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“The California Template” or “How to keep from reinventing the wheel using SAS/IntrNet, 
JavaScript and process reengineering” 

Blake R. Sanders, U.S. Census Bureau, Washington, DC 
 

ABSTRACT 
Creating SAS/IntrNet applications is straightforward, but creating 
multiple programs with different datasets can be time consuming.  In 
our experience, this is especially true when the application is 
extremely flexible and customized.  This takes time, and that’s not 
always available.  By reengineering the process used in the 
applications, however, it is possible to have one set of flexible scripts 
to service multiple applications.  This collection provides the basic 
tools for data analysis and output as well as an opportunity for 
customization.  The result is simple, clean and easily maintained.  It 
is a template on which applications can grow with virtually no start-
up time and from which they can expand once the users’ true needs 
come to light. 
 

INTRODUCTION  
Internet based applications are great tools to solve most of our data 
dissemination problems.  Once you know the purpose of the 
application, they’re fairly easy to organize and implement.  The trick, 
however, is getting the process of the application organized 
correctly.   
 
In order to get more Internet based application in the hands of our 
users in a timely fashion, we needed an option that did not require 
customizing every piece of the puzzle to meet that exact situation.  
Customization would be nice, but it would be best as an “add-on” -- 
something that could be plugged in after the application is up and 
running.  This way, we could avoid having to reinvent the wheel each 
time someone wants a new program. 

BACKGROUND 
The Foreign Trade Division (FTD) of the U.S. Census Bureau has 
had several years of experience in creating Internet based 
applications – the majority of which have used SAS/IntrNet.  Each 
application has been used to simply view.  Each program follows the 
same basic process: 1.) Define the scope of the request, 2.) Define 
the output.  Both steps could get more granular, but those details fall 
under the same general umbrella. 
 

 

Figure 1 Basic structure of most applications 

 
Initially, “define the scope of the request” meant identifying a specific 
dataset and then identifying the criteria on which to subset the data.  
Since then, users have needed to identify multiple datasets to cover 
a greater span of time.  Additionally, they have needed to break their 
requests into stages that may change depending on the results of 
the previous stage.  For example, users no longer need to view just 
data for February 2002.  They’d rather access data for January 

through June 2002.  Also, while, initially, they may have wanted to 
only look at data for Canada, once they’d seen what’s traded with 
Canada,  they’ll want to focus on what’s traded with Canada through 
specific ports. 
 
When users would “define the output”, they would select from 
multiple customized options.  Canned reports, of course, needed to 
be created for the specific datasets.  However, even our “dynamic” 
output options (where specific menus would appear based on 
previous selections) needed to be customized to the dataset.  
 
Each approach, while suitable to their situation, required time to set 
up and modify when creating a new application. 
 
What was needed was a solution that was easy to modify and easily 
implemented over a wide range of situations.  If we were tasked with 
giving Internet access to three different sets of time series data, how 
could we give the users basic access as soon as possible while still 
having the option of customized solutions later? 

SOLUTION 
The solution was to modify our basic process to be flexible  and 
adaptable up to a certain point and then provide a structure for  the  
customized needs of the users. 
 
In modifying “defining the scope of the request”, we realized there 
were two things holding us back: 1.) Communicating early selections 
to the program, 2.) Defining the WHERE clause.   
 

SESSION VARIABLES 
In our initial applications, we embedded early selections in hidden 
HTML fields on subsequent pages.  So, if a user needed to select a 
product and a country on separate pages, they would first select the 
product on the first page.  When the second page, where the 
country was selected, was constructed, the selection from the first 
page would be put into a hidden field.  That way, when the output 
was created (on the third page), the SAS program would receive 
both selections.   
 

 

Figure 2 Forwarding macro variables over many generated pages 
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This has been solved by using SAS session variables.  The 
selections are saved as temporary macro variables.  There is still 
administration on our part in that the “session ID” needs to be 
forwarded from page to page.  However, one it is only one item no 
matter how complex the system becomes.   
 

 

Figure 3 Forwarding the same variables using session variables 

 

 
 

 

Figure 4 The front pages of two different applications that use the 
template 

WHERE CLAUSE 
To define WHERE clauses, we’ve assumed we knew the limits of a 
user’s request.  The assumption has always been about dimensions.  
“If they want data,” we said, “odds are that the request will be on one 
or more of three dimensions: A x B x C.”  In our case, we assumed 
those dimensions would be COMMODITY (i.e. product), COUNTRY 
and DISTRICT. But, what if a user really needed to subset on a 
different variable?  
 
The WHERE clause was a perfect tool to for this situation.  It gives 
the most flexibility to sub setting based on the user’s needs.  The 
trick was making that easy. 
 
So, we created a WHERE clause generator that prompted the user 
for the variables on which the clause was to be based from a menu 
generated from the structure of the selected datasets.  It asked for 
the corresponding values of those variables and placed it in the 
clause. Additional pieces would be strung together with the usual 
Boolean operators: AND, OR and NOT.  For example, if the user 
needed data for all imports from Canada that entered through the 
districts of New York City, Philadelphia or Baltimore, they would 

select “Country”, “=” and type “1220” for Canada, click “ADD”, click 
“AND”, then select “DISTRICT”, “IN” and type the codes for “New 
York City” (10), “Philadelphia” (11) and “Baltimore” (13), and click 
“ADD”.  The WHERE clause would then be “where (country=’1220’) 
and (district in (10’,’11’,’13’))”. 
 

 
 

 

Figure 5 The WHERE pages of those two applications. 

 

 

Figure 6 The difference between them is the label 

The WHERE clause is also saved to a session variable. 
 
Not only does this approach save us from having to forward multiple 
values from page to page, it spares  us from having to create lists of 
possible values prior to using the programs (which is difficult when 
you don’t know the dataset before it’s used). 
 

OUTPUT 
When defining output, we realized that our users need at least one 
of three basic options: export to a file, browse or create a report.  All 
options needed to be as flexible as possible. 
 
EXPORT 
To export a file, users have three options: Excel, CSV or SAS 
dataset. 
 
BROWSE 
“Browse” uses an option we call FlexBrowse where the user selects 
the variables they wish to see from the dataset (from a menu 
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generated based on the structure of the dataset), selects the format 
they wish to view (HTML, PDF or RTF) and selects the range of 
records they wish to view. 

 

Figure 7 Browse 

 

Figure 8 Browse report 

 
REPORT 
To create a report, the users select several formatting options (e.g. 
font, font size, etc.) and fields they want to feed into a PROC 
TABULATE script.  While we wanted to be as flexible as possible, 
we had to build in certain restrictions since giving users unrestricted 
access to PROC TABULATE in this environment is unrealistic.  Do 
they NEED to be able to put as many variables DOWN or ACROSS 
as they desire?  If they do, can they read the results?  So, much like 
the TIMEOUT setting on Sas/IntrNet (where you select how long a 
request  can run so it’s not crowding out all of the other requests), 
we decided to limit users to three DOWN variables, two ACROSS 
variables, and two ANALYSIS variables. 
 

 

Figure 9 Report 

 

 

Figure 10 Report after formatting 

 
This report creator also gives users the ability to enter variable labels 
if they don’t like the default labels and turn on and off totals.  For 
ANALYSIS variables, FORMAT is also available.  Again, 
considering we don’t know all of the datasets which will be available, 
we can’t provide FORMAT for the DOWN and ACROSS variables in 
this basic report generator. 
 
CUSTOMZIED OUTPUT 
Now that we’ve created our WHERE clause and given the users 
flexible output options,  what about the customizable options that 
have been mentioned? 
 
The first page of the chain, the static HTML where users select the 
datasets they want to query, has a hidden field that identifies the 
type of request originating from that page. If the page was for “import 
data via ports”, the identifier might be “IMPORT-PORT”.  This 
identifier is registered in a dataset that lists all of the customized 
programs available on the server.  When the output page is 
generated, if the original page was “IMPORT-PORT”, the user will 
have access to the basic output options in addition to the  
customized “IMPORT-PORT” output options.  Were the identifier 
“EXPORT-PORT”, only the “EXPORT-PORT” options would be 
available under the Customized menu. 
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Figure 11 This application has no customized output options 

 

 

Figure 12 This one, however, does. 

 
When a new customized output option is created, we need to add 
the location of that script to the registry under the first page of the 
application. 
  
Since adding customized options is so simple, this gives us an 
opportunity to leverage one of the best assets we have in our data 
dissemination operation: users.  Many enterprising people write SAS 
programs for their specific situation.  If modified correctly, we can 
take those programs and add them to the list of customized output 
options. 
 
In the end, we have a collection of documents and SAS programs 
that can serve a great many needs with a minimum amount of 
maintenance from us and a maximum amount of flexibility for the 
users. 
 

 

Figure 13 Multiple applications can use the same structure 

DRAWBACKS 
The FTD California template is great for quickly granting access to 
data over the web.  However, depending on the situation, the 
completely customized approach may provide a better solution.    
Even so, those customized solutions can be based on this template.    
By copying the template and changing the  beginning (because 
maybe the WHERE CLAUSE solution isn’t for everyone), we can 
still save development time  since the template is known and its 
reactions are predictable. 
  
On a different note, since a common thread services all programs 
using the template, more attention will need to be paid to workload on 
the server and the service.  If the workload gets too heavy for the 
service, define a different service on the front page.  Session 
variables will propagate that through the rest of the application.  If the 
workload on the server is too heavy, the template can be copied to an 
additional server.  In this case, more administrative work will need to 
be done to make sure that all components of the template are up to 
date. 

CONCLUSION 
The California template gives us the ability to give quick access to 
any series of datasets.  As long as the structure is consistent across 
the series (as is often the case in a time series), users will have 
access to the data as well as a basic set of tools for accessing it.  
The template provides a means by which users can help customize 
the experience for their specific datasets.  This, in turn,  will help 
promote interest in the maintenance of the program. 
 
While completely customized programs contribute greatly to the 
productivity of an organization, it’s good to have a useful, reusable 
tool available to quickly put something into production .  That way, 
the development staff does not have to move Heaven and Earth all in 
the name of reinventing the wheel. 

CODE 
SAS Code to start  a session, set a session variable and retrieve the 
value of a session variable: 
 

1.) Create a session 
a. %let 

rc=%sysfunc(appsrv_session(create
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)); 

2.) Set a session variable 
a. %global SAVE_ID; 

  %let SAVE_ID = "&id"; 

i. Session variables always start with 
“SAVE_” 

3.) Retrieve a session variable 
a. put '<INPUT TYPE="HIDDEN" 

NAME="identification" VALUE="' 
&SAVE_ID '">'; 

i. Refer to it like a regular variable and 
not a macro variable. 

 
 
JavaScript code to copy an item from one HTML menu to another 
HTML menu as is done in our FlexBrowse option: 
 
// --------------------------------------------- 
 
function menuProcess(aLeft,aRight) { 
 
// This script is passed two items: two  
// SELECT/OPTION menu objects.  It will scroll  
// through the 
// first menu looking for selected items.  If an  
// item is selected, the script will copy it to 
// the second menu. 
 
// Scroll through all of the items in the first 
// menu  
 
for (var i = 0; i< aLeft.options.length; i++) { 
 
// If the item is selected... 
 

if (aLeft.options[i].selected) { 
 

               
leftProcess(aLeft.options[i].text
,aLeft.options[i].value,aRight)   

      
        } 
       
} 
 
// If the user is using Netscape Navigator,  
// refresh the screen. 
// 
// Note: As this code was written, isNav is a  
// boolean variable (true/false) set  
// outside the function.  If 'navigator.appName 
// == "Netscape"', it's set to TRUE. 
    
     if (isNav) { 
       
          history.go(0) 
      
     } 
  
} 
 
// --------------------------------------------- 
 
function 
leftProcess(cLeftText,cLeftValue,rightMenu) { 
 
// This function is passed three items: the text 
// of the selected item in a SELECT/OPTION  
// menu, the value of the same selected item,  
// and the SELECT/OPTION menu object to which  
// they are supposed to be added.  If there are  

// no items in the destination menu, the text 
// and value are added without question.  If //  
// there are items in the destination menu, that 
// menu is scanned to see if the value of the  
// selected item already exists.  If so, the  
// item is NOT added. 
 
// Note: This edit is based on the VALUE and not  
// the TEXT of the selected items.  So, in  
// theory, once a list is processed, there could  
// be two items on the destination menu with  
// the same text label.  However, since they've  
// gone through the edit, you know they have  
// different values. 
 
// Get the value and text of the selected item 
 
   var leftText = cLeftText 
   var leftValue = cLeftValue 
       
     
// If the right hand menu is empty, add the item  
// to the list. 
     
   if (rightMenu.options[0].value == 0000) { 
  
      rightMenu.options[0].value = leftValue 
      rightMenu.options[0].text = leftText 
      
// Commented out this line to experiment with  
// adding a default option to the right menu.   
// This line is appropriate if the right menu is  
// completely EMPTY.    
     
                   
      addToList(leftText,leftValue,rightMenu) 
      
           
   } else { 
       
// Otherwise, find out if the item is already in  
// the right hand menu. 
       
      var found = false 
      for (var j = 0; j <   
              rightMenu.options.length; j++) { 
      

  if (leftValue ==   
    rightMenu.options[j].value) { 

      
  found = true 
      
    
   } 
        
       } 
      
// If not, add it to the right hand menu. 
 

if (!found) { 
                          
  addToList(leftText,leftValue,rightMenu) 

        
} else { 

 
  alert("The selected item   
  '"+leftValue+"' was already on the  
  list.") 

        
} 

   } 
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} 
 
// -------------------------------------------- 
 
function addToList(bLeftText,bLeftValue,bRight) 
{ 
 
// This function is passed three items: a text  
// label for a SELECT/OPTION menu item, a value  
// for a SELECT/OPTION menu item, and a  
// SELECT/OPTION menu object to which the script  
// should attach them.  By this point, it is  
// assumed the text and value are correct and  
// that the destination menu has been checked to  
// make sure the text and value don't already  
// exist. 
 
     var newItem = new  

Option(bLeftText,bLeftValue) 
     bRight.options[+bRight.options.length] =  

newItem 
 
} 
 

In an HTML page with two menus, “fields” and “selectedFields”, 
these scripts can be triggered by the click of a button whose code 
is… 
 
<input type='button' name='Submit' value='Add to 
list' onClick='menuProcess(this.form.fields, 
this.form.selectedFields)'> 

REFERENCES 
SAS web site: “Using Sessions: A Sample Web Application”, 
http://www.sas.com/rnd/web/intrnet/dispatch/sesssamp.html 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged.  Contact 
me at: 
 

Blake Sanders 
U.S. Census Bureau/Foreign Trade Division 
FB-3, Rm-2158 
Washington, DC 20233 
 
Phone: 301-763-2234 

 Email: blake.r.sanders@census.gov 
  Web: http://www.census.gov/foreign-trade/www/ 
 
SAS and all other SAS Institute Inc. product or service names are 
registered trademarks or trademarks of SAS Institute Inc. in the 
USA and other countries. ® indicates USA registration.   
 
Other brand and product names are trademarks of their respective 
companies.  
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