
Paper 41-28

- 1 -

A Programming Development Environment for SAS Programs

Tim Williams, PRA International, Charlottesville, VA

ABSTRACT

Organizing the programming effort for large projects can be
a daunting task. Programming teams are under pressure to
complete work accurately and rapidly, while using standard
templates and macros whenever possible. Add to that
several levels of documentation and a manager’s need for
frequent status updates and you have an administrative
nightmare. A system is necessary to integrate programming
documentation, validation checklists, and real-time status
reports.

After deciding to centralize our project management
spreadsheet, program header documentation, and validation
documents, we found that we had the beginnings of a web-
based programming development environment (PDE) for
SAS programs. This paper describes a database-driven
system for organizing SAS programs written using Active
Server Pages, Visual Basic, and Javascript.

INTRODUCTION

PRA International is one of the fastest growing Contract
Research Organizations (CROs) providing programming services
to pharmaceutical and biotechnology companies.
Competitiveness in this industry increasingly requires
globalization (Labore and Burger, 2001). Expansion of PRA to
Trials Management Centers (TMCs) around the globe has
fostered cooperative teamwork and the need to develop
standardized, steady-state processes that apply not only to SAS
program coding practices, but also to the software used to
manage the corresponding documentation and validation
processes. The staff in our various offices all use a similar
approach, but over time some individuals may add improvements
to methods without informing the rest of the company. As
Tiggemen (1997) noted, “Learning is often the cumulative result
of many small improvements rather than major breakthroughs
and tends to vary depending on the amount of management
attention devoted to capturing it."

With an increase in workload comes the need for a strategy to
maximize efficiency while maintaining rigorous quality standards
and adherence to the regulatory requirements of the Food and
Drug Administration (FDA). A major challenge for programmers,
managers, and administrators is how to efficiently organize an
access all the programs and documentation required for the
many projects they work on.

As drug companies race to get their products to market, this time
pressure is passed along to the CROs to whom they outsource
many projects. While companies attempt to shorten
development cycles, high quality standards must be maintained
and this requires new ways to write, document, and validate
programs. How then can a CRO differentiate itself from its many
competitors in the drug development arena? A successful
philosophy must include the pursuit of new and innovative
approaches that streamline operations and yield a competitive
advantage.

BACKGROUND

Tools to organize and integrate programs with documentation and
quality assurance methods would greatly increase the efficiency
of managing projects. However, these programming adjuncts are
very specific to an industry, company, and even to the individual
programmer, so it is not surprising that such a facility is not a part
of the SAS system.

A solution to this predicament requires more than just software –
it requires a fundamental change in how team members interface
with the information. Success will only be obtained if the people
who perform these tasks on a daily basis are involved in
remodeling the system. Such an obvious statement may not
seem worth mentioning, except for the fact that consensus
building is one of the most challenging aspects of development.

The Analysis Programming Department at PRA has well-defined
quality assurance methods for code development and program
validation. We use a variety of tools to assist us in these activities
(Figure 1), including:

• Detailed headers in every SAS program
• A "Table of Programs" (TOP) spreadsheet to organize

and document programs within a project
• Validation Checklists in Microsoft Word.

Figure 1 : SAS programs and related files prior to
integration.

Program Header Documentation

Documentation of programs is one of the least favorite activities
of programmers and is often put off until the last minute. As a
result, documentation may be sparse, incomplete, inaccurate, or
nonexistent. By making this task an integral part of the project
setup and program validation process it becomes a more
seamless and less burdensome activity.

Gill (1997) states that narrative documentation of program code is
essentially internal (such as program headers and in-line
comments) and external (such as our Table of Programs
spreadsheet). Program headers serve not only as a guide to our
programmers, but also to our clients who may request the source
code as part of the deliverable product. Hence, any
documentation stored externally to the program code must
become part of the program or be adequately referenced and
accompany it.

SUGI 28 Applications Development

- 2 -

PRA's Standard Operating Procedures define a structure for our
program headers (Appendix 1) that includes client and study
name, code author, abstract, validation information and other
details about the program.

The Table of Programs (TOP)

Our standard TOP Excel spreadsheet allows programmers to
rapidly determine program status and dependencies, as well as
providing an overview of the entire project. Information for each
program must be entered, including most of the items already
mentioned in the program header. A summary page allows the
team leader to identify project status by summarizing how many
programs have been written and validated.

Program Validation Checklists

These checklists are Microsoft Word documents that vary
depending on the type of SAS program. Clearly, a program that
involves complex data derivations must undergo a different
validation procedure than one that simply lists data. In addition to
the checklist items, certain redundant elements must be entered
into these documents, such as: program author and date,
validation author and date, amendment author, etc.

No off-the-shelf solution was available that would allow the
integration of our header documentation, TOP, and validation
checklists. The choice to develop our own customized solution
was an easy one to make and the concept of PRA SAS Manager
(PRASM) was born.

COMPLIANCE WITH INDUSTRY REGULATIONS

This paper does not deal with the validation of the SAS system,
but instead focuses on how to make programming with SAS more
compliant with industry regulations, specifically those in the
pharmaceutical industry.

21 CFR Part 11

The FDA provides compliance guidelines for the pharmaceutical
industry. "Guidance for Industry. Computerized Systems used in
Clinical Trials,” (FDA, 1999) addresses the requirements of
“Electronic Records/Electronic Signatures" rule of 21 CFR Part
11 (FDA, 1997) and applies to any source documents created; be
they hard copy entered into a computer system, direct human
entry into the system, or generated automatically by a
computerized system. Therefore, SAS programs are governed
by these regulations when producing data for submission to the
FDA.

Maintaining an audit trail is a critical requirement. The FDA
(1999) defines an audit trail as:

“...a secure, computer generated, time-stamped electronic
record that allows reconstruction of the course of events
relating to the creation, modification, and deletion of an
electronic record.”

“Changes to data that are stored on electronic media will
always require an audit trail, in accordance with 21 CFR
11.10(e). Documentation should include who made the
changes, when, and why they were made.”

These requirements highlight why a compliant system must: (1)
allow access only by authorized personnel and (2) provide a
detailed log of their activities that result in changes to data or
documentation.

System Security

“Security measures should be in place to prevent
unauthorized access to the data and to the computerized
system.” (21 CFR Part 11, 11.10(k))

By extension, only authorized team members should access a
project's programs and documentation. PRASM will capture the
Windows 2000 username from the initial workstation logon. The
logon name will be looked up in a security table (maintained by
the PRASM Administrator) and access to projects is granted to
approved staff members.

The staff altering electronic records “…should not be able to
modify the audit trails.” (FDA, 1999) PRASM will make this
possible by storing all actions in a secure log file.

Activity Log

Capturing an audit log is of utmost importance in complying with
21 CFR part 11:

 “Use of secure, computer-generated, time-stamped audit
trails to independently record the date and time of operator
entries and actions that create, modify, or delete electronic
records. Record changes shall not obscure previously
recorded information.” (FDA 21 CFR Part 11, 11.10 (e))

A SAS programming team must accurately record actions that
result in changes to data. Many SAS programming environments
strive toward this goal, but it often remains out of reach.
Documentation of changes to programs is left in the hands of
individual programmers whose compliance may fall short of the
required standard. A more automated and accurate audit trail is
a desirable goal when moving toward FDA compliance.

As stated by Sporon-Fiedler et al. (2002), “A computer system
like SAS is a mixture of development and data processing
environment with the capability of producing self-contained
systems.” They further state, “Proving that a log and output file
has it’s origin from an exact copy of a specific program requires a
finely synchronized monitoring tool to prove that no tampering
has taken place... Proving that a database (e.g. SAS datasets) is
in complete control, requires that all modifications (updates) are
tracked.”

The FDA guidance details how the date and time of operator
entries must be separately recorded for all actions that create,
modify, or delete electronic records. While this has become an
integral part of the data entry process in many organizations,
compliance is often less than optimal for SAS programmers when
they make changes to programs that alter data sets or summary
displays (tables, listings, and graphs). Such information must be
recorded when alterations are made to programs that result in
changes to output.

We must ensure that all program amendments are documented
and that no alterations remain unaccounted for. PRASM will do
this by comparing the file system date on the SAS program with
the date of the last entry in the database for the corresponding
program. If the file system date is more than one day younger
than the date in PRASM, then warnings are issued alerting the
lead programmer to investigate the offending program.

Dating of all changes will be handled automatically by the system,
which relies on a validated system clock. PRASM complies with
the FDA (1999) requirement that, “Dates and times are to be local
to the activity being documented and should include the year,
month, day, hour, and minute.” All actions by staff using the
system are logged with staff identifiers and detailed time stamps.

SUGI 28 Applications Development

- 3 -

When programmers work across TMC’s in multiple time zones,
the time stamps will reflect local time where the change was
made. As a browser-based system, the time stamp is obtained
from the clock on the programmer's workstation, which in turn is
synchronized with the validated time-server on their local
network. Hence, all times in the system are local to the
programmer making the change.

Version Control

A compliant system contains:

“Revision and change control procedures to maintain an
audit trail that documents time sequenced development and
modification of systems documentation.” (21 CFR Part 11,
11.10 (k))

SAS programming lacks a strict means of version control
(Williams, 2002) because it takes place outside of a formal
Integrated Development Environment (IDE). Implementation of
such a controlled environment adds additional overhead to the
process and may not be readily accepted by some programmers.
Making version control an integral part of program documentation
and validation procedures will avoid the perception of increased
workload. Version control becomes part of the programming
process with little or no additional input from individual
programmers.

PRASM will not include a full-scale version control solution. It
will, however, provide automatic archiving of files. The time-
stamped backups can be compared using version comparison
tools, such as the freeware utility ExamDiff (PrestoSoft, 2002), in
conjunction with a log of program amendments that exist as part
of the program header.

Separating Development and Production Environments

Another important aspect of compliance with FDA guidelines is
the separation of development or testing code from finalized
production code. By using separate folder structures for finalized,
validated programs, we can ensure that the programs and the
output they produce are synchronized. Once programs have
been validated the system will allow the programmer to move the
file to production at the click of a button. If a file requires editing,
it is removed from production folder and placed back in the
development folder until the changes have been validated.
Additionally, programs, log files, and output will be automatically
archived into a time-stamped shipment folder each time output is
sent to a client.

The key points of compliance with 21 CFR Part 11 – data
security, audit trails, and management of programs and
documentation, can all be attained to some degree through the
use of PRASM along with a standardized management
methodology. Much of PRASM’s approach to the data security
issue is indirect, controlling access to the programs that produce
SAS datasets, instead of controlling access to the SAS datasets
themselves.

Audit trails are dependent on programmers accurately
documenting amendments to programs. Automatic backups of
programs provide a means of comparing previous versions of
code. Documentation exists by integrating the program header
information with validation documentation in a single location -
the PRASM database.

DEVELOPING THE SYSTEM

CONCEPTUAL FRAMEWORK

Related elements of the coding process will be integrated into a
web-based system as illustrated in Figure 2. A centralized
database will hold information about each program for display
and updating through a dynamically generated web interface.
These pages will also provide the ability to launch programs into
a code editor or submit them to various remote SAS sessions.

Figure 2 : Integrated approach to managing SAS programs
and related files.

Our goal is not to produce a full-scale Program Development
Environment (PDE). We already have tools for code editing and
syntax highlighting (UltraEdit (Mead, 2002) and the SAS
Enhanced Editor). Other software adjuncts are available for
diagramming program flow (ComplementSoft, 2002) and our
Standard Operating Procedures govern our code writing
methodology. The main goals of our system are to:

• Standardize and reduce redundancy in validation and
documentation procedures

• Link programs to their documentation and validation
information

• Facilitate rapid programming using inter-office
programming teams

• Rapidly communicate project and program status
• Increase compliance with FDA requirements.

The scope of the project quickly expanded from merely a
documentation tool to a more integral part of our programming
methodology and philosophy. It will allow us to review our
processes and answer such questions as: "How many hours are
required for a Phase III Oncology trial versus a Phase III Anti-
Infectives trial?"; "Which offices are under or over staffed?"; "Are
the code writing and validation tasks shared equally among
programmers?"

PUTTING THE PIECES TOGETHER

We are following, “7 Practices for Excellent Software,” (Barnes
Nelson and Grasse, 2002) during construction of the application.
Early development has started on a workstation running Personal
Web Server and a Microsoft Access database. We are applying
the principle of "Orthogonality" by using structures and naming

SUGI 28 Applications Development

- 4 -

conventions that will facilitate later porting to an Oracle database
and the .NET architecture.

Our initial focal point was one of the most critical areas of the
system: the linking of program header documentation to the SAS
program. Each time the program header page of PRASM
(Appendix 2) is updated, the ASP code reads in the appropriate
SAS program file and starts searching for a standard marker line:

 /*!!--DO NOT EDIT THIS LINE OR ABOVE--!!*/

When it finds the marker, all code above that line is discarded
(deleting the now outdated header information) and the new
header information is written in its place. The application
appends the remainder of the program below the marker line.
Only the header is updated and the program code itself remains
intact. A time-stamped backup copy of the program is also
created and archived.

Once the program header issue was solved, we turned back to
the topic that had started our development in the first place, the
linking of validation checklists to each SAS program. Our
Microsoft Word checklists account for additional redundancy, so
we can further streamline our processes by making them part of
the new solution as forms in the web application.

Programmers and team leaders also need a quick way to check
the status of a program and determine if it:

• Has been written
• Is ready for validation
• Has been validated
• Is in production.

This will be available to programmers at a glance on a web page
that provides status traffic lighting for each program in a project.
(Appendix 3).

Once the documentation is linked to the program and its status is
easily determined, we can launch a selected program into a code
editor and remote SAS sessions. This presented a technical
obstacle, since browsers are generally not permitted to launch
desktop applications due to security concerns. We overcame the
challenge by using "Launch-In-IE" (RockinFewl, 2002). After
installing the supplied .DLL and making minor changes to the
Windows 2000 registry, we set up a trusted URL for the PRASM
website. We can now send SAS programs directly into our code
editor and to local or remote SAS sessions from a web browser.
Since our database associates projects with offices, PRASM will
automatically know which SAS server to use for running the
program.

STATUS

Our staffing and workload constraints lead us to adopt the staged
delivery model of software development (McConnell, 1996).
Staged delivery, also known as incremental implementation,
makes content available to users in successive stages as the
application is developed. In this way our staff will see tangible
benefits of the system without having to wait for its full
implementation.

In the current version of PRASM, programmers are presented
with an initial screen where they select a client and then drill
down to an individual project. From there, a list of all programs
within a project and their individual status appears on a web page
that resembles our original Table of Programs (Appendix 3). On
this page programmers can quickly determine the status of a
program based on a series of traffic lighting indicators. They will
know at a glance if a program has been completed, if it has been
validated, and if it has been moved from the development folder

to production. At the click of a button they can: edit and update
the program header (Appendix 2); fill out the program validation
documentation; move the program into a production directory;
send the program into the program editor; submit it to a remote or
local SAS session; or archive all programs, logs, and outputs into
an archive directory.

At this time we have identified a small project on which to pilot
test the system. A small group of programmers will run through
the project, provide feedback, and assist in further refinements to
the application.

FUTURE DIRECTIONS

Future enhancements to PRASM may include: parsing SAS
program log files to identify ERROR, WARNING and user-defined
problem statements; reporting summary information such as the
number of programs written, checked, validated over a specified
time period; forecasting the amount of hours required to finish
projects; customizable templates for program headers and
validation checklists.

CONCLUSION

The PRA SAS Manager System is currently in its infancy but
shows great promise. What started out as an idea to link
program and validation documentation has grown into a much
larger endeavor.

Our program documentation will soon no longer exist as
disconnected elements, but will instead share fields with the
Table of Programs and SAS program headers in a database.
Redundancy of data entry will be greatly reduced as the entire
process becomes streamlined due to the centralization of
information. Programmers can spend more hours on client-
oriented project work and less time laboriously filling out
redundant information.

REFERENCES

Barnes Nelson, Greg and Grasse, Danny (2002), (Web) Software
Development: Best Practices for Developing Enterprise
Applications. Proceedings of the 27th Annual SAS Users Group
International Conference, Orlando, FL.

ComplementSoft (2002), ASAP. Productivity Tool for SAS Users.
http://www.complementsoft.com/product.htm

Food and Drug Administration (1999), Guidance for Industry,
Computerized Systems used in Clinical Trials.

Food and Drug Administration (1997), 21 CFR Part 11, Electronic
Records; Electronic Signatures; Final Rule. Federal Register Vol.
62, No. 54, 13429.

Gill, Paul (1997), The Next Step. Integrating the Software Life
Cycle with SAS Programming, Cary, NC: SAS Institute Inc., 384
pp.

Labore, John M., Rogers, Melinda S. and Steven D. Randolph.
(2001), Singing Cowboys, Fast Horses, and Team Roping:
Keeping SAS Users Calm and on the Trail. Proceedings of the
26th Annual SAS Users Group International Conference, Long
Beach, CA.

McConnell, S (1996), Rapid Development: Taming Wild Software
Schedules. Microsoft Press. 647 p.

SUGI 28 Applications Development

- 5 -

Mead, Ian (2002), UltraEdit Text Editor.
http://www.ultraedit.com/

PrestoSoft (2002), ExamDiff - Visual File Comparison Tool.
http://www.prestosoft.com/examdiff/examdiff.htm

RockinFewl (2002), Launch-in-IE. Web pages can start
applications. Securely. http://whirlywiryweb.com

Sporon-Fiedler, Gustav, Lassen, Marie and Lundbewck, H.
(2002), SAS Coexistence with FDA 21 CFR Part 11, How Far
Can We Get?. Proceedings of the 2002 Annual Conference of the
Pharmaceutical Industry SAS Users Group (PHARMADSUG, Salt
Lake City, UT.

Sun MicroSystems (2002), The Javadoc Tool Homepage.
http://java.sun.com/j2se/javadoc/

Tiggeman, Rolf E. and Sabel, Hermann (1997), An innovative
Concept in Pharmaceutical Drug Development. Drug Information
Journal, Vol. 31, pp. 119-124.

Williams, Tim (2002), A Version Control Kluge for SAS Programs
- Using SAS. Proceedings of the 27th Annual SAS Users Group
International Conference, Orlando, FL.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. indicates USA registration. Other
brand and product names are registered trademarks or
trademarks of their respective companies.

ACKNOWLEDGMENTS

I wish to thank the Analysis Programming staff at PRA
International for their continuing feedback and assistance.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. The
author may be contacted at:

Tim Williams
SAS Systems Administrator

PRA International
4105 Lewis and Clarke Drive
Charlottesville, VA 22902
Telephone: 434.951.3000
Fax : 434.951.3001
Email: WilliamsTim@PRAIntl.com
Web: www.praintl.com

APPENDIX 1 : EXAMPLE SAS PROGRAM HEADER

/**
STUDY : Drug Co, DRUGCO001
PROGRAM NAME : m_demog.sas
PURPOSE : Derive Demographic data set.
PROGRAMMER : Tim Williams
DATE : 08/12/2002
QC BY,DT : Jimbo Jones, 08/13/2002
INPUT FILES : //FileServer/DrugCo/DrugCo001/data/datasets/raw/demog.sd2
OUTPUT FILES : //FileServer/DrugCo/DrugCo001/data/datasets/final/demog.sd2
MACROS USED : %CI, %AGECALC
NOTES : Derived data set is used in l_demog.sas and t_demog.sas
 :
AMEND[1]BY,DT : Nelson Muntz, 08/20/2002
AMEND[1]DETAILS : Added age calculation to Demog data set
AMEND[1]QC BY,DT: Jimbo Jones, 08/22/2002
 :
Header last updated 11:19 Thursday, August 22, 2002
Copyright (C) 2002, Pharmaceutical Research Associates, Inc.
All Rights Reserved.
**/
/*!!--DO NOT EDIT THIS LINE OR ABOVE--!!*/

data _null_;
 put "Example data step...";
run;

SUGI 28 Applications Development

- 6 -

APPENDIX 2 : PROGRAM HEADER (PRASM WEB PAGE)

APPENDIX 3 : TABLE OF PROGRAMS (PRASM WEB PAGE)

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

