
Paper 38-28

- 1 -

“The California Template” or “How to keep from reinventing the wheel using SAS/IntrNet,
JavaScript and process reengineering”

Blake R. Sanders, U.S. Census Bureau, Washington, DC

ABSTRACT
Creating SAS/IntrNet applications is straightforward, but creating
multiple programs with different datasets can be time consuming. In
our experience, this is especially true when the application is
extremely flexible and customized. This takes time, and that’s not
always available. By reengineering the process used in the
applications, however, it is possible to have one set of flexible scripts
to service multiple applications. This collection provides the basic
tools for data analysis and output as well as an opportunity for
customization. The result is simple, clean and easily maintained. It
is a template on which applications can grow with virtually no start-
up time and from which they can expand once the users’ true needs
come to light.

INTRODUCTION
Internet based applications are great tools to solve most of our data
dissemination problems. Once you know the purpose of the
application, they’re fairly easy to organize and implement. The trick,
however, is getting the process of the application organized
correctly.

In order to get more Internet based application in the hands of our
users in a timely fashion, we needed an option that did not require
customizing every piece of the puzzle to meet that exact situation.
Customization would be nice, but it would be best as an “add-on” --
something that could be plugged in after the application is up and
running. This way, we could avoid having to reinvent the wheel each
time someone wants a new program.

BACKGROUND
The Foreign Trade Division (FTD) of the U.S. Census Bureau has
had several years of experience in creating Internet based
applications – the majority of which have used SAS/IntrNet. Each
application has been used to simply view. Each program follows the
same basic process: 1.) Define the scope of the request, 2.) Define
the output. Both steps could get more granular, but those details fall
under the same general umbrella.

Figure 1 Basic structure of most applications

Initially, “define the scope of the request” meant identifying a specific
dataset and then identifying the criteria on which to subset the data.
Since then, users have needed to identify multiple datasets to cover
a greater span of time. Additionally, they have needed to break their
requests into stages that may change depending on the results of
the previous stage. For example, users no longer need to view just
data for February 2002. They’d rather access data for January

through June 2002. Also, while, initially, they may have wanted to
only look at data for Canada, once they’d seen what’s traded with
Canada, they’ll want to focus on what’s traded with Canada through
specific ports.

When users would “define the output”, they would select from
multiple customized options. Canned reports, of course, needed to
be created for the specific datasets. However, even our “dynamic”
output options (where specific menus would appear based on
previous selections) needed to be customized to the dataset.

Each approach, while suitable to their situation, required time to set
up and modify when creating a new application.

What was needed was a solution that was easy to modify and easily
implemented over a wide range of situations. If we were tasked with
giving Internet access to three different sets of time series data, how
could we give the users basic access as soon as possible while still
having the option of customized solutions later?

SOLUTION
The solution was to modify our basic process to be flexible and
adaptable up to a certain point and then provide a structure for the
customized needs of the users.

In modifying “defining the scope of the request”, we realized there
were two things holding us back: 1.) Communicating early selections
to the program, 2.) Defining the WHERE clause.

SESSION VARIABLES
In our initial applications, we embedded early selections in hidden
HTML fields on subsequent pages. So, if a user needed to select a
product and a country on separate pages, they would first select the
product on the first page. When the second page, where the
country was selected, was constructed, the selection from the first
page would be put into a hidden field. That way, when the output
was created (on the third page), the SAS program would receive
both selections.

Figure 2 Forwarding macro variables over many generated pages

SUGI 28 Applications Development

2

This has been solved by using SAS session variables. The
selections are saved as temporary macro variables. There is still
administration on our part in that the “session ID” needs to be
forwarded from page to page. However, one it is only one item no
matter how complex the system becomes.

Figure 3 Forwarding the same variables using session variables

Figure 4 The front pages of two different applications that use the
template

WHERE CLAUSE
To define WHERE clauses, we’ve assumed we knew the limits of a
user’s request. The assumption has always been about dimensions.
“If they want data,” we said, “odds are that the request will be on one
or more of three dimensions: A x B x C.” In our case, we assumed
those dimensions would be COMMODITY (i.e. product), COUNTRY
and DISTRICT. But, what if a user really needed to subset on a
different variable?

The WHERE clause was a perfect tool to for this situation. It gives
the most flexibility to sub setting based on the user’s needs. The
trick was making that easy.

So, we created a WHERE clause generator that prompted the user
for the variables on which the clause was to be based from a menu
generated from the structure of the selected datasets. It asked for
the corresponding values of those variables and placed it in the
clause. Additional pieces would be strung together with the usual
Boolean operators: AND, OR and NOT. For example, if the user
needed data for all imports from Canada that entered through the
districts of New York City, Philadelphia or Baltimore, they would

select “Country”, “=” and type “1220” for Canada, click “ADD”, click
“AND”, then select “DISTRICT”, “IN” and type the codes for “New
York City” (10), “Philadelphia” (11) and “Baltimore” (13), and click
“ADD”. The WHERE clause would then be “where (country=’1220’)
and (district in (10’,’11’,’13’))”.

Figure 5 The WHERE pages of those two applications.

Figure 6 The difference between them is the label

The WHERE clause is also saved to a session variable.

Not only does this approach save us from having to forward multiple
values from page to page, it spares us from having to create lists of
possible values prior to using the programs (which is difficult when
you don’t know the dataset before it’s used).

OUTPUT
When defining output, we realized that our users need at least one
of three basic options: export to a file, browse or create a report. All
options needed to be as flexible as possible.

EXPORT
To export a file, users have three options: Excel, CSV or SAS
dataset.

BROWSE
“Browse” uses an option we call FlexBrowse where the user selects
the variables they wish to see from the dataset (from a menu

SUGI 28 Applications Development

3

generated based on the structure of the dataset), selects the format
they wish to view (HTML, PDF or RTF) and selects the range of
records they wish to view.

Figure 7 Browse

Figure 8 Browse report

REPORT
To create a report, the users select several formatting options (e.g.
font, font size, etc.) and fields they want to feed into a PROC
TABULATE script. While we wanted to be as flexible as possible,
we had to build in certain restrictions since giving users unrestricted
access to PROC TABULATE in this environment is unrealistic. Do
they NEED to be able to put as many variables DOWN or ACROSS
as they desire? If they do, can they read the results? So, much like
the TIMEOUT setting on Sas/IntrNet (where you select how long a
request can run so it’s not crowding out all of the other requests),
we decided to limit users to three DOWN variables, two ACROSS
variables, and two ANALYSIS variables.

Figure 9 Report

Figure 10 Report after formatting

This report creator also gives users the ability to enter variable labels
if they don’t like the default labels and turn on and off totals. For
ANALYSIS variables, FORMAT is also available. Again,
considering we don’t know all of the datasets which will be available,
we can’t provide FORMAT for the DOWN and ACROSS variables in
this basic report generator.

CUSTOMZIED OUTPUT
Now that we’ve created our WHERE clause and given the users
flexible output options, what about the customizable options that
have been mentioned?

The first page of the chain, the static HTML where users select the
datasets they want to query, has a hidden field that identifies the
type of request originating from that page. If the page was for “import
data via ports”, the identifier might be “IMPORT-PORT”. This
identifier is registered in a dataset that lists all of the customized
programs available on the server. When the output page is
generated, if the original page was “IMPORT-PORT”, the user will
have access to the basic output options in addition to the
customized “IMPORT-PORT” output options. Were the identifier
“EXPORT-PORT”, only the “EXPORT-PORT” options would be
available under the Customized menu.

SUGI 28 Applications Development

4

Figure 11 This application has no customized output options

Figure 12 This one, however, does.

When a new customized output option is created, we need to add
the location of that script to the registry under the first page of the
application.

Since adding customized options is so simple, this gives us an
opportunity to leverage one of the best assets we have in our data
dissemination operation: users. Many enterprising people write SAS
programs for their specific situation. If modified correctly, we can
take those programs and add them to the list of customized output
options.

In the end, we have a collection of documents and SAS programs
that can serve a great many needs with a minimum amount of
maintenance from us and a maximum amount of flexibility for the
users.

Figure 13 Multiple applications can use the same structure

DRAWBACKS
The FTD California template is great for quickly granting access to
data over the web. However, depending on the situation, the
completely customized approach may provide a better solution.
Even so, those customized solutions can be based on this template.
By copying the template and changing the beginning (because
maybe the WHERE CLAUSE solution isn’t for everyone), we can
still save development time since the template is known and its
reactions are predictable.

On a different note, since a common thread services all programs
using the template, more attention will need to be paid to workload on
the server and the service. If the workload gets too heavy for the
service, define a different service on the front page. Session
variables will propagate that through the rest of the application. If the
workload on the server is too heavy, the template can be copied to an
additional server. In this case, more administrative work will need to
be done to make sure that all components of the template are up to
date.

CONCLUSION
The California template gives us the ability to give quick access to
any series of datasets. As long as the structure is consistent across
the series (as is often the case in a time series), users will have
access to the data as well as a basic set of tools for accessing it.
The template provides a means by which users can help customize
the experience for their specific datasets. This, in turn, will help
promote interest in the maintenance of the program.

While completely customized programs contribute greatly to the
productivity of an organization, it’s good to have a useful, reusable
tool available to quickly put something into production . That way,
the development staff does not have to move Heaven and Earth all in
the name of reinventing the wheel.

CODE
SAS Code to start a session, set a session variable and retrieve the
value of a session variable:

1.) Create a session
a. %let

rc=%sysfunc(appsrv_session(create

SUGI 28 Applications Development

5

));

2.) Set a session variable
a. %global SAVE_ID;

 %let SAVE_ID = "&id";

i. Session variables always start with
“SAVE_”

3.) Retrieve a session variable
a. put '<INPUT TYPE="HIDDEN"

NAME="identification" VALUE="'
&SAVE_ID '">';

i. Refer to it like a regular variable and
not a macro variable.

JavaScript code to copy an item from one HTML menu to another
HTML menu as is done in our FlexBrowse option:

// ---

function menuProcess(aLeft,aRight) {

// This script is passed two items: two
// SELECT/OPTION menu objects. It will scroll
// through the
// first menu looking for selected items. If an
// item is selected, the script will copy it to
// the second menu.

// Scroll through all of the items in the first
// menu

for (var i = 0; i< aLeft.options.length; i++) {

// If the item is selected...

if (aLeft.options[i].selected) {

leftProcess(aLeft.options[i].text
,aLeft.options[i].value,aRight)

 }

}

// If the user is using Netscape Navigator,
// refresh the screen.
//
// Note: As this code was written, isNav is a
// boolean variable (true/false) set
// outside the function. If 'navigator.appName
// == "Netscape"', it's set to TRUE.

 if (isNav) {

 history.go(0)

 }

}

// ---

function
leftProcess(cLeftText,cLeftValue,rightMenu) {

// This function is passed three items: the text
// of the selected item in a SELECT/OPTION
// menu, the value of the same selected item,
// and the SELECT/OPTION menu object to which
// they are supposed to be added. If there are

// no items in the destination menu, the text
// and value are added without question. If //
// there are items in the destination menu, that
// menu is scanned to see if the value of the
// selected item already exists. If so, the
// item is NOT added.

// Note: This edit is based on the VALUE and not
// the TEXT of the selected items. So, in
// theory, once a list is processed, there could
// be two items on the destination menu with
// the same text label. However, since they've
// gone through the edit, you know they have
// different values.

// Get the value and text of the selected item

 var leftText = cLeftText
 var leftValue = cLeftValue

// If the right hand menu is empty, add the item
// to the list.

 if (rightMenu.options[0].value == 0000) {

 rightMenu.options[0].value = leftValue
 rightMenu.options[0].text = leftText

// Commented out this line to experiment with
// adding a default option to the right menu.
// This line is appropriate if the right menu is
// completely EMPTY.

 addToList(leftText,leftValue,rightMenu)

 } else {

// Otherwise, find out if the item is already in
// the right hand menu.

 var found = false
 for (var j = 0; j <
 rightMenu.options.length; j++) {

 if (leftValue ==
 rightMenu.options[j].value) {

 found = true

 }

 }

// If not, add it to the right hand menu.

if (!found) {

 addToList(leftText,leftValue,rightMenu)

} else {

 alert("The selected item
 '"+leftValue+"' was already on the
 list.")

}

 }

SUGI 28 Applications Development

6

}

// --

function addToList(bLeftText,bLeftValue,bRight)
{

// This function is passed three items: a text
// label for a SELECT/OPTION menu item, a value
// for a SELECT/OPTION menu item, and a
// SELECT/OPTION menu object to which the script
// should attach them. By this point, it is
// assumed the text and value are correct and
// that the destination menu has been checked to
// make sure the text and value don't already
// exist.

 var newItem = new

Option(bLeftText,bLeftValue)
 bRight.options[+bRight.options.length] =

newItem

}

In an HTML page with two menus, “fields” and “selectedFields”,
these scripts can be triggered by the click of a button whose code
is…

<input type='button' name='Submit' value='Add to
list' onClick='menuProcess(this.form.fields,
this.form.selectedFields)'>

REFERENCES
SAS web site: “Using Sessions: A Sample Web Application”,
http://www.sas.com/rnd/web/intrnet/dispatch/sesssamp.html

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
me at:

Blake Sanders
U.S. Census Bureau/Foreign Trade Division
FB-3, Rm-2158
Washington, DC 20233

Phone: 301-763-2234

 Email: blake.r.sanders@census.gov
 Web: http://www.census.gov/foreign-trade/www/

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

