
Paper 35-28

 1

Web Enable Your SAS® Applications
Teresia Arthur, SAS®, Cary, NC

Mary Jafri, SAS®, Cary, NC

ABSTRACT
How many times do we write applications only to rewrite them
later because a new operating system comes online, customers
want a friendlier interface or customers just want “the latest cool
stuff”? Wouldn’t it be wonderful if we could write core application
code that remained in use throughout the evolution of an
application and if that application remained in service for many
years? Who said applications have to become antiquated so
quickly and who has time and resources for application rewrites?

The objective of this paper is to demonstrate how a production
SAS/AF® software application, originally written eleven years ago
on MVS, has become Web-enabled and serves 1300+ global
customers, without rewriting the core application. We will
demonstrate how this application evolved using SAS Component
Language (formerly called Screen Control Language or SCL)
classes, and how they are now utilized through SAS/IntrNet®
software application dispatchers, email gateways, and Application
Programming Interfaces (API).

We’ll demonstrate how SAS Application Dispatchers were used
along with SAS/SHARE®software, SAS/SHARE*NET™ software
and Base SAS software, which supports Structured Query
Language (SQL). By using the SAS/SHARE*NET driver for
JDBC we are also able to access and update our SAS data
directly through Java programs.

This paper is intended for intermediate and advanced application
developers. We will demonstrate the versatility of SAS software,
operating system independence, and how best to design your
applications to take advantage of these benefits.

INTRODUCTION
SAS/AF software applications can evolve on different operating
systems and become Web-enabled without an expensive rewrite
and with very limited programming resources. We will describe
our application experience, explain the evolutionary steps we
took, and demonstrate how we implemented SAS/IntrNet
technologies. We will also share code samples and some
“lessons learned” in the process.

WHO WE ARE
We work in the SAS Management Information Systems
department at SAS, which addresses internal corporate business
application needs using SAS software. We are tasked with
developing and evolving applications to continually provide for
internal customer needs at minimal expense. We have created
and implemented some applications that remain useful and
current 10+ years after their creation and even longer. Just like
you, we are constantly challenged to work smarter to meet our
ever-increasing customer demands.

BACKGROUND
First, a very brief background about our application should be
helpful for your understanding of the upcoming examples.
Strategic Online Services (SOS) is an internal problem and
request tracking system that is utilized worldwide by SAS
employees to organize and manage their daily workload. For
clarity in this paper, we will focus on SOS “problem” examples
rather than problems and requests although both have similar

components and share the same parent class.

Our internal help desk employees use SOS to manage problems
that are automatically opened and routed when any SAS
employee sends email to the help desk. Different teams have
Web forms that query their customers for information. They use
our SOS APIs to open and route problems from these forms.

Along with current data activity, SOS contains 11 years of archive
data, and an extensive answers database along with customized
user profiles. Our customers can use multiple interfaces to
interact with SOS, such as:

• SAS/AF interfaces
• Web interfaces
• Email gateways
• Web APIs
• Command line APIs.

The features and business rules in this application are too
numerous to list here, but it should already be clear to the reader
why we are very anxious NOT to invest in a rewrite!

COMPONENT ARCHITECTURE
Component architecture has allowed us to easily maintain our
system as business rules have evolved. It also has allowed for
an easy transition to multiple interfaces and different operating
systems. This allows for portability, extensibility, and
maintainability.

BUSINESS RULE ENCAPSULATION
The key to easy evolution and to Web-enabling an application is
a solid component architecture that utilizes business rule
encapsulation. At the very beginning, SCL classes were written
using object oriented constructs that completely separated the
model from the viewer. The user interface translates commands
and relays data between SOS customers and objects. As
customers request new functionality, the methods within the core
classes of SOS continue to evolve. All interfaces take
advantage of the same core SCL classes, so as business rules
evolve, we only have one location to update in order to serve all
of the interfaces. It is essential not to include business logic in
any visual parts of the application. See the lessons learned
section later in this paper for more details.

MULTIPLE INTERFACES
The interfaces for SOS continue to grow as customer needs
grow. The interfaces started as SAS/AF frames then expanded
to include multiple Web interfaces, email gateways, and
command line APIs. These additional interfaces provide great
versatility and were made possible because of the extended
reuse of the core SOS classes.

PORTABILITY
The host-specific portions of code are isolated in separate parent
classes, which are inherited by host-independent classes.
Examples are host-specific commands for sending email or
printing. These classes reside in a separate host-specific tool
catalog and are utilized by many applications. When migrating
an application from one operating system to another, we modified
only the host specific parent classes. The SOS application
classes themselves did not have to change. This amounted to
just a few method updates, which is a very minimal effort.

SUGI 28 Applications Development

2

As a result, there was no mystery about where to make updates
in the SOS application for host specific functions. All applications
reaped the benefits of keeping the same API, regardless of the
operating system. This concept is key to maintaining portability.

THE EVOLUTION OVERVIEW
The SOS application originated on an MVS mainframe. It was
then ported to run on several versions of Unix and now runs on
the SAS intranet allowing worldwide access using SAS
application dispatchers, an Apache Web server, and a Tomcat
Java application server (JVM).

All the SOS evolution from MVS to Unix to the SAS intranet has
been accomplished via SCL, SAS application dispatchers, and
JSP, and all without rewriting the core application. The SOS
customer base continues to grow and customer satisfaction is
high. The data is stored in SAS data sets and is made available
through SAS/SHARE servers which provide multiple user
capability and JDBC access from the Web.

EVOLUTION #1 & #2: OPERATING SYSTEMS
AND EMAIL GATEWAYS
UNIX
First, we ported the application from SAS/AF version 6.06 on
MVS to SAS/AF version 6.09 on Unix. We used cross-domain
access to SAS/SHARE servers to easily copy data to its new
home on a Unix file system. PROC CPORT and PROC
CIMPORT were used to port the SAS/AF catalogs. Figure 1 and
figure 2 show example SOS user interface AF frames on Unix.

Figure 1. SOS Problem Overview (SAS/AF on Unix)

Figure 2. SOS Problem Detail (SAS/AF on Unix)

EMAIL GATEWAYS
We reused our existing SCL object for adding comments
(unlimited number of lines of text) to each problem by creating an
interface that adds the text of an email as a comment to a
problem. We created several email gateways for automated
approvals, problem opens, etc. For this example, we
demonstrate only the adding comments gateway.

We used elm filter rules on Unix to trigger a small ksh script,
which invokes SAS and runs our SCL program in batch. This
program reads the email text from STDIN then sends it to the
comment class. Using the core SCL objects made it simpler on
us and ensured that business rules were enforced.

SAS VERSION 6.12
When SAS Version 6.12 became available it offered some great
new UI features such as the data table and tab objects, so with
our upgrade from SAS version 6.09 to SAS version 6.12 on Unix
we were able to provide a faster and easier-to-use interface with
little or no changes to the underlying classes that drive the
system.

EVOLUTION #3: WEB ENABLEMENT

EASY INTRODUCTION TO THE WEB
In the early days of our Web development, the htmSQL
component of the SAS/IntrNet product enabled us to provide a
view of the detailed data information for each problem. Since
using htmSQL requires little more than basic SQL and HTML
knowledge, the learning curve for using this technology is very
short. This new feature opened the door to also evolve the
information sent in the emails that are generated by the system.
The application now only sends an email with the latest
information, along with a link to the Web view for more details.
This replaces the sending of all of the past details in email, as
was the case before the Web view was a possibility. Figure 3
and figure 4 show SOS user interface pages for Web SOS.

SUGI 28 Applications Development

3

Figure 3. SOS Overview (JSP)

Figure 4. SOS Problem Detail (JSP)

EMAIL GATEWAYS FROM THE WEB
After providing read-only views of the system data, the next step
was to provide update ability from the Web. It was easy to take
advantage of our existing email gateways from the Web. For
example, we created a CGI script to process the text from an
HTML text area and send it to the email gateway. This allows
users to add comments to problems from the Web as well.
These email gateways provided an easy introduction to Web
functionality because it only required simple Web forms that send
appropriately built emails. Figure 5 and figure 6 show the Web
SOS add comments page and the result page.

Figure 5. Comments edit page which also provides some
automatic email options.

Figure 6. Message that the customer sees in their browser after
adding the comment.

APPLICATION DISPATCHERS
The email gateways are a fine solution for adding comments, but
are not suitable for everything. We needed to provide a robust
Web application interface that utilized other application update
objects. We did not have the time or resources to rewrite the
system and the SOS classes already contained years of complex
business rules. The SAS Application Dispatcher technology
turned out to be the answer to our needs.

By definition, the SAS Application Dispatcher is:
"A SAS/IntrNet component, which is a Web gateway from your
Web browser to the power of SAS processing. This gateway,
written by using the Common Gateway Interface (CGI), provides
access to data in combination with a powerful array of analysis
and presentation procedures."

Essentially, an “Application Server” is a SAS session that is
listening on a port. Through this port, a CGI script (“Application
Broker”) is configured to send the submitted HTML form
information to that SAS session. Along with the SAS/IntrNet
product, SAS provides this configurable CGI script, which you
can run on your Web server. The “Application Dispatcher”
solution is comprised of the Application Server and Application
Broker, along with other utilities that may optionally be used.

You can process any batch SAS program in an Application
Dispatcher session. The reserved filename, _WEBOUT, can be
used to send output and messages back to the Web browser.
The SAS ODS (Output Delivery System) component integrates
nicely with the Application Dispatcher component. There are
many other powerful ways to take advantage of the Application
Dispatcher technology, but for this paper we are only focusing on
SCL processing via Application Dispatchers.

Today our application Web interface is comprised of a series of
Java Server Pages which use:

• JavaScript to help create a dynamic user interface
• The SAS/SHARE*NET driver for using SQL to query

our application data served by a SAS/SHARE server
• Java scriptlets and classes to process the query results

and to store information at the application and session
levels

• SAS Application Dispatcher technology to update our
application data with the information submitted from
HTML forms.

Notice that this combination of technologies allows us to have all
SAS and Java processing take place on our servers. No client
install is involved. Only a Web browser is needed! SOS is used
globally, and accesses servers located only in the U.S. The
performance is sufficient for those countries that have good
network connections.

Our Application Dispatcher solution includes an Application

SUGI 28 Applications Development

4

Broker and multiple Application Servers that are each listening on
a permanently defined port using the "Socket Service" option.
We then have multiple "Load Managers" that keep track of which
Application Servers are available. When Web requests come
through, the Load Managers send each request to an available
Application Server for processing.

The use of a Load Manager is optional. You may use the "Pool
Service" or "Launch Service" instead of a Socket Service,
depending on which one serves your needs best. You may also
use a combination of these services. SOS is used continuously
throughout all hours of the day, so we have found the optimal
solution for SOS to be multiple Socket Services. The Launch
Service or Pool Service might be a better choice for occasionally
running reports or for systems that will not be accessing
application servers continuously throughout the day.

Both Launch and Pool Services only invoke SAS sessions when
needed. This way they do not unnecessarily tie up server
resources with idle sessions. You might even find that you need
a combination of these services to best serve your system. For
example, if you occasionally have reports that take more than a
few seconds to run, then you might not want them interfering with
your more transactional system updates. In this case, you might
want to use the Launch Service for those reports rather than tie
up your dispatchers configured with a Socket Service.

For more details about these options, please see the product
documentation at:
http://www.sas.com/rnd/web/intrnet/dispatch/servtype.html . For
this discussion we will focus only on the Socket Service solution.

EXAMPLE LOAD MANAGER AND SOCKET SERVICE
IMPLEMENTATION
Sample Application Dispatcher call from an HTML form:

<form action="/bin/sosbroker/"
name="commform" method="post">
<input type="hidden" name="_service"
 value="sos">
<input type="hidden" name="_program"

value="soscat.master.comment.scl">
<input type="hidden" name="_debug"
 value="0">
<input type="hidden" name="NUMBER"

value="12345">
<textarea name="COMMENTS" cols=80 rows=12

wrap="HARD">
This is comment line 1.
This is comment line 2.
This is comment line 3.
</textarea>
<input type=submit value=" Submit ">
</form>

Sample Application Dispatcher call from a Unix command line:
EXPORT REMOTE_USER=userid
/bin/sosbroker
‘_service=sos&_program=soscat.master.comment.scl
&_debug=0&NUMBER=12345&COMMENTS=This is comment
line 1.&COMMENTS0=3&COMMENTS1=This is comment
line1.& COMMENTS2=This is comment line2.&
COMMENTS3=This is comment line3.’

The Load Manager in our example is named sos. This is defined
as a Socket Service in the Broker configuration file. This file
resides in the CGI bin for our Web server. The Broker
executable, /bin/sosbroker, is called from a Web form by setting
/bin/sosbroker as the form action. The Load Manager is called
by setting the form input field named _SERVICE to a value of
sos. The Broker configuration file definition is used to determine
which port and server to send the data to.

Sample Broker configuration definition:

SocketService sos "SOS Generic"
 ServiceDescription "SOS Generic"
 ServiceAdmin "SOS Team"
 ServiceAdminMail "xxxxx@sas.com"
 Server server.sas.com
 Port 1111 2222 3333
 ServiceTimeout 90
 ServiceLoadManager server.sas.com:5555

In this example, the SOS Load Manager is expected to be
listening on port 5555 of the server.sas.com machine. It should
be monitoring the status of the Application Servers that are
listening on ports 1111, 2222, and 3333 on the same machine.
Each application server is named sos1, sos2, and sos3
respectively, via their definitions in the Broker configuration file.

Sample Broker configuration definition:
SocketService sos1 "SOS Generic 1"
 ServiceDescription "SOS Generic 1"
 ServiceAdmin "SOS Team"
 ServiceAdminMail "xxxxx@sas.com"
 Server server.sas.com
 Port 1111
 ServiceTimeout 90

SocketService sos2 "SOS Generic 2"
 ServiceDescription "SOS Generic 2"
 ServiceAdmin "SOS Team"
 ServiceAdminMail "xxxxx@sas.com"
 Server server.sas.com
 Port 2222
 ServiceTimeout 90

SocketService sos3 "SOS Generic 3"
 ServiceDescription "SOS Generic 3"
 ServiceAdmin "SOS Team"
 ServiceAdminMail "xxxxx@sas.com"
 Server server.sas.com
 Port 3333
 ServiceTimeout 90

The ServiceTimeout period is the number of seconds to wait
before sending a timeout message to the person submitting the
form. A timeout might occur when a request processes longer
than expected, or if the Application Server is having trouble due
to a program error. If the Application Server requested by the
form submission is not running, then a message will be returned
indicating that it was not found. (The timeout message is not
returned in this case.) In either case, the ServiceAdmin and
ServiceAdminMail values will be displayed as the support
contact.

You can specify the individual Application Server name as the
_SERVICE in the Web form. This would be necessary if you
needed to access only one Application Server in particular and
omit the use of the Load Manager entirely. You could also use it
to bypass the Load Manager if needed in special circumstances.
For example, specifying _service=”sos2” instead of
_service=”sos” would accomplish this. If you are using a Load
Manager, the _SERVICE name in your application forms should
be the name of the Load Manager.

Now that the Socket Services have been defined in the broker
configuration file, you can start running the Load Manager and
the Application Server as detailed below.

Example Load Manager start command (Unix):
 /bin/loadmgr -port="5555"
 -log=loadmgr.5555.log &

Example Load Manager stop command (from a Web browser):
 http://server/bin/broker?_service=5555
 &_program=endloadmgr

In a Unix SAS installation, the /bin/loadmgr executable may be
retrieved from !SASROOT/utilities/bin. These are just basic

SUGI 28 Applications Development

5

examples of starting and stopping a Load Manager. For more
information on other start and stop options, executables for other
platforms, and options for viewing statistics regarding your Load
Manager see:
http://www.sas.com/rnd/web/intrnet/dispatch/loadcmd.html

Example Application Server start command:
SAS provides documentation for using the INETCFG utility to
generate the PROC APPSRV code needed to start an Application
Server. Documentation can be found at:
http://www.sas.com/rnd/web/intrnet/dispatch82/appsrv.html

Example Application Server stop command:
http:/server/bin/broker?_service=sosgen1&_program=stop

Once you have your Application Dispatcher processes configured
and running, then you can start communicating with them from
the Web to run your SAS batch programs. When you call an
Application Server from a Web form, the name and value of each
Web form element is passed in as a name/value pair in an SCL
list.

Our earlier Web form example would produce a list like:

(_SERVICE="SOS"
_PROGRAM="SOSCAT.MASTER.COMMENT.SCL"
_DEBUG="0"
NUMBER="12345"
COMMENTS="This comment line 1."
COMMENTS0="3"
COMMENTS1="This comment line 1."
COMMENTS2="This comment line 2."
COMMENTS3="This comment line 3."
_RMTUSER="userid";
)

Notice that the _RMTUSER item is not one that we passed in
from the form. There are many items that all start with an
underscore that are automatically created by the Application
Dispatcher technology. _RMTUSER will have the user ID that
was used to authenticate to the Web browser as a value.
Another automatic one that we often use is _HTREFER which
holds the URL of the page from which the form was submitted.

Since our SCL objects are non-visual, in order to use them from
the web application interface, we only had to create some new
SCL entries. These entries take the information in the list passed
to the program, then process and pass this information to an
object in the form that the object expects.

Example SCL code that interfaces between a Web form and an
object: (Our example instantiates the comment.class .)

entry paramLst 8;
/* paramLst = parameters passed from Web page*/

init:
outlist=makelist();
if (paramLst le 0) then do;
 rc=insertc(outlist,"No parameter list was

passed.",-1);
 haserror=1;
 end;
if (^haserror) then do;

/*************************************/
/* read each item on the parameter */
/* list into a variable or another */
/* list. */
/*************************************/
number=getnitemc(paramLst, "NUMBER",1,1,"");

/*************************************/
/* Special processing for HTML */
/* textarea elements: */
/* There is a list item that holds */
/* the number of lines in the */

/* textarea if there is more than */
/* one. Its name is the name of the */
/* textarea appended with a 0 (zero).*/
/* Each line of a the textarea is */
/* passed in as a separate list item.*/
/* Each line's name is the name of */
/* the textarea appended with the */
/* line number. The first line of the*/
/* textarea simply has the name of */
/* the textarea assigned to it. */
/* */
/* In our example the textarea name */
/* is COMMENTS. Our comment */
/* update object expects the comment */
/* to be passed in a list, so */
/* populate that list. */
/*************************************/
comlist=makelist();
templine=getnitemc(paramLst, "COMMENTS",1,1,"");
numlines=getnitemc(paramLst,

"COMMENTS0",1,1,'0');
if (numlines gt 1) then do;
 do i=1 to numlines;
 templine=

getnitemc(paramLst,'COMMENTS'||left(trim(put(
i,best.))),1,1,"");

 rc=insertc(comlist,templine,-1);
 end;
end; /* if more than one comment line */

/**/
/* Read each line from comments textarea */
/* If there is just one line then put it on */
/* the list. */
/**/
else rc=insertc(comlist,templine,1);

/**/
/* _RMTUSER passes the userid the customer */
/* used to authenticate to the web site. */
/**/
 rmtuser=trim(lowcase(getnitemc(paramLst,

'_RMTUSER',1,1,"")));
/**/
/* We are finished parsing the paramLst that */
/* was passed in on entry, now instantiate the*/
/* comment object. */
/**/
 cmnt=instance(loadclass(
 'soscat.master.comment.class'));

/**/
/* The object needs the comment to be in a */
/* source file so save the comlist contents.*/
/**/
 rc=savelist('CATALOG',
 'WORK.TEMP.COMMENT.SOURCE',comlist);
 tempin=makelist();
 tempout=makelist();
 rc=setnitemc(tempin,number,'KEY');
 /*load comment object values; */
 call send(cmnt,'LOAD',tempin,tempout);
 rc=setnitemn(tempin,-1,'NUMBER');
 /*add the new comment */
 rc=setnitemc(tempin,'WORK.TEMP.COMMENT.SOURCE',
 'FROMSRC');
 rc=setnitemc(tempin,rmtuser,'WHO');
 call send(cmnt,'ADD',tempin,tempout);
 rc=dellist(tempin);
 rc=dellist(tempout);

/**/
/* Let the customer know that the comment was */
/* added. */
/**/
 rc=insertc(outlist,'Your comment was

successfully added.',-1);

 end; /* ^haserror */

SUGI 28 Applications Development

6

return; /* init */

main:
return;

term:
/**/
/* Done with the object to add comments, */
/* now send a message back to the browser. */
/**/
/* Write the output to the _WEBOUT file */
/* reference. _WEBOUT is a special file */
/* reference defined in SAS for Application */
/* Dispatcher output. */
/**/
 fid=fopen('_webout','O');
 rc = fput(fid, 'Content-type: text/html');
 rc = fwrite(fid);
 rc=fput(fid,"<head>");
 rc=fwrite(fid);
 rc = fput(fid,'<LINK REL="stylesheet"
 HREF="style.css" '||
 'TYPE="text/css">');
 rc = fwrite(fid);
 rc=fput(fid,"</head><body>");
 rc=fwrite(fid);

/**/
/* Write custom messages generated in this */
/* scl. */
/**/
 max = listlen(outlist);
 do i = 1 to max;
 text = getitemc(outlist, i);
 rc = fput(fid, text||'
');
 rc = fwrite(fid);
 end;

 rc = fput(fid, '</body></html>');
 rc = fwrite(fid);

rc=fclose(fid);
comlist=dellist(comlist);
outlist=dellist(outlist);
return; /* term */

LESSONS LEARNED:
EVEN GREAT PARENTS CAN HAVE TOO MANY CHILDREN!
Alas, we are not perfect. We got so excited about the
extensibility of this design that we created multiple child
applications. Each child inherited SOS classes and interfaces.
This was done in order to provide custom tracking systems for
different functional areas. We even added methods to migrate
problems and requests between the child applications when
needed. We did not copy and duplicate the SOS code. All the
child tracking systems simply inherited from SOS and we
overrode a few methods as necessary for the specific business
rules required.

While we were able to provide whole new applications in a very
short time frame, we eventually learned this is not such a great
thing to do. It served the needs at the time but ultimately it cost
us in maintenance. We have since found a better way. We are
adding functionality to the core SOS classes and incorporating
the child application functionality into SOS itself. Upon further
analysis, it became apparent that the needs are not all that
different.

All the child tracking systems wanted to be Web enabled, which
would have required an overwhelming amount of work for us. By
incorporating those tracking systems back into SOS, we can
move forward with one system to maintain/enhance. All tracking
system customers benefit.

STAY TRUE TO YOUR CLASSES!
During overworked moments in the past, a few shortcuts were
taken when adding new functionality. In just a few SAS/AF
frames, some business logic was added instead of adding it
appropriately to the class methods. This has cost us more than it
saved us. In the long run, this code had to be removed from the
frames and added to the class methods appropriately. We
thought it would save time at the moment but in the end it cost us
more. We highly recommend putting all business logic into your
class methods without exception.

EVEN HARDWARE MIGRATION CAN BE EASIER
We found that migrating to new server hardware is also inevitable
as the industry hardware tends to improve and as our global SOS
customer base continues to grow. We’ve found putting our data
and programs on a Network Appliance simplifies the task. We
run our processes on newer servers but the data and programs
don’t need to move. Assigning alias names to your server
hardware also is helpful. As you deploy on new servers, you
don’t have to change LIBNAME statements if you reassign the
alias to the new server.

THE FUTURE

VERSION 9 SAS® OLAP SERVER
We are implementing a Version 9 SAS OLAP (Online Analytical
Processing) server with data summary and statistics that will
enable customers to make decisions based on data in SOS.
Customers will be able to use Enterprise Guide® software for
quick access to the analytic power of SAS against SOS data in a
SAS OLAP server. This will provide reports, summaries, data
analyses, graphics, etc. that can be shared among our users.

VERSION 9 OF SAS AND REDHAT LINUX
We are upgrading SOS and its various parts to Version 9 SAS.
We are also migrating to Redhat Linux and more current server
hardware.

MORE FUNCTIONALITY
New functionality continues to be requested. We will continue to
grow the core SOS classes and methods in order to
accommodate these requests. The additional functionality will
therefore be accessible from all SOS APIs.

CONCLUSION
Today the Web is the platform of choice for application access
but what will it be tomorrow? As soon as one operating system is
mastered your customers want something else entirely. Being
able to succeed in this environment depends on extensible and
portable application architectures as well as the software used to
implement it. We’ve demonstrated here that SAS applications
can be Web-enabled and have multiple interfaces with reduced
effort and no rewriting of the core application.

The architecture demonstrated here also makes it possible to
take an iterative approach to interface development. There were
many extended periods of time where no developers were
assigned to SOS due to other higher priority projects and limited
programming resources. Even during those times some
customers helped themselves by using SOS APIs, ensuring their
progress and the utilization of appropriate business rules. They
were able to create their own customized Web forms that fed
data into SOS APIs, which guaranteed the business rules were
enforced.

The investment made to develop an application has much greater
returns when the application classes remain in service for many
years and continue to service the growing needs of its customers.

SUGI 28 Applications Development

7

We found SAS software to be strategic in operating system
portability as well as application flexibility, code reuse, ease of
evolution and model/view separation in component architectures
which makes all this possible.

REFERENCES
SAS/IntrNet: http://www.sas.com/products/intrnet/index.html
Enterprise Guide: http://www.sas.com/products/guide/index.html
SAS/Share: http://www.sas.com/products/share/index.html
SAS/AF: http://www.sas.com/products/af/index.html
OLAP Server: http://www.sas.com/technologies/olap/
Application Dispatcher:
http://www.sas.com/rnd/web/intrnet/dispatch/

ACKNOWLEDGMENTS
We are grateful to and acknowledge the contributions of:

All individuals who have been involved in tools and SOS
application development over the past 11 years who have
contributed code and designed architecture that is still productive
and in use today.

All SAS product developers who have contributed to the products
mentioned here that provide extensible and portable application
frameworks that make Web-enabling SAS applications possible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged.
Contact the author at:

Mary Jafri
 SAS Institute Inc.
 Cary, NC 27513
 Email: Mary.Jafri@sas.com

Teresia Arthur
 SAS Institute Inc.
 Cary, NC 27513
 Email: Teresia.Arthur@sas.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their
respective companies.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

