 
 

APPENDIX 2 : PROGRAM HEADER (PRASM WEB PAGE) 

 

 

APPENDIX 3 : TABLE OF PROGRAMS  (PRASM WEB PAGE)  
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