
Paper 34-28

A Pinch of SAS, a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe

Jonah P. Turner, United States Bureau of the Census, Washington, D.C.

ABSTRACT

Proper ingredients, precise measurements, and
personal attention all contribute significantly to the
creation of a perfect meal – the same can be said
about implementing an effective software
application. By knowing some fundamental SAS,
HTML, and JavaScript elements and applying the
right touch of each medium, one can easily develop
practical and insightful programs for managing
business systems. More specifically, by making
use of these three languages, one can design
valuable web-based solutions that exploit a number
of technologies the Internet has to offer.

This paper will explain how basic components of
SAS, HTML, and JavaScript can be fused together
for implementing rather useful applications that
function via the Internet. A background discussion
on the SAS/IntrNet software will shed light on the
advantages of integrating Internet technologies for
realizing business solutions. Subsequently, a case
study will focus on how these concepts were
recently drawn together in a particular application
deployed by the Data Processing Team of the
Continuous Measurement Office at the United
States Census Bureau. Finally, some information
will be provided to offer insight on other
programming tools that could be used together with
SAS to create more extensive and comprehensive
web-based applications, such as JavaServer Pages
(JSP) and Servlets.

INTRODUCTION

There are a number of people who have only a
basic understanding of SAS: those who have just
begun learning the language and those who merely
apply common PROC and DATA step functions to
their everyday programming assignments. For
those individuals, the thought of crafting useful
software applications may not seem plausible.
However, with the innovative, yet straightforward
tools now available through SAS, the prospect of
implementing purposeful applications becomes
more promising. In particular, SAS/IntrNet
software allows programmers with even the most
basic SAS abilities to serve up colorful reports,
queries, and graphs straight to their clients’ web
browser without bearing much complexity.

It is important to recognize how each programming
language contributes to the formation of these

Internet applications. Fittingly, SAS would be used
as the underlying tool for manipulating data and
generating the desired output for clients to observe.
HTML and JavaScript would be utilized for
creating the web forms used for passing parameters
to the SAS programs, as well as for rendering the
output to appear more rich and comprehensible to
the user. Collectively, just a basic understanding of
these three languages could open doors for all
programmers hoping to provide their clients with a
more practical system for viewing data.

This paper serves as an informative roadmap with
the purpose of directing the reader to the range of
tools available for deriving Internet applications
from SAS programs. This paper is intended for
users with a basic understanding of SAS techniques
and a general knowledge of HTML. JavaScript is
not required for designing web-based applications;
rather, knowledge of this programming language
can aid in the enhancement and enrichment of the
webpages already created. Nevertheless, those
individuals with advanced SAS abilities could
benefit from this paper if they have not yet dealt
directly with web development and the evolving
link between SAS and the Internet.

BACKGROUND

• HTML

Webpages are written in a basic scripting language:
HTML, or HyperText Markup Language.
Essentially, HTML is a means of specifying layout
information within documents. It is important to
mention that HTML is not a programming
language; rather, the markup grammar dictates the
contents of an HTML file with no connection to
instruction processing. In effect, a web browser
renders an HTML document by seeking out
distinctive HTML syntax used for altering the
layout of the file, inserting images, and establishing
links to other pages.

There are 3 fundamental components to HTML:
elements, tags, and attributes. The HTML
directives, together with the text to which they
apply, are called elements. A tag conveys the
structure of the element to which it refers to rather
than its appearance. Tags are denoted by enclosing
< and > characters, and typically nest the elements.
Start tags, those placed at the beginning of an
element, may have attributes to define various
characteristics of the contained elements, such as

SUGI 28 Applications Development

 2

text alignment, format, or size. The following
HTML code demonstrates all three of these
components together:

<H2 ALIGN="center"><I>An HTML Heading</I></H2>

The whole entity is an H2, or Heading, element,
uses the start <H2> and <I> and closing </H2>
and </I> tags, and utilizes the ALIGN=”center”
attribute. When rendered through a web browser,
this statement would result in a large, italicized
heading centered possibly at the top of a webpage,
or perhaps above a subsection of text.

↓

• JavaScript

JavaScript, a client-side scripting language
executed by the user’s Internet browser, can
conveniently be imbedded into HTML documents.
Those designing webpages can benefit greatly from
JavaScript because it can be exploited like a
genuine object-based programming language.
Given that JavaScript can be programmed to
execute during or react to specific events, it is
possible to dynamically change the content of an
HTML element. Thus, JavaScript can be used to
create responses to mouse clicks and keypress
events, as well as being applicable for other
practical functions, such as validating user entries
before submitting a form to the web server. This
can therefore help to reduce the overhead of server-
side processing. The following scriptlet, inserted
into HTML code, redirects the web browser to the
U.S. Census Bureau’s homepage when the user
clicks on the “Visit Census Site” button:

 <HTML>
 <HEAD>
 <SCRIPT LANGUAGE="JavaScript">
 function goToURL() {
 window.location = "http://www.census.gov";
 }
 </SCRIPT>
 </HEAD>

 <BODY>
 <FORM>
 <INPUT TYPE=button VALUE="Visit Census Site"
 onClick="goToURL()">
 </FORM>
 </BODY>
 </HTML>

↓

• SAS – ODS

The Output Delivery System, known as ODS, is a
means for transforming SAS output into a variety
of formats available to users, such as PDF, RTF,
and HTML. By using the ODS HTML statement,
one can create and store static HTML documents
by denoting the destination path in the statement
declaration:

ODS HTML HTML-file-specification(s) <option(s)>;

The HTML document generated is comprised of all
the necessary HTML tags and attributes for it to be
properly displayed within an Internet browser.
These documents can be edited and later stored on a
production web server so that users may view and
evaluate these pages over the Internet.

What’s more significant is the ability to generate
dynamic HTML content, which is where
SAS/IntrNet software comes into play. Under the
dynamic approach, a user request is sent from a
web browser to a web server, which handles this
request by invoking a SAS session. After
processing the request, the program’s results are
routed directly back to the web browser as HTML
content, namely, a webpage. By creating webpages
with this approach, Internet users retain control
over what parameters are to be applied to the SAS
program. Additionally, since these requests are all
broadcasted via the web browser, users can send
out requests merely by filling out uncomplicated
web forms; thus, avoiding the need to write custom
SAS code for programming each individual request.

• SAS/IntrNet

SAS/IntrNet is a valuable software tool used for
processing dynamic SAS applications via the
Internet. In particular, SAS/IntrNet enables
communication between a web browser running on
a local computer and a SAS session operating on a
remote machine, namely, a web server.

The component most essential to the
implementation of SAS/IntrNet is that of the
application dispatcher. The application dispatcher,
a program that runs on the same server where SAS
and SAS/IntrNet are installed, governs the process
of recognizing and responding to user requests
relayed though an Internet browser. This process is
quite straightforward and very effective in practice.
To begin with, a user simply completes an HTML
form using a web browser, such as Internet
Explorer or Netscape Navigator. The entries
recorded among the form’s fields will soon
thereafter be used as parameters to an existing SAS
program. The content of the form’s fields can
depend on the complexity of the underlying SAS

SUGI 28 Applications Development

 3

program, or simply on how much control the
programmer wants to grant the user. The
information obtained though the user input is then
delivered to the web server, which in turn launches
the application broker. The broker subsequently
uses this information to determine which server
should manage the request. At this time, the
application broker passes the data to the
SAS/IntrNet application server, another important
piece to the dispatcher. Next, the application server
invokes a SAS program, which ultimately processes
the original information. The results are finally
sent through the application broker and output back
to the user’s browser as an HTML document – a
webpage – for normal web viewing.

The application dispatcher is significant in that it
provides the functionality of SAS to Internet users
without accruing the overhead of installing SAS
software on each client’s computer. Accordingly, a
user simply needs a web browser to interact with
and process SAS data; thus, users are not required
to possess any SAS programming skills to be able
to fashion colorful and constructive reports. In
short, establishing a controlled and easily accessible
system for managing data can readily be
accomplished with this approach.

IMPLEMENTATION

• Problem

The Data Processing Team of the Continuous
Measurement Office at the U.S. Census Bureau is
responsible for processing the American
Community Survey, or ACS. Traditionally, this
group produces a variety of reports for subject-
matter specialists to use when reviewing the edited
ACS data. By and large, these specialists have
been accustomed to sorting through extensive
reports and substantial documentation in order to
analyze data pertinent to their variables of interest.

A particular working example involves the analysts
having to examine records relating to hot-decking
matrix counts by state. However, there are so many
records to consider, many of which are redundant
or irrelevant, that viewing only the records that
exist above a certain threshold would suffice.

• Solution

Implementing individual SAS programs to narrow
down the sought-after data is an obvious solution;
however, many of the analysts do not have enough,
if any, SAS programming skills to achieve this.
Furthermore, some analysts have too many requests
– varying thresholds evaluated among different
states – that any strategy for continually writing or
modifying SAS code doesn’t seem viable.

Therefore, for this instance and others alike, the
employment of SAS/IntrNet software, along with
common SAS and web development techniques,
emerges as a logical and effective approach.

HTML

HTML can easily be applied to create Internet
accessible forms, allowing users to select from a
range of fields and/or enter in their own preferred
values. After the user submits the form, the values
are passed as parameters to an existing SAS
program via the application dispatcher. This
program is then executed on a remote server, which
ultimately returns the results of the SAS code to the
user’s web browser as an HTML document.

The <FORM> tag, along with some key attributes,
is used for designing a form for maintaining the
variables to be passed, as follows:

 <HTML>
 <HEAD><TITLE>Form Example</TITLE></HEAD>
 <BODY>

<H1 ALIGN="center"><I>
Matrix Counts Analysis</I></H1><HR>

<FORM NAME=check METHOD=get ACTION="/../sas/
scripts/broker.exe">

 1.) Select a State:
 <SELECT NAME=state>
 <OPTION VALUE="01">Alabama
 <OPTION VALUE="02">Alaska
 <insert more options here>
 <OPTION VALUE="56">Wyoming
 </SELECT>

 2.) Enter a Threshold

 <INPUT VALUE="0.5" SIZE="4" MAXLENGTH="4"
 NAME=thresh>

 3.) Submit Query:
 <INPUT TYPE=submit VALUE="Submit">
 <INPUT TYPE=hidden NAME=_program
 VALUE="prgs.matrixcounts.sas">
 <INPUT TYPE=hidden NAME=_service VALUE="dp">
 <INPUT TYPE=hidden NAME=_debug VALUE="2">
 </FORM>

 </BODY>
 </HTML>

The Method= attribute used within the <FORM>
tag defines the mode for passing the parameters,
either get or post. The Action= attribute specifies
the location of the application dispatcher program
to be invoked somewhere on the web server. In
general, the Name= attribute designates a unique
variable name for a particular HTML element. A
selection box and a textbox were utilized in this
form, granting the user the ability to choose a
particular state and enter a specific threshold.
Other types of HTML data entry fields, such as
textareas, multiple selection boxes, checkboxes,
and radio buttons are also available. After making
these selections, the user can submit the form using

SUGI 28 Applications Development

 4

the corresponding button. Following submission,
the application dispatcher launches the methodical
process discussed in the SAS/IntrNet section above.
In this particular case, there are 5 parameters
delivered through the application dispatcher: 2
user-defined parameters and 3 hidden parameters
defined by the programmer. The two parameters
specified by the user are the chosen state code,
state, and the threshold value entered, thresh.
These will subsequently be used as macro variables
in the SAS program, and referred to as &state and
&thresh. The other three parameters, hard-coded
into the HTML form, are central to the dispatcher
process. The _program parameter determines the
SAS program to be executed – in this instance,
matrixcounts.sas. This program is located in the
directory associated with the fileref prgs, which
was defined on the SAS server beforehand. The
parameter _service indicates the specific service
assigned with the application dispatcher; generally,
the value default can be used, but in this case, dp is
employed since it has been prepared specifically by
the system administrators. The final parameter,
_debug, denotes the debugging mode exercised
during the testing phase. For the most part, the
SAS log is output to the web browser for error-
checking and evaluation.

↓

JavaScript

With the aid of JavaScript, webpages can be
programmed to respond to various user events. In
this particular case, JavaScript can be used to
validate the user threshold entry prior to submitting
the form to the web server. This can help reduce
the overhead of server-side processing. To grasp
this, consider the case where the user enters too
small a threshold: in this situation, too many
observations would be encountered in the data set,
leading to a great deal of processing inside the SAS
session. Consequently, the system may timeout due
to a large execution time, or the browser may crash
due to an overabundance of output. Also, bear in
mind the case where the user enters an invalid
numeric value. In this occurrence, the SAS
program wouldn’t compile, yielding abnormal
output, or possibly nothing at all. Hence, invoking

a simple scriptlet to verify the threshold entry
before the form submission would not only prevent
unwarranted server-side processing, but would also
circumvent the transmission of inadequate data.

 <HTML>
 <HEAD><TITLE>Form Example</TITLE>
 <SCRIPT LANGUAGE="JavaScript1.2">
 function checkNum() {
 var x=document.check.thresh.value
 var anum=/^-?[0-9]*(\.[0-9]+)?$/
 If (x=="" || anum.test(x)==false || x<0.5 || x>2.0) {

alert("Please enter a valid threshold between 0.5
and 2.0, or use the default value of 0.5.")

 document.check.thresh.value = "0.5"
 }
 }
 </SCRIPT>
 </HEAD>
 <BODY>

<H1 ALIGN="center">
Matrix Counts Analysis</H1><HR>

<FORM NAME=check METHOD=get ACTION="/../sas/
scripts/broker.exe" onSubmit="return false">

 1.) Select a State:
 <SELECT NAME=state>
 <OPTION VALUE="01">Alabama
 <insert more options here>
 </SELECT>

 2.) Enter a Threshold

<INPUT VALUE="0.5" SIZE="4" MAXLENGTH="4"
NAME=thresh onBlur="checkNum()">

 3.) Submit Query:

<INPUT TYPE=submit VALUE="Submit"
onClick="document.check.submit()">

 <INPUT TYPE=hidden NAME=_program
 VALUE="prgs.matrixcounts.sas">
 <INPUT TYPE=hidden NAME=_service VALUE="dp">
 <INPUT TYPE=hidden NAME=_debug VALUE="2">
 </FORM>

 </BODY>
 </HTML>

The added JavaScript here forces the user to enter a
valid threshold between 0.5 and 2.0. After the user
enters a value in the threshold textbox, the
checkNum() function is called either if the cursor
moves outside the textbox, or the user clicks
somewhere else on the page (onBlur=”checkNum()”).
There is a unique case which this checkNum()
function is not able to handle, namely, the case
where a number is entered into the threshold
textbox and the user then presses the ENTER key to
submit the form. The onBlur event handler does
not recognize any changes to the page, so the
checkNum() function is never invoked. The form is
then submitted even though the threshold entry may
be invalid or vacant. Thus, the two other JavaScript
pieces onClick=”document.check.submit()” and onSubmit=
”return false” can be added to prevent the user from
submitting the form with the ENTER key. The
form can now be submitted with the mouse only
after it has been properly completed. In brief, with

SUGI 28 Applications Development

 5

the minor addition of these simple JavaScript
elements, any prospect of passing an invalid or
unusable parameter to the SAS program is avoided.

↓

 SAS – ODS

HTML and JavaScript are used for designing the
front-end workings of these Internet applications;
however, the most significant ingredient for
creating these resourceful and practical web-based
applications is the back-end program used for
processing the data. SAS programs can use a
parameter passed from an HTML form as a macro
variable. For the current example, the user-selected
state and keyed-in threshold value will be used as
macro variables, as follows:

 %global file ;
 %let file=lib.state&state ;
 libname lib '/2001/adp5/edit_web/mtxdata/' ;

 data gpratbad getnoput ;
 set &file ;
 if getvalue = . then getvalue = 0 ;
 if putvalue = . then putvalue = 0 ;
 if putvalue > 0 then do ;
 gpratio = getvalue / putvalue ;
 format gpratio 4.2 ;

if gpratio > &thresh and abs(getvalue - putvalue) > 5 then
output gpratbad ;

 end ;
else if getvalue > 5 then output getnoput ;

 run ;

 <additional code inserted here>

The parameters state and thresh are treated as
macro variables in the fragment of code above. The
data sets holding the pertinent calculations are
stored as state<##>, where ## refers to the
designated SAS state code. Therefore, the results
of this execution will reflect only the state selected
by the user. The threshold variable will help to
narrow the margin of records generated by each
execution of this SAS program.

By applying the functionality of the Output
Delivery System, reports and tables generated by
the SAS code can be displayed colorfully in the
client’s web browser. It is always important that
the output is recognizable to the clients using these
applications; thus, by knowing the users’ needs
ahead of time and understanding how they would
like the tables to appear, the SAS code can be
written accordingly.

 <additional code inserted here>

 ods html body = _webout style=statdoc ;

 data _null_ ;
 file _webout ;
 abbrev = fipnamel(&state) ;
 put '
<center><i>'abbrev'
 -- 2001</i></center>
<hr size=3>' ;
 run ;

 proc print data=gpratbdx noobs label ;
 title "<center>Get/Put Ratios > &thresh</center>" ;
 label getvalue ='gets'
 putvalue = 'puts'
 gpratio = 'ratio' ;
 run ;

%let fn=<center><form><input type="button" value="Back"
onClick="parent.location='javascript:history.back()'">
</form></center> ;

 proc print data=getnoptx noobs label ;
 title "<center>Gets and No Puts</center>" ;
 label getvalue ='gets'
 putvalue = 'puts'
 gpratio = 'ratio';
 footnote &fn ;
 run ;

 ods html close ;

The above code produces the HTML reports that
are to be displayed in the user’s web browser. It is
important to note that the output destination
_webout is used to target the results of this
execution directly to the web browser making the
original request. Contrary to this dynamic
approach, an actual path location can be written in
place of _webout. Then, after executing the
program, the resulting HTML documents can be
stored in the appropriate location on the web server.
In this fashion, the programmer can hard-code
hyperlinks pointing to these documents, so that any
user can view their content directly by clicking on
the particular link.

It is also apparent that HTML and JavaScript can be
embedded directly into the SAS code giving the
user more control over the ODS output. In the
above example, a title and footer will be added to
the resulting HTML document. The title will
include the user’s state selection and the footer will
contain a button that links to the previous webpage.

The option STYLE= applies predefined SAS styles,
such as Brick, Beige, or D3D, to the output HTML
documents. These can be applied to enhance the
appearance of a webpage; however, the use of a
style will not affect the actual content of that page.
The SAS procedure PROC TEMPLATE can be used
to craft new styles, which may be more applicable
to the programmer’s taste, or the project’s
requirements. Another practical ODS HTML option
is STYLESHEET=, which the programmer can use
to create new or apply existing Cascading Style
Sheets. Cascading Style Sheets, or CSS, define a
unique layout for a web document by describing

SUGI 28 Applications Development

 6

how HTML elements should be displayed.
Furthermore, CSS allow developers to control the
style and layout of multiple webpages all at one
time; so, making a global change to a number of
documents can be achieved through a single
modification. Other ODS HTML options give way
to the construction of navigational menus and
frames, namely, the BODY=, CONTENTS=,
PATH=, PAGE=, and FRAME= options.

↓

ADDITIONAL TOOLS

• htmSQL

htmSQL is a CGI program that allows users to
carry out SQL procedures though the Internet.
Essentially, programmers can insert SQL
statements right into their HTML documents.
Users can subsequently make updates and submit
queries to certain SAS datasets directly from these
webpages. Plus, given that SQL is handled
dynamically in response to a user request, only the
most current data is processed.

• SAS/GRAPH

SAS/GRAPH is another valuable software package
available through SAS. This collection of tools can
be utilized to build an assortment of graphs, charts,
and plots in a variety of styles and colors. When
used in conjunction with SAS/IntrNet,
SAS/GRAPH software can extend the liveliness of
these Internet applications by fashioning elaborate,
vibrant graphics and displaying them directly
within the client’s web browser.

• JavaServer Pages & Servlets

JavaServer Pages is a newer technology that
enables developers the ability to create insightful,
dynamic webpages for managing business systems.
JavaServer Pages are really an extension of Servlet
technology. Servlets are platform-independent,
server-side programs used for generating and
returning HTML code to a client’s web browser.

Together, JavaServer Pages and Servlets provide a
favorable alternative to other types of dynamic web
programming. There are many benefits to
exploiting these two technologies, some of which
include: scalability, maintainability, platform
independence, enhanced performance, and ease of
use. Using webAF software, a professional
development environment for Java applications,
one can create client- or server-side applications
that fully integrate the existing services that SAS
has to offer.

CONCLUSION

By applying an appropriate measure of SAS and
other programming components, it is possible to
design a controlled system for managing data that is
accessible via the Internet. To begin with,
developers can craft webpages using HTML (and
possibly JavaScript) that contain forms to
encapsulate user input. After a user completes and
submits a given form, the request is then routed to a
web server, which in turn launches a SAS session.
Ultimately, the request is processed and the results
are directed back to the client’s web browser as a
colorful and comprehensive webpage. SAS/IntrNet
essentially provides a channel for clients, perhaps
those who lack programming skills, to interact with
SAS data through their web browsers. There are
other tools available which can be used to form
more complex webpages that may include colorful
graphs or navigational menus. It should be apparent
that with the tools now available through SAS,
coupled with the modern technologies of the
Internet, providing clear and readable data to clients
can, convincingly, be achieved.

RESOURCES

SAS Institute, Inc. – Instructor-Based Training:
♦ SAS Web Tools: Static and Dynamic Solutions Using
 Sas/IntrNet Software
♦ SAS Web Tools: Advanced Dynamic Solutions Using
 SAS/IntrNet Software
♦ SAS Web Tools: Developing JavaServer Pages and
 Servlets Using webAF Software

SAS Institute, Inc. – Base SAS Community:
♦ http://www.sas.com/rnd/base/

SAS and all other SAS Institute, Inc. product or service
names are registered trademarks or trademarks of SAS
Institute, Inc. in the USA and other countries. Other brand
or product names are registered trademarks or trademarks of
their respective companies.

CONTACT INFORMATION

Jonah P. Turner
United States Census Bureau
4700 Silver Hill Road, Mail Stop 8400
Washington, DC 20233-8400
(301) 763-5420 or jonah.p.turner@census.gov

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

