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ABSTRACT 
Developing SAS® applications or programs almost always 
involves the use of spoken language or vocabulary. Whether it is 
text on a FRAME object (i.e. Pushbutton, List Box Title, etc.) or 
error messages written to the SAS LOG, we must deal with this 
issue. And quite often these applications or programs are either 
bilingual or multilingual. 
 
The use of a “vocabulary dictionary” (one for each spoken 
language) can prove to be very useful and an efficient way to 
include vocabulary in your systems. This separation of 
vocabulary from the actual software is beneficial even if only one 
spoken language is used.  
 
The focus of this paper is to provide a method to address the use 
of spoken language or vocabulary in SAS applications or 
programs, particularly those that are bilingual or multilingual. 
Discussion focuses on the use of SCL lists as a medium to store 
vocabulary. This concept of a “vocabulary dictionary” will be 
discussed in detail as well as a customized SAS/AF® application 
used to manage these external “vocabulary dictionaries” (SCL 
Lists). 
 
 
 
 

INTRODUCTION 
As software developers we often take for granted, or ignore the 
importance of the use of vocabulary in our applications, programs 
or systems. Without even thinking about it we are constantly 
embedding vocabulary in our SAS code, whether it be a title on a 
report, an error message to the user or text on a FRAME object 
(i.e. Pushbutton, List Box Title, etc.). The reason that most of us 
do not spend much time thinking about vocabulary when writing 
SAS code is that it is a simple task to incorporate. Text that we 
want displayed is simply placed in quotes and VOILA! This is 
definitely not “rocket science”, however, there are some things 
that should be considered when incorporating vocabulary into 
medium to large systems. 
 
This paper focuses on the use of SAS SCL (Source Component 
Language) lists and their functions to store and manipulate 
vocabulary. SAS SCL lists are very powerful and prove to be an 
efficient medium for storing vocabulary. To take this one step 
further, a SAS/AF application called GULP (Generalized Utility for 
Language Processing) will also be introduced. This application 
was developed at Statistics Canada. Its purpose is to assist the 
developer, making it even easier to manage and maintain these 
SAS SCL vocabulary lists. 
 
As you may have already realized, there is almost always several 
ways or methods of doing the same thing using SAS software. 
This is one of the great things about SAS. This paper will focus 
on one method of implementing vocabulary (SAS SCL Lists). The 
pros and cons of various other methods will also be addressed. 
 
 
 
 

VOCABULARY DICTIONARY – THE CONCEPT 
Before we get into the details of SAS SCL lists we will first 
discuss the concept of a “vocabulary dictionary”. Traditionally, 
developers tend to place vocabulary directly in their SAS code. If 
there is more that one language, If-Then-Else statements are 
often used. 
 
To best illustrate this would be to use an example. Figure 1 is an 
excerpt of code from a SAS/AF application.  This part of the SAS 
SCL code is responsible for placing vocabulary on pushbuttons 
on a dialog window based on the current language selected by 
the user. This is a bilingual application (French and English). 
Note that the vocabulary is “hard coded” within the SAS code. 
 
 

 
Figure 1 
 

Language: 
    if (CurrentLanguage = "English") then do; 
        Button1.Label = "Exit"; 
        Button2.Label = "Cancel"; 
    end; 
    else if (CurrentLanguage = "French") then do; 
        Button1.Label = "Quitter"; 
        Button2.Label = "Annuler"; 
    end; 
return; 

 

 
 
Example of “hard coded” vocabulary within SAS code. 

 
 
 
 
Although this method works, a preferred approach is to separate 
the vocabulary from the SAS code. This would imply that all 
vocabulary be stored in some sort of external medium such as a 
SAS data set, SAS SCL list, SAS macro variable(s), flat file, etc. 
The external medium can then be thought of as a “vocabulary 
dictionary”. This architecture would also require an interface 
between the SAS code and the external medium source. 
 
Figure 2 illustrates the concept of separating vocabulary from the 
SAS code and storing it in a “vocabulary dictionary”.  Note that 
pseudo code is used within the SAS statements since the actual 
implementation has yet to be discussed. 
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Figure 2 
 
                  English                                             French 
     ‘Vocabulary Dictionary’                   ‘Vocabulary Dictionary’ 

 

 
Language: 
    if (CurrentLanguage = "English") then do; 
        Button1.Label = <Get Text From English 
                                     Vocabulary Dictionary 
                                     (Keyword  = AAA)>; 
        Button2.Label = <Get Text From English 
                                     Vocabulary Dictionary 
                                     (Keyword = BBB)>; 
    end; 
    else if (CurrentLanguage = "French") then do; 
        Button1.Label = <Get Text From French 
                                     Vocabulary Dictionary 
                                     (Keyword = AAA)>; 
        Button2.Label = <Get Text From French 
                                     Vocabulary Dictionary 
                                     (Keyword = BBB)>; 
    end; 
return; 
 

 

 
Conceptual illustration of separating vocabulary from SAS 
code. 

 

 
When using a traditional dictionary, one would search or look-up 
a word to find the corresponding definition. When speaking of the 
concept of a “vocabulary dictionary” we are implying the look-up 
of vocabulary, phrases or text based on a keyword. A separate 
“vocabulary dictionary” would then exist for each language used 
in one’s applications.  
 
The common element between these “vocabulary dictionaries” is 
a keyword. The keyword is the means by which the SAS code 
interfaces with the desired phrase or vocabulary. It is then just a 
matter of ensuring that the SAS code is using the correct 
keyword and retrieving vocabulary from the desired “vocabulary 
dictionary”. 
 
In order to use such a method, a  “vocabulary dictionary” must be 
selected before retrieving the desired phrase(s). The example 
from Figure 2 could then be simplified. We no longer have to use 
if-then-else structures at every occurrence of vocabulary retrieval.  
Instead, we only need to determine which “vocabulary dictionary” 
to use. This is illustrated in the example in Figure 3 (pseudo 
code). 

 
 

Figure 3 
 

Language: 
    <Determine Vocabulary Dictionary To Use>; 
    Button1.Label = <Get Phrase Corresponding To 
                                 Keyword AAA>; 
    Button2.Label = <Get Phrase Corresponding To 
                                 Keyword BBB>; 
return; 

 

 
Conceptual illustration of selecting desired “vocabulary 
dictionary” before retrieving keyword / phrases. 

 

VOCABULARY DICTIONARY – PROPERTIES 
To summarize, the following is a list of properties that defines this 
concept of a “vocabulary dictionary”: 
 

 Separate Vocabulary Dictionary for each language 
used in an application 

 Use of a keyword to identify each unique phrase 
 Same set of keywords must exist in all vocabulary 

dictionaries used within an application 
 
 

VOCABULARY DICTIONARY – ADVANTAGES 
The following is a list of the advantages to using a “Vocabulary 
Dictionary”: 
 

 Required vocabulary changes need only be made in 
the vocabulary dictionary and not the SAS code (no 
need to recompile SAS code) 

 Easier to list all phrases used in an application (i.e. to 
be sent to other departments for translation to other 
languages) 

 Common phrases need only be defined once and not at 
every occurrence (i.e. “Exit” or “End”) 

 Other vocabulary dictionaries can be easily added (no 
change required to SAS code) 
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VOCABULARY DICTIONARY – IMPLEMENTATION 
Now that we have discussed the concept of a “vocabulary 
dictionary” we must consider an actual implementation. There are 
several approaches that could be used to store keywords and 
corresponding phrases. In the following sections we will discuss a 
few of these, listing advantages and disadvantages of each. 
Please refer to SAS documentation for a more detailed 
explanation and description of these topics. 
 

 

SAS MACROS 
SAS Macros are dynamic variables that reside in system 
memory. Once a macro variable has been defined, one is able to 
easily retrieve its contents. The keyword would be the macro 
name and the contents would be the word or phrase. To simulate 
a “vocabulary dictionary”, one would have to create a separate 
macro variable for each keyword / phrase for a selected 
language. Of course the keywords and phrases used to create 
the macro variables should be stored external to the SAS code 
(ie. SAS Data Set , Flat File, etc.) 
 

Advantages 
 

 Very efficient and fast retrieval of phrases since data 
resides in memory 

 Each macro variable can contain up to 32K of data 
 The number of macro variables and the size of their 

contents is only limited to memory size (Version 8) 
 

Disadvantages 
 

 Macro variables must be loaded or created at the 
beginning of your application, one by one 

 The keyword names and phrases must be stored in 
some other medium before creating macro variables 
(i.e. SAS Data Set, Flat File, etc.) 

 

SAS DATA SETS 
A SAS data set is a viable medium to store the required 
keywords and phrases for a given application. A separate SAS 
data set would be created for each language. Each SAS data set 
would then contain two variables. One variable that would contain 
the keyword and a second variable that would contain the 
corresponding phrase. A SAS application could then open such a 
file, search for a keyword and retrieve the corresponding phrase. 
 

Advantages 
 

 Permanent and reside on a hard drive (no need to 
recreate at the start of an application) 

 Easy to add, modify, or change the contents 
 Most common data structure used in SAS 

 
Disadvantages 

 
 Slower access time since retrieving from disk. 
 More steps required to retrieve desired keyword / 

phrase (OPEN, FETCH, GETVAR, etc. or WHERE 
clause) 

 
Note: 
It is possible to load a SAS data set into memory. This would 
improve access time for keywords / phrases. However, one would 
still require the same number of steps to do retrieval. To load a 
SAS data set into memory use the SASFILE command. 

 

FLAT FILE 
When we talk about a Flat File we are referring to a text-based 
file that can be used by many applications. Like a SAS data set, a 
flat file (text file) could also contain the keyword / phrase pairs. At 
the start of an application, the contents of the flat file would need 
to be loaded into another medium in which SAS could access 
more readily, such as a SAS data set or SAS macro variables. 
 

Advantages 
 

 Can be used by other applications, not just SAS 
 Easier to translate to other languages (able to send flat 

file to a translator; no need to know SAS) 
 Additions, modifications and deletions are easily made 

 
Disadvantages 

 
 Slower access time since retrieving from disk. 
 More steps required to retrieve desired keyword / 

phrase (Create SAS Dataset, OPEN, FETCH, 
GETVAR, etc.) 

 Some sort of SAS medium (i.e. SAS data set or SAS 
macros) must be created from the flat file each time an 
application runs 

 

USER DEFINED FORMATS 
It is not in the scope of this paper to discuss in detail the use of 
SAS User Defined Formats. However, in general we wish to 
address the possible use of such a method for storing 
vocabulary. These formats are created once and stored in a SAS 
catalog specified by the developer.   
 

Advantages 
 

 Permanent and reside on a hard drive (no need to 
recreate at the start of an application) 

 Very simple syntax to use 
 

Disadvantages 
 

 More difficult to modify, add or delete keywords / 
phrases 

 Slightly slower due to the fact that theses formats 
reside in catalogs on disk 

 

SAS SCL LISTS 
Now that we have discussed alternate methods to store 
vocabulary, we will focus on the SAS SCL list. A quick lesson or 
review of SAS SCL lists will be beneficial to further our discussion 
with regards to vocabulary and SAS applications. 
 
The SAS SCL list is a SAS data structure that resides in memory. 
Conceptually it resembles a list of “cells” linked together to form a 
chain. Each “cell” or item can contain character data, numeric 
data, or a list identifier for another SAS SCL list. SAS SCL lists 
are dynamic which means that they can grow or shrink in size. 
When first initialized, a list contains no cells, just a pointer into 
memory. This pointer is referred to as the list identifier. Using 
several SAS SCL list functions, one can then manipulate these 
lists, cells and their contents. The items in a list can be accessed 
by their name and/or their position in the list. 
 
As indicated, it is possible to store a list identifier of another list in 
a “cell”. This would be the foundation for multi-dimensional lists. 
However, for our discussion we will concentrate only on single 
dimensional lists as illustrated in Figure 4. 
 
 

SUGI 28 Applications Development



 

-4- 

 
Figure 4 

 
 

Conceptual view of a single dimensional SAS SCL list. 
 

 
To make use of the 20 or so SAS SCL list functions, one must 
use the list identifier of the desired list. Each list that resides in 
memory will have a different list identifier. Typically the list 
identifier is stored in an SAS SCL local variable and passed to 
the various SAS SCL list functions. The list identifier will be in the 
form of an integer. This list identifier is a pointer used by SAS to 
locate the start of the list in memory. 
 

Advantages 
 

 Reside in memory (quick access) 
 Very simple syntax to access contents 
 Can be saved and loaded from/to SAS catalog or Flat 

File (text based file) 
 Each cell can contain up to 32K of data 
 Name of each “cell” can be up to 256 characters 
 Name of each item or cell does not have to conform to 

SAS naming conventions (can use numbers and 
special characters) 

 
Disadvantages 

 
 Only accessible through SAS SCL code 
 Changes to list structure or contents requires SAS SCL 

code 

USING SCL LISTS AS VOCABULARY DICTIONARIES 
Using a few of the basic SAS SCL list functions, we are able to 
create and use these lists to store vocabulary to be used in SAS 
programs and applications. Let us go over the steps required to 
make use of these SAS SCL lists as “vocabulary dictionaries”. 
 

CREATING SAS SCL LISTS 
The first task would be to create a separate list for each language 
to be used in your application. The MAKELIST SAS SCL 
function is used to create an empty SAS SCL list in computer 
memory.  

The sample code in Figure 5 illustrates the creation of two SAS 
SCL lists. Once the lists have been created in computer memory, 
list identifiers are returned to the corresponding SAS SCL local 
variables. These list identifiers will be integers, normally 4 digits 
in length. These list identifiers will be used with various other SAS 
SCL list functions to manipulate the contents. 

 
 

Figure 5 
 

Init: 
 DECLARE    list    English_List 
                               French_List; 
 
        English_List = MAKELIST(); 
        French_List  = MAKELIST(); 
return; 
 

 
Example to illustrate the creation of SAS SCL Lists. 

 
INSERTING DATA INTO SAS SCL LISTS 
Once a SAS SCL list has been created for each language, we 
want to fill these with all of the vocabulary that we would use in 
our application(s).  To insert items into a SAS SCL list we use the 
INSERTC SAS SCL function. This is usually a one-time task 
performed at the beginning of the development cycle. In an 
iterative fashion we need to add items to each list, insert desired 
phrases and name each item (or cell) with the desired keywords. 
 
Each list should contain the same number of items with the same 
item names. The only difference should be the contents of the 
cells. This is illustrated in Figure 6. 
 

 
Figure 6 
 
Add_Items: 
    English_List = INSERTC(English_List,”Exit”,-1,”AAA”); 
    English_List = INSERTC(English_List,”Cancel”,-1,”BBB”); 
 
     French_List  = INSERTC(French_List,”Quitter”,-1,”AAA”); 
     French_List  = INSERTC(French_List,”Annuler”,-1,”BBB”); 
return; 

 
 
Example to illustrate the insertion of keywords / phrases into 
SAS SCL Lists. 
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STORING SAS SCL LISTS 
Due to the fact that SAS SCL lists reside in memory, it is 
necessary to save these “vocabulary dictionary” lists so that they 
may be referenced and used again in the future. If they are not 
saved, they will be lost when you terminate your SAS session. 
Use the SAVELIST SAS SCL function to create a copy of the 
SAS SCL list in memory to disk (SAS catalog entry or external 
file). Although SAS SCL lists may be stored in flat files (text-
based files) it is recommended to store them in SAS catalogs. 
When stored as entries in SAS catalogs, these saved lists will 
have the extension “SLIST”.  Figure 7 illustrates the way in which 
we would store our “vocabulary dictionaries” to disk (SAS 
catalog). 

 
Figure 7 
 
Store_Lists: 
    RC = LIBNAME( “MYLIB”,”C:\Application XYZ” ); 
 
    RC = SAVELIST ( “CATALOG”, 
                                   ”MYLIB.CATNAME.ENGLISH.SLIST”, 
                                   English_List ); 
 
    RC = SAVELIST ( “CATALOG”, 
                                   ”MYLIB.CATNAME.FRENCH.SLIST”, 
                                   French_List ); 
return; 
 
Example to illustrated the storing of SAS SCL Lists. 

 
 
Due to the fact that SAS SCL lists reside in memory, it is good 
programming practice to delete them once the SAS application 
terminates. To remove SAS SCL lists from memory use the 
DELLIST SAS SCL function. Now that we have saved our 
“vocabulary dictionary” lists to SAS catalogs as illustrated in 
Figure 7, we can now delete them from memory as seen in 
Figure 8. 
 

 
Figure 8 
 
Delete_Lists: 
    RC = DELLIST ( English_List ); 
 
    RC = DELLIST ( French_List ); 
return; 
 
Example to illustrated the deletion of SAS SCL Lists. 

 
 

LOADING SAS SCL LISTS 
Once a SAS SCL list is saved to disk (SAS catalog or flat file) 
one can load it back into memory at any time using the FILLIST 
SAS SCL function. An empty SAS SCL list must be first created 
(using the MAKELIST SAS SCL function) before using the 
FILLIST SAS SCL function.  
 
Following our example, it would be necessary to provide the user 
with a choice of language on an application start-up or “splash” 
screen. Once the user selects the language of choice, we would 
simply load the corresponding saved SAS SCL “vocabulary 
dictionary” list into memory. If “English” is selected we would load 
the English “vocabulary dictionary” list, or if “Français” was 
selected we would load the French “vocabulary dictionary” list. 
Figure 9 illustrates how one would load a SAS SCL “vocabulary 
dictionary” list into memory based on a user’s language 
preference (pseudo code). 

 
Figure 9 
 
Load_Lists: 
      DECLARE    LIST    Language_List; 
 
      RC = LIBNAME( “MYLIB”,”C:\Application XYZ” ); 
 
      Language_List = MAKELIST(); 
 
      If (<User Selected English>) then  
           RC = FILLIST ( “CATALOG”, 
                                     “ MYLIB.CATNAME.ENGLISH.SLIST”, 
                                        Language_List ); 
      Else if (<User Selected French>) then 
           RC = FILLIST ( “CATALOG”, 
                                     ”MYLIB.CATNAME.FRENCH.SLIST”, 
                                       Language_List ); 
return; 
 
Example to illustrated the loading of SAS SCL Lists. 

 

 

RETRIEVING DATA FROM SAS SCL LISTS 
Once the desired SAS SCL “vocabulary dictionary” list is loaded 
into memory, we can easily retrieve the desired phrases based 
on corresponding keywords. To retrieve data from a SAS SCL list 
we use the GETNITEMC SAS SCL function. This particular SAS 
SCL function retrieves data based on the name of the item or 
cell. There are other SAS SCL list functions that can be used to 
retrieve data based on other criteria such as position or data type 
(numeric or another list identifier). For this discussion we will use 
the GETNITEMC SAS SCL function, as this is what we need for 
this application. 
 
Figure 10 illustrates how our SAS SCL program would populate 
two pushbuttons from the current “vocabulary dictionary” list that 
resides in memory: 
 

 
Figure 10 
 
Populate_Buttons: 
 
   BUTTON1.Label = GETNITEMC ( Language_List, “AAA” ); 
   BUTTON2.Label = GETNITEMC ( Language_List, “BBB”); 
 
return; 
 
Example to illustrated how to retrieve data from SAS SCL 
Lists using the item’s name. 
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GENERALIZED UTILITY FOR LANGUAGE 
PROCESSING (GULP) 
As we have seen, SAS SCL lists are a useful medium or SAS 
data structure used for storing and retrieving vocabulary. 
However, there is one major drawback to using SAS SCL lists. 
They are only accessible through SAS SCL code. If one wishes 
to access a SAS SCL list from BASE SAS or some other 
modules in SAS, one must indirectly go through SAS SCL code. 
Therefore, it would be useful to build a generalized tool that would 
allow the developer to easily access and manipulate SAS SCL 
lists, in particular, these “vocabulary dictionaries”. 
 
At Statistics Canada, we are required to make all of our 
applications bilingual (French and English). Therefore, we must 
deal with this issue on every new system that we develop. A few 
years back we decided to build a generalized utility called GULP 
(Generalized Utility for Language Processing) that would allow us 
to easily manipulate and maintain these SAS SCL “vocabulary 
dictionary” lists. 
 
This application called GULP is intended to be used by the SAS 
developer. It is a small SAS/AF application that makes use of a 
user-friendly, point and click approach to manage and maintain 
these SAS SCL “vocabulary dictionary” lists. 
 
GULP allows the SAS developer to: 
 

 Organize up to 5 “vocabulary dictionaries” (add, delete, 
modify) 

 Organize unlimited amount of keywords / phrases (add, 
delete, modify) 

 Export and import vocabulary data out of / into 
“vocabulary dictionaries” 

 View summary statistics on defined “vocabulary 
dictionaries” 

 
 
A full discussion of GULP would be another paper in itself. Like 
the name, GULP is a unique application that has a very specific 
function; to improve our use of vocabulary within SAS 
applications at Statistics Canada. 
 

SUMMARY 
If there is only one thing to be learned from this discussion, it 
should be: 
 

 
 
 
But hopefully we have shown that the SAS SCL lists are an 
excellent medium for storing vocabulary to be used in SAS 
applications.  Although we did not discuss all of the available 
SAS SCL list functions, we covered the majority of the ones 
needed to implement a strategy to handle vocabulary. 
 
As developers, we must address this issue in just about every 
system that we work on. Separating vocabulary from our SAS 
programs and applications and storing them in SAS SCL lists (or 
any other SAS medium) will prove to be a time saver in terms of 
development, testing and maintenance. 
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