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ABSTRACT 
When SAS Institute added the Integrated Object Model (IOM) to 
the SAS System’s base product in version 8, they opened the 
door to SAS applications development using Visual Basic (VB). 
Data set manipulation, SAS code execution, and data binding are 
now part of the tool set available to the SAS/VB programmer. 
This paper will describe some of the features of SAS that are 
available through the use of IOM, and show some applications 
that use IOM with VB. 
 

INTRODUCTION  
Initial desktop development of applications outside of the SAS 
System relied on PC batch files. These were usually simple “if-
then-else run a SAS program” scripts that simplified the 
parameter selection of SAS macros.  
 
With the advent of the integrated technologies in SAS, 
developers can greatly enhance the user input into SAS, or even 
have SAS running within applications. This paper will show some 
examples of VB programs that can be used with IOM to run SAS 
sessions. 
 
The intended audience for this paper is any developer interested 
in building front-ends for SAS processing, or those people familiar 
with VB who want extend the use of VB into SAS data 
manipulation. The information presented in this paper is intended 
for programmers who may have heard of IOM, but are not that 
familiar with it. 
 
I would like to add a caveat about the code examples used in this 
paper. All of the examples were derived from the SAS Institute’s 
online IOM documentation, or by playing around with the objects 
and their methods. The code works, but is not necessarily the 
most efficient. 
 

WHAT IS THIS THING CALLED IOM?  
The IOM component of the SAS integrated Technologies product 
transforms the SAS system into a server for processing data from 
client locations. By setting up references to the SAS IOM 
components in your VB program, you can do most of things that 
you do with SAS in batch.   
 
Local user access to IOM is as simple as not specifying a server 
when the Workspace is opened. For some programs, this seems 
to help with the execution speed. Using this method assumes 
that you have a copy of the SAS System on your local machine.   
 
Server access requires more hardware to run. The 
documentation provided by SAS Institute goes into detail about 
running IOM bridges and using LDAP for authenticating user IDs 
and password. For the purpose of this paper, I will only talk about 
local access.   
 

HOW DO YOU SET IT UP? 
There are two steps you have to take before using IOM in a VB 
program. The first is to get the components from SAS Institute. 

The second is to add the references for IOM to your VB 
application.  
 
 

INSTALLING THE COMPONENTS  
SAS Institute’s Integrated Technologies is available for PCs, and 
can be downloaded from SAS Institute’s Website. The 
documentation states that it needs version 8.2 to run, however all 
of the examples in this paper were run using version 8.1 of the 
SAS System and the downloaded Integrated Technologies 
package. 
 
The downloaded package is a self extracting exe file that will 
copy the needed components to specific folders on your PC. Be 
aware that you may have to reboot your machine if some of the 
Microsoft components on your machine are not up to date. 
 

GLOBAL REQUIREMENTS 
When you use IOM, you have a number of options for running 
SAS. Simple includes, stored processes, or even dynamically 
running programs can be accomplished with a Workspace 
defined in IOM. 
 
Each one of these methods for running SAS will be explained in 
this paper, but before you start running SAS, you have to tell VB 
what SAS is. This is done by referencing components of the SAS 
system when a program is written. 
 
In order to get started using SAS Institute’s Integrated 
Technologies, the following references have to be added to your 
VB project: 
 
1. SAS: Integrated Object Model (IOM) (SAS System 8.2)  

Type Library 
 

2. SASWorkspaceManager 1.1 Type Library. 
 
These are both used to allow the communications between VB 
and the SAS System. If you do not see these as options in your 
reference list, then you have not installed the integrated 
technologies package correctly. 
 
In the examples that follow, I have used global references to 
objects. Although this is not considered a best programming 
practice, I have done it to avoid having to set or pass objects for 
each function or subroutine. 
 
To make variables or objects global, you have to reference them 
outside of a subroutine or function. To use the examples in this 
paper, the following lines should be at the start of your program. 

 
Dim obSAS   As SAS.Workspace 
Dim obWM    As New _   
         SASWorkspaceManager.WorkspaceManager 
 

Please note that I have attempted to add code that can be run 
without changes. In order to fit the VB code in the format of this 
paper, I have had to split some of the text. In the example above, 
the “_” is used in VB to show a continuation line. This will be used 
as needed in the remaining examples.  
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HOW DO YOU USE IT? 
Now that you have everything set up on your system, and your 
VB application knows about IOM, you are ready to start coding. 
All of the features of IOM can be used on a single subroutine in 
VB, but for reuse and readability, you should consider writing 
separate subroutines or functions for each of the IOM tasks you 
expect to use. 
 
The following sections will cover some useful parts of IOM, and 
present them as re-useable routine (either functions or 
subroutines). As you develop more VB applications that use IOM, 
these routines can be carried over to save time. 
   

STARTING SAS 
To use the Workspace provided in IOM, you have to create a 
SAS object. This can be done anywhere in the code, but is best 
done as a stand alone subroutine or function. 
 
The following function creates a SAS Workspace. For this 
example, the obSAS object that is created is referenced in the 
global Dim area. It could have been returned from the function if 
there was not a global reference. 
 

Public Function Start_SASjob() 
   Dim xmlInfo As String 
 
   ' Create a local SAS workspace. 
   Set obSAS =       
          
   obWM.Workspaces.CreateWorkspaceByServer _ 
                  ("", VisibilityProcess,_ 
                   Nothing, "", "", xmlInfo) 
End Function 

 
After calling this function, a SAS Workspace object called obSAS 
will be ready for use. Since it was previously declared as global, it 
is available outside of the Start_SASjob function. 
 
In the code above, the first parameter passed to the method 
CreateWorkspaceByServer is blank. This indicates that a local 
instance of SAS exists that will act as the IOM server. If you did 
not have the SAS System installed on your machine, this code 
would not work. To use IOM in non-local mode, you need to 
specify a server. 

 

STOPPING SAS 
Since SAS will continue running a Workspace until you stop the 
process (remove the object), you need to have a routine to end 
SAS. The following function will stop a SAS IOM session. 
 

Public Function End_SASJob() 
   obWM.Workspaces.RemoveWorkspaceByUUID _ 
obSAS.UniqueIdentifier 
   obSAS.Close 
End Function 
 

Note that the SAS Workspace object (obSAS) has a unique 
identifier. This allows you to have multiple SAS sessions running 
within your application. You have to keep track of each of their 
unique Ids. 
 
In the world of Visual Basic (and Java and C++) you need to be 
aware of the persistence of objects. In the sample code above, 
the first line removed the workspace from use. The second line 
(“Invoke the close method on the Workspace object called 
obSAS”) is what actually ends the SAS session. 

 

USING AN INCLUDE FILE 

One of the simplest ways to run a SAS program using IOM is to 
include the SAS source, and send it to be run. In the following 
example, a string containing valid SAS source is stored in an 
array. The string consists of a %include and the full file name of 
the SAS program to be run. 
 
The name of the program is passed to the function, the object for 
the LanguageService is set based on the Workspace object 
(obSAS) that was created previously. The string is stored in an 
array to allow the SubmitLines method to be invoked. 
 

Public Function Submit_SASInclude (strCmd As_ 
                                   String) 
    
   Dim obLS        As SAS.LanguageService 
   Dim arSource(1) As String 
 
   Set obLS = obSAS.LanguageService 
      
   arSource(0) = "%include '" & strCmd & "';" 
   obLS.SubmitLines arSource 
End Function 
 

An alternative method would be to read all of the SAS program 
into an array and pass the array to the method. The advantage to 
including a file is that the SAS source code can be modified 
without recompiling the Visual Basic code. 

 

USING A STORED PROCESS 
Stored processes are like macros without the parameters. The 
SAS source would be a macro call followed by an invocation of 
the macro.  Parameters are passed to the macro through %let 
statements before the macro source. 
 
With store processes you have to give SAS three pieces of 
information: The repository (directory name), source (program 
name), and command (macro values). In the case of the stored 
process, the macro variables are defined as: 
 
 Variable = Value 
 
No %let or semicolon is needed to set the values. 
 
In the following example, a function passes the three values 
needed to invoke a stored process, checking for a null string in 
the command. If the command is null, a dummy variable is 
generated to allow the execute method to be invoked without 
errors. 
 

Public Function Submit_SASProcess( _ 
                resp_folder As String,_ 
                source_file As String,_ 
       Optional command_text As String) 
    
   Dim obStoredProcessService As _ 
       SAS.StoredProcessService 
 
   Set obStoredProcessService = _ 
obSAS.LanguageService.StoredProcessService 
 
   obStoredProcessService.Repository = _ 
      "file:" & resp_folder 
       
   If (command_text = "") Then 
      command_text = "__dummy_ = NONE" 
   End if 
    
   obStoredProcessService.Execute _ 
         source_file, command_text 
   End If 
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End Function 
 

DYNAMIC CODING 
Using the Start_SASJob function, and passing SAS source code 
directly to the Workspace through the SubmitLines method allows 
you to dynamically run SAS programs.  
 
Through a user interface in VB, SAS source code could be “built” 
to be submitted through IOM. Simple processes such as building 
a parameter list and calling a macro could easily be incorporated 
into an application. 
 
The following code is a simple function to submit a line of SAS 
source code to the IOM server. Notice that this is simply a 
variation on the include file code, but it allows the developer to 
pass multiple lines to the IOM server. 
 

Public Function Submit_SASCode (strSASCode 
                               As_ String) 
    
   Dim obLS        As SAS.LanguageService 
   Dim arSource(1) As String 
 
   Set obLS = obSAS.LanguageService 
      
   arSource(0) = strSASCode  
   obLS.SubmitLines arSource 
End Function 

 
Some of the work we are currently doing involves querying user’s 
for macro parameters, and then adding extra features to the 
resulting code. This includes ODS destinations, and post 
processing output by invoking Microsoft Word and polishing the 
output format through VBA. 
 
We have found this last method very useful. By removing macros 
from the Microsoft Word templates, we can control when and 
where they are used. An application we are developing allows 
users to select multiple SAS source files, run them, check the 
logs for errors, and then convert the SAS output (.LST files) to 
Word documents with an optional watermark. 

 

CURRENT EVENTS 
To add event driven capabilities to your IOM components, use  
WithEvents with the LanguageServices object. 
 

Dim WithEvents obLS As SAS.LanguageService 

 
Once the events are monitored, you can set up routines that will 
be invoked when the events occur. For instance, in IOM you can 
monitor the beginning and end of data steps and procedures. 
 
The following example is a subroutine that is invoked 
automatically when a data step has completed. In this case, 
when a data step is completed the log file is sent to a window in 
the system, and a message is flashed on the screen. 

 
       Private Sub obLS_DatastepComplete() 

   Call DumpLogToWindow 
   Msgbox "DATA step has completed" 
End Sub 

 
The next subroutine is invoked automatically when a procedure 
completes. In this case, when a procedure is completed, the log 
file is sent to a window in the system, and a message is flashed 
on the screen. If the procedure is a PROC PRINT, then the 
output is sent to a window. 
 

Private Sub obLS_ProcComplete(ByVal Procname_ 
            As String) 
      Call DumpLogToWindow 
      Msgbox "PROCEDURE has completed" 
  
      If Procname = "PRINT" then  
         Call DumpListToWindow 
      End if 
 End Sub 

  

PUTING IT ALL TOGETHER  
Using all of the sample functions and routines together, a simple 
VB program can be produced that will run SAS source entered by 
the user. In the code segment below, SAS is started, code is 
submitted, the user is given feedback, and the SAS System is 
terminated. 
 
   ‘ Global refs to Workspace manager stuff. 
   ‘ Assume IOM and Workspace references in VB.    

Dim obSAS   As SAS.Workspace 
Dim obWM    As New _   
         SASWorkspaceManager.WorkspaceManager 

 
   ‘ Tell VB that events should trigger Subs.  
   Dim WithEvents obLS As SAS.LanguageService 
       
Sub Main() 
   ‘ Load Workspace for processing.  

Start_SASjob() 
 
   ‘ Process something.  

Submit_SASCode("data a; message = ‘Hello,_ 
               World!’; run; proc print;_ 
               run;")  
 
‘ NOTE: At end of DATA step the event will  
‘       be triggered to display  
‘            “DATA step completed”  
‘       followed by the event trigging the  
‘             “PROCEDURE has completed”.  
‘       message. This would be followed 
‘       a messagebox with the message:  
‘             “Hello, World!” 
‘       (Assuming your DumpListToWindow  
‘       routine did that.) 
 

   ‘ Close Workspace.  
End_SASjob() 

End Sub 
 

At this point the Workspace would no longer exist, and you could 
end your VB program. You could also add any other code before 
you end the IOM session, and all temporary data sets and macro 
variables would be available for use. 
 
The example above references one of the other features of IOM 
we use: the ability to redirect SAS logs or SAS output to an array 
of strings in VB. By using the FlushLogLines or FlushListLines 
method of the SAS.LanguageService object, you can store or 
display log and list information from your IOM session. 
 

BUT WAIT… THERE’S MORE! 
This paper is an attempt to show some of the basic methods that 
IOM and SAS Institute’s Integrated Technologies can be used to 
encapsulate most of the SAS System’s functionality into VB. 
There are many more components that have not been addressed 
here. The following are some of the other ways that IOM can be 
used: 
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1. Data Visualization. Using the Active Data Objects in VB, you 
can build “data aware” components to easily display data set 
information on the screen.  

 
2. Multitasking applications. Multiple SAS Workspaces can be 

run at the same time. This would allow for multitasking 
applications, but you would have to keep track of when each 
process finished. 

 
3. Direct data set manipulation. By using other methods in 

IOM, you can add, delete and modify records in data sets 
without using any SAS code. 

 
4. True Client/Server applications. An IOM server can be set 

up with any number of clients. The server would “serve up” 
SAS Workspaces, while the clients (PCs without SAS 
installed) would use these Workspaces to process data. 

 

CONCLUSION 
SAS has enhanced its application toolbox by allowing developers 
to work in compiled languages, but still have access to the core 
language, as well as interfaces to the data set. By using Visual 
Basic on a PC, or Java for cross-platform applications, the 
developer can make use of standard GUI components for the 
front-end, while relying on SAS for data manipulations on the 
back-end. 
 

REFERENCES 
I found the following are three sources very helpful in getting up 
to speed in VB and IOM. 
 
1. “Developing Windows Clients” from the Distributed  

Objects section of the SAS Website: 
 
http://www.sas.com/rnd/itech/doc/dist-obj/winclnt/index.html 
 
2. If you want a great book for learning Visual Basic, as 

well as an outstanding source of Visual basic code try: 
 

Programming Microsoft Visual Basic 6.0   
by Francesco Balena 
Microsoft Press  ISBN 0-7356-0558-0 

 
This book contains a huge amount of VB information. It 
has a great section on ADO (Active Data Objects) that 
helps set up your VB program to be “data aware”. A 
companion CD contains all the source code from the 
book. 

 
3. SAS-L. Although I did not ask for information on IOM, I 

searched the archives for samples and pointers on 
using VB with IOM. 
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