

1

Paper 32-28

Using IOM and Visual Basic in SAS Program Development

Greg Silva, Biogen, Inc., Cambridge, MA

ABSTRACT
When SAS Institute added the Integrated Object Model (IOM) to
the SAS System’s base product in version 8, they opened the
door to SAS applications development using Visual Basic (VB).
Data set manipulation, SAS code execution, and data binding are
now part of the tool set available to the SAS/VB programmer.
This paper will describe some of the features of SAS that are
available through the use of IOM, and show some applications
that use IOM with VB.

INTRODUCTION
Initial desktop development of applications outside of the SAS
System relied on PC batch files. These were usually simple “if-
then-else run a SAS program” scripts that simplified the
parameter selection of SAS macros.

With the advent of the integrated technologies in SAS,
developers can greatly enhance the user input into SAS, or even
have SAS running within applications. This paper will show some
examples of VB programs that can be used with IOM to run SAS
sessions.

The intended audience for this paper is any developer interested
in building front-ends for SAS processing, or those people familiar
with VB who want extend the use of VB into SAS data
manipulation. The information presented in this paper is intended
for programmers who may have heard of IOM, but are not that
familiar with it.

I would like to add a caveat about the code examples used in this
paper. All of the examples were derived from the SAS Institute’s
online IOM documentation, or by playing around with the objects
and their methods. The code works, but is not necessarily the
most efficient.

WHAT IS THIS THING CALLED IOM?
The IOM component of the SAS integrated Technologies product
transforms the SAS system into a server for processing data from
client locations. By setting up references to the SAS IOM
components in your VB program, you can do most of things that
you do with SAS in batch.

Local user access to IOM is as simple as not specifying a server
when the Workspace is opened. For some programs, this seems
to help with the execution speed. Using this method assumes
that you have a copy of the SAS System on your local machine.

Server access requires more hardware to run. The
documentation provided by SAS Institute goes into detail about
running IOM bridges and using LDAP for authenticating user IDs
and password. For the purpose of this paper, I will only talk about
local access.

HOW DO YOU SET IT UP?
There are two steps you have to take before using IOM in a VB
program. The first is to get the components from SAS Institute.

The second is to add the references for IOM to your VB
application.

INSTALLING THE COMPONENTS
SAS Institute’s Integrated Technologies is available for PCs, and
can be downloaded from SAS Institute’s Website. The
documentation states that it needs version 8.2 to run, however all
of the examples in this paper were run using version 8.1 of the
SAS System and the downloaded Integrated Technologies
package.

The downloaded package is a self extracting exe file that will
copy the needed components to specific folders on your PC. Be
aware that you may have to reboot your machine if some of the
Microsoft components on your machine are not up to date.

GLOBAL REQUIREMENTS
When you use IOM, you have a number of options for running
SAS. Simple includes, stored processes, or even dynamically
running programs can be accomplished with a Workspace
defined in IOM.

Each one of these methods for running SAS will be explained in
this paper, but before you start running SAS, you have to tell VB
what SAS is. This is done by referencing components of the SAS
system when a program is written.

In order to get started using SAS Institute’s Integrated
Technologies, the following references have to be added to your
VB project:

1. SAS: Integrated Object Model (IOM) (SAS System 8.2)

Type Library

2. SASWorkspaceManager 1.1 Type Library.

These are both used to allow the communications between VB
and the SAS System. If you do not see these as options in your
reference list, then you have not installed the integrated
technologies package correctly.

In the examples that follow, I have used global references to
objects. Although this is not considered a best programming
practice, I have done it to avoid having to set or pass objects for
each function or subroutine.

To make variables or objects global, you have to reference them
outside of a subroutine or function. To use the examples in this
paper, the following lines should be at the start of your program.

Dim obSAS As SAS.Workspace
Dim obWM As New _
 SASWorkspaceManager.WorkspaceManager

Please note that I have attempted to add code that can be run
without changes. In order to fit the VB code in the format of this
paper, I have had to split some of the text. In the example above,
the “_” is used in VB to show a continuation line. This will be used
as needed in the remaining examples.

SUGI 28 Applications Development

2

HOW DO YOU USE IT?
Now that you have everything set up on your system, and your
VB application knows about IOM, you are ready to start coding.
All of the features of IOM can be used on a single subroutine in
VB, but for reuse and readability, you should consider writing
separate subroutines or functions for each of the IOM tasks you
expect to use.

The following sections will cover some useful parts of IOM, and
present them as re-useable routine (either functions or
subroutines). As you develop more VB applications that use IOM,
these routines can be carried over to save time.

STARTING SAS
To use the Workspace provided in IOM, you have to create a
SAS object. This can be done anywhere in the code, but is best
done as a stand alone subroutine or function.

The following function creates a SAS Workspace. For this
example, the obSAS object that is created is referenced in the
global Dim area. It could have been returned from the function if
there was not a global reference.

Public Function Start_SASjob()
 Dim xmlInfo As String

 ' Create a local SAS workspace.
 Set obSAS =

 obWM.Workspaces.CreateWorkspaceByServer _
 ("", VisibilityProcess,_
 Nothing, "", "", xmlInfo)
End Function

After calling this function, a SAS Workspace object called obSAS
will be ready for use. Since it was previously declared as global, it
is available outside of the Start_SASjob function.

In the code above, the first parameter passed to the method
CreateWorkspaceByServer is blank. This indicates that a local
instance of SAS exists that will act as the IOM server. If you did
not have the SAS System installed on your machine, this code
would not work. To use IOM in non-local mode, you need to
specify a server.

STOPPING SAS
Since SAS will continue running a Workspace until you stop the
process (remove the object), you need to have a routine to end
SAS. The following function will stop a SAS IOM session.

Public Function End_SASJob()
 obWM.Workspaces.RemoveWorkspaceByUUID _
obSAS.UniqueIdentifier
 obSAS.Close
End Function

Note that the SAS Workspace object (obSAS) has a unique
identifier. This allows you to have multiple SAS sessions running
within your application. You have to keep track of each of their
unique Ids.

In the world of Visual Basic (and Java and C++) you need to be
aware of the persistence of objects. In the sample code above,
the first line removed the workspace from use. The second line
(“Invoke the close method on the Workspace object called
obSAS”) is what actually ends the SAS session.

USING AN INCLUDE FILE

One of the simplest ways to run a SAS program using IOM is to
include the SAS source, and send it to be run. In the following
example, a string containing valid SAS source is stored in an
array. The string consists of a %include and the full file name of
the SAS program to be run.

The name of the program is passed to the function, the object for
the LanguageService is set based on the Workspace object
(obSAS) that was created previously. The string is stored in an
array to allow the SubmitLines method to be invoked.

Public Function Submit_SASInclude (strCmd As_
 String)

 Dim obLS As SAS.LanguageService
 Dim arSource(1) As String

 Set obLS = obSAS.LanguageService

 arSource(0) = "%include '" & strCmd & "';"
 obLS.SubmitLines arSource
End Function

An alternative method would be to read all of the SAS program
into an array and pass the array to the method. The advantage to
including a file is that the SAS source code can be modified
without recompiling the Visual Basic code.

USING A STORED PROCESS
Stored processes are like macros without the parameters. The
SAS source would be a macro call followed by an invocation of
the macro. Parameters are passed to the macro through %let
statements before the macro source.

With store processes you have to give SAS three pieces of
information: The repository (directory name), source (program
name), and command (macro values). In the case of the stored
process, the macro variables are defined as:

 Variable = Value

No %let or semicolon is needed to set the values.

In the following example, a function passes the three values
needed to invoke a stored process, checking for a null string in
the command. If the command is null, a dummy variable is
generated to allow the execute method to be invoked without
errors.

Public Function Submit_SASProcess(_
 resp_folder As String,_
 source_file As String,_
 Optional command_text As String)

 Dim obStoredProcessService As _
 SAS.StoredProcessService

 Set obStoredProcessService = _
obSAS.LanguageService.StoredProcessService

 obStoredProcessService.Repository = _
 "file:" & resp_folder

 If (command_text = "") Then
 command_text = "__dummy_ = NONE"
 End if

 obStoredProcessService.Execute _
 source_file, command_text
 End If

SUGI 28 Applications Development

3

End Function

DYNAMIC CODING
Using the Start_SASJob function, and passing SAS source code
directly to the Workspace through the SubmitLines method allows
you to dynamically run SAS programs.

Through a user interface in VB, SAS source code could be “built”
to be submitted through IOM. Simple processes such as building
a parameter list and calling a macro could easily be incorporated
into an application.

The following code is a simple function to submit a line of SAS
source code to the IOM server. Notice that this is simply a
variation on the include file code, but it allows the developer to
pass multiple lines to the IOM server.

Public Function Submit_SASCode (strSASCode
 As_ String)

 Dim obLS As SAS.LanguageService
 Dim arSource(1) As String

 Set obLS = obSAS.LanguageService

 arSource(0) = strSASCode
 obLS.SubmitLines arSource
End Function

Some of the work we are currently doing involves querying user’s
for macro parameters, and then adding extra features to the
resulting code. This includes ODS destinations, and post
processing output by invoking Microsoft Word and polishing the
output format through VBA.

We have found this last method very useful. By removing macros
from the Microsoft Word templates, we can control when and
where they are used. An application we are developing allows
users to select multiple SAS source files, run them, check the
logs for errors, and then convert the SAS output (.LST files) to
Word documents with an optional watermark.

CURRENT EVENTS
To add event driven capabilities to your IOM components, use
WithEvents with the LanguageServices object.

Dim WithEvents obLS As SAS.LanguageService

Once the events are monitored, you can set up routines that will
be invoked when the events occur. For instance, in IOM you can
monitor the beginning and end of data steps and procedures.

The following example is a subroutine that is invoked
automatically when a data step has completed. In this case,
when a data step is completed the log file is sent to a window in
the system, and a message is flashed on the screen.

 Private Sub obLS_DatastepComplete()

 Call DumpLogToWindow
 Msgbox "DATA step has completed"
End Sub

The next subroutine is invoked automatically when a procedure
completes. In this case, when a procedure is completed, the log
file is sent to a window in the system, and a message is flashed
on the screen. If the procedure is a PROC PRINT, then the
output is sent to a window.

Private Sub obLS_ProcComplete(ByVal Procname_
 As String)
 Call DumpLogToWindow
 Msgbox "PROCEDURE has completed"

 If Procname = "PRINT" then
 Call DumpListToWindow
 End if
 End Sub

PUTING IT ALL TOGETHER
Using all of the sample functions and routines together, a simple
VB program can be produced that will run SAS source entered by
the user. In the code segment below, SAS is started, code is
submitted, the user is given feedback, and the SAS System is
terminated.

 ‘ Global refs to Workspace manager stuff.
 ‘ Assume IOM and Workspace references in VB.

Dim obSAS As SAS.Workspace
Dim obWM As New _
 SASWorkspaceManager.WorkspaceManager

 ‘ Tell VB that events should trigger Subs.
 Dim WithEvents obLS As SAS.LanguageService

Sub Main()
 ‘ Load Workspace for processing.

Start_SASjob()

 ‘ Process something.

Submit_SASCode("data a; message = ‘Hello,_
 World!’; run; proc print;_
 run;")

‘ NOTE: At end of DATA step the event will
‘ be triggered to display
‘ “DATA step completed”
‘ followed by the event trigging the
‘ “PROCEDURE has completed”.
‘ message. This would be followed
‘ a messagebox with the message:
‘ “Hello, World!”
‘ (Assuming your DumpListToWindow
‘ routine did that.)

 ‘ Close Workspace.
End_SASjob()

End Sub

At this point the Workspace would no longer exist, and you could
end your VB program. You could also add any other code before
you end the IOM session, and all temporary data sets and macro
variables would be available for use.

The example above references one of the other features of IOM
we use: the ability to redirect SAS logs or SAS output to an array
of strings in VB. By using the FlushLogLines or FlushListLines
method of the SAS.LanguageService object, you can store or
display log and list information from your IOM session.

BUT WAIT… THERE’S MORE!
This paper is an attempt to show some of the basic methods that
IOM and SAS Institute’s Integrated Technologies can be used to
encapsulate most of the SAS System’s functionality into VB.
There are many more components that have not been addressed
here. The following are some of the other ways that IOM can be
used:

SUGI 28 Applications Development

4

1. Data Visualization. Using the Active Data Objects in VB, you
can build “data aware” components to easily display data set
information on the screen.

2. Multitasking applications. Multiple SAS Workspaces can be

run at the same time. This would allow for multitasking
applications, but you would have to keep track of when each
process finished.

3. Direct data set manipulation. By using other methods in

IOM, you can add, delete and modify records in data sets
without using any SAS code.

4. True Client/Server applications. An IOM server can be set

up with any number of clients. The server would “serve up”
SAS Workspaces, while the clients (PCs without SAS
installed) would use these Workspaces to process data.

CONCLUSION
SAS has enhanced its application toolbox by allowing developers
to work in compiled languages, but still have access to the core
language, as well as interfaces to the data set. By using Visual
Basic on a PC, or Java for cross-platform applications, the
developer can make use of standard GUI components for the
front-end, while relying on SAS for data manipulations on the
back-end.

REFERENCES
I found the following are three sources very helpful in getting up
to speed in VB and IOM.

1. “Developing Windows Clients” from the Distributed

Objects section of the SAS Website:

http://www.sas.com/rnd/itech/doc/dist-obj/winclnt/index.html

2. If you want a great book for learning Visual Basic, as

well as an outstanding source of Visual basic code try:

Programming Microsoft Visual Basic 6.0
by Francesco Balena
Microsoft Press ISBN 0-7356-0558-0

This book contains a huge amount of VB information. It
has a great section on ADO (Active Data Objects) that
helps set up your VB program to be “data aware”. A
companion CD contains all the source code from the
book.

3. SAS-L. Although I did not ask for information on IOM, I

searched the archives for samples and pointers on
using VB with IOM.

CONTACT INFORMATION
For any comments or questions, feel free to contact the author.

Greg Silva
 Biogen, Inc.
 14 Cambridge Center
 Cambridge, MA 02142

 Work Phone: (617) 679-2560
 Email: Greg_Silva@biogen.com

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

