
Paper 30-28

- 1 -

‘Watch Your Language!’
Using SCL Lists to Store Vocabulary

Greg McLean, Project Leader, SAS Technology Centre
Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT
Developing SAS® applications or programs almost always
involves the use of spoken language or vocabulary. Whether it is
text on a FRAME object (i.e. Pushbutton, List Box Title, etc.) or
error messages written to the SAS LOG, we must deal with this
issue. And quite often these applications or programs are either
bilingual or multilingual.

The use of a “vocabulary dictionary” (one for each spoken
language) can prove to be very useful and an efficient way to
include vocabulary in your systems. This separation of
vocabulary from the actual software is beneficial even if only one
spoken language is used.

The focus of this paper is to provide a method to address the use
of spoken language or vocabulary in SAS applications or
programs, particularly those that are bilingual or multilingual.
Discussion focuses on the use of SCL lists as a medium to store
vocabulary. This concept of a “vocabulary dictionary” will be
discussed in detail as well as a customized SAS/AF® application
used to manage these external “vocabulary dictionaries” (SCL
Lists).

INTRODUCTION
As software developers we often take for granted, or ignore the
importance of the use of vocabulary in our applications, programs
or systems. Without even thinking about it we are constantly
embedding vocabulary in our SAS code, whether it be a title on a
report, an error message to the user or text on a FRAME object
(i.e. Pushbutton, List Box Title, etc.). The reason that most of us
do not spend much time thinking about vocabulary when writing
SAS code is that it is a simple task to incorporate. Text that we
want displayed is simply placed in quotes and VOILA! This is
definitely not “rocket science”, however, there are some things
that should be considered when incorporating vocabulary into
medium to large systems.

This paper focuses on the use of SAS SCL (Source Component
Language) lists and their functions to store and manipulate
vocabulary. SAS SCL lists are very powerful and prove to be an
efficient medium for storing vocabulary. To take this one step
further, a SAS/AF application called GULP (Generalized Utility for
Language Processing) will also be introduced. This application
was developed at Statistics Canada. Its purpose is to assist the
developer, making it even easier to manage and maintain these
SAS SCL vocabulary lists.

As you may have already realized, there is almost always several
ways or methods of doing the same thing using SAS software.
This is one of the great things about SAS. This paper will focus
on one method of implementing vocabulary (SAS SCL Lists). The
pros and cons of various other methods will also be addressed.

VOCABULARY DICTIONARY – THE CONCEPT
Before we get into the details of SAS SCL lists we will first
discuss the concept of a “vocabulary dictionary”. Traditionally,
developers tend to place vocabulary directly in their SAS code. If
there is more that one language, If-Then-Else statements are
often used.

To best illustrate this would be to use an example. Figure 1 is an
excerpt of code from a SAS/AF application. This part of the SAS
SCL code is responsible for placing vocabulary on pushbuttons
on a dialog window based on the current language selected by
the user. This is a bilingual application (French and English).
Note that the vocabulary is “hard coded” within the SAS code.

Figure 1

Language:
 if (CurrentLanguage = "English") then do;
 Button1.Label = "Exit";
 Button2.Label = "Cancel";
 end;
 else if (CurrentLanguage = "French") then do;
 Button1.Label = "Quitter";
 Button2.Label = "Annuler";
 end;
return;

Example of “hard coded” vocabulary within SAS code.

Although this method works, a preferred approach is to separate
the vocabulary from the SAS code. This would imply that all
vocabulary be stored in some sort of external medium such as a
SAS data set, SAS SCL list, SAS macro variable(s), flat file, etc.
The external medium can then be thought of as a “vocabulary
dictionary”. This architecture would also require an interface
between the SAS code and the external medium source.

Figure 2 illustrates the concept of separating vocabulary from the
SAS code and storing it in a “vocabulary dictionary”. Note that
pseudo code is used within the SAS statements since the actual
implementation has yet to be discussed.

SUGI 28 Applications Development

-2-

Figure 2

 English French
 ‘Vocabulary Dictionary’ ‘Vocabulary Dictionary’

Language:
 if (CurrentLanguage = "English") then do;
 Button1.Label = <Get Text From English
 Vocabulary Dictionary
 (Keyword = AAA)>;
 Button2.Label = <Get Text From English
 Vocabulary Dictionary
 (Keyword = BBB)>;
 end;
 else if (CurrentLanguage = "French") then do;
 Button1.Label = <Get Text From French
 Vocabulary Dictionary
 (Keyword = AAA)>;
 Button2.Label = <Get Text From French
 Vocabulary Dictionary
 (Keyword = BBB)>;
 end;
return;

Conceptual illustration of separating vocabulary from SAS
code.

When using a traditional dictionary, one would search or look-up
a word to find the corresponding definition. When speaking of the
concept of a “vocabulary dictionary” we are implying the look-up
of vocabulary, phrases or text based on a keyword. A separate
“vocabulary dictionary” would then exist for each language used
in one’s applications.

The common element between these “vocabulary dictionaries” is
a keyword. The keyword is the means by which the SAS code
interfaces with the desired phrase or vocabulary. It is then just a
matter of ensuring that the SAS code is using the correct
keyword and retrieving vocabulary from the desired “vocabulary
dictionary”.

In order to use such a method, a “vocabulary dictionary” must be
selected before retrieving the desired phrase(s). The example
from Figure 2 could then be simplified. We no longer have to use
if-then-else structures at every occurrence of vocabulary retrieval.
Instead, we only need to determine which “vocabulary dictionary”
to use. This is illustrated in the example in Figure 3 (pseudo
code).

Figure 3

Language:
 <Determine Vocabulary Dictionary To Use>;
 Button1.Label = <Get Phrase Corresponding To
 Keyword AAA>;
 Button2.Label = <Get Phrase Corresponding To
 Keyword BBB>;
return;

Conceptual illustration of selecting desired “vocabulary
dictionary” before retrieving keyword / phrases.

VOCABULARY DICTIONARY – PROPERTIES
To summarize, the following is a list of properties that defines this
concept of a “vocabulary dictionary”:

 Separate Vocabulary Dictionary for each language
used in an application

 Use of a keyword to identify each unique phrase
 Same set of keywords must exist in all vocabulary

dictionaries used within an application

VOCABULARY DICTIONARY – ADVANTAGES
The following is a list of the advantages to using a “Vocabulary
Dictionary”:

 Required vocabulary changes need only be made in
the vocabulary dictionary and not the SAS code (no
need to recompile SAS code)

 Easier to list all phrases used in an application (i.e. to
be sent to other departments for translation to other
languages)

 Common phrases need only be defined once and not at
every occurrence (i.e. “Exit” or “End”)

 Other vocabulary dictionaries can be easily added (no
change required to SAS code)

SUGI 28 Applications Development

-3-

VOCABULARY DICTIONARY – IMPLEMENTATION
Now that we have discussed the concept of a “vocabulary
dictionary” we must consider an actual implementation. There are
several approaches that could be used to store keywords and
corresponding phrases. In the following sections we will discuss a
few of these, listing advantages and disadvantages of each.
Please refer to SAS documentation for a more detailed
explanation and description of these topics.

SAS MACROS
SAS Macros are dynamic variables that reside in system
memory. Once a macro variable has been defined, one is able to
easily retrieve its contents. The keyword would be the macro
name and the contents would be the word or phrase. To simulate
a “vocabulary dictionary”, one would have to create a separate
macro variable for each keyword / phrase for a selected
language. Of course the keywords and phrases used to create
the macro variables should be stored external to the SAS code
(ie. SAS Data Set , Flat File, etc.)

Advantages

 Very efficient and fast retrieval of phrases since data
resides in memory

 Each macro variable can contain up to 32K of data
 The number of macro variables and the size of their

contents is only limited to memory size (Version 8)

Disadvantages

 Macro variables must be loaded or created at the
beginning of your application, one by one

 The keyword names and phrases must be stored in
some other medium before creating macro variables
(i.e. SAS Data Set, Flat File, etc.)

SAS DATA SETS
A SAS data set is a viable medium to store the required
keywords and phrases for a given application. A separate SAS
data set would be created for each language. Each SAS data set
would then contain two variables. One variable that would contain
the keyword and a second variable that would contain the
corresponding phrase. A SAS application could then open such a
file, search for a keyword and retrieve the corresponding phrase.

Advantages

 Permanent and reside on a hard drive (no need to
recreate at the start of an application)

 Easy to add, modify, or change the contents
 Most common data structure used in SAS

Disadvantages

 Slower access time since retrieving from disk.
 More steps required to retrieve desired keyword /

phrase (OPEN, FETCH, GETVAR, etc. or WHERE
clause)

Note:
It is possible to load a SAS data set into memory. This would
improve access time for keywords / phrases. However, one would
still require the same number of steps to do retrieval. To load a
SAS data set into memory use the SASFILE command.

FLAT FILE
When we talk about a Flat File we are referring to a text-based
file that can be used by many applications. Like a SAS data set, a
flat file (text file) could also contain the keyword / phrase pairs. At
the start of an application, the contents of the flat file would need
to be loaded into another medium in which SAS could access
more readily, such as a SAS data set or SAS macro variables.

Advantages

 Can be used by other applications, not just SAS
 Easier to translate to other languages (able to send flat

file to a translator; no need to know SAS)
 Additions, modifications and deletions are easily made

Disadvantages

 Slower access time since retrieving from disk.
 More steps required to retrieve desired keyword /

phrase (Create SAS Dataset, OPEN, FETCH,
GETVAR, etc.)

 Some sort of SAS medium (i.e. SAS data set or SAS
macros) must be created from the flat file each time an
application runs

USER DEFINED FORMATS
It is not in the scope of this paper to discuss in detail the use of
SAS User Defined Formats. However, in general we wish to
address the possible use of such a method for storing
vocabulary. These formats are created once and stored in a SAS
catalog specified by the developer.

Advantages

 Permanent and reside on a hard drive (no need to
recreate at the start of an application)

 Very simple syntax to use

Disadvantages

 More difficult to modify, add or delete keywords /
phrases

 Slightly slower due to the fact that theses formats
reside in catalogs on disk

SAS SCL LISTS
Now that we have discussed alternate methods to store
vocabulary, we will focus on the SAS SCL list. A quick lesson or
review of SAS SCL lists will be beneficial to further our discussion
with regards to vocabulary and SAS applications.

The SAS SCL list is a SAS data structure that resides in memory.
Conceptually it resembles a list of “cells” linked together to form a
chain. Each “cell” or item can contain character data, numeric
data, or a list identifier for another SAS SCL list. SAS SCL lists
are dynamic which means that they can grow or shrink in size.
When first initialized, a list contains no cells, just a pointer into
memory. This pointer is referred to as the list identifier. Using
several SAS SCL list functions, one can then manipulate these
lists, cells and their contents. The items in a list can be accessed
by their name and/or their position in the list.

As indicated, it is possible to store a list identifier of another list in
a “cell”. This would be the foundation for multi-dimensional lists.
However, for our discussion we will concentrate only on single
dimensional lists as illustrated in Figure 4.

SUGI 28 Applications Development

-4-

Figure 4

Conceptual view of a single dimensional SAS SCL list.

To make use of the 20 or so SAS SCL list functions, one must
use the list identifier of the desired list. Each list that resides in
memory will have a different list identifier. Typically the list
identifier is stored in an SAS SCL local variable and passed to
the various SAS SCL list functions. The list identifier will be in the
form of an integer. This list identifier is a pointer used by SAS to
locate the start of the list in memory.

Advantages

 Reside in memory (quick access)
 Very simple syntax to access contents
 Can be saved and loaded from/to SAS catalog or Flat

File (text based file)
 Each cell can contain up to 32K of data
 Name of each “cell” can be up to 256 characters
 Name of each item or cell does not have to conform to

SAS naming conventions (can use numbers and
special characters)

Disadvantages

 Only accessible through SAS SCL code
 Changes to list structure or contents requires SAS SCL

code

USING SCL LISTS AS VOCABULARY DICTIONARIES
Using a few of the basic SAS SCL list functions, we are able to
create and use these lists to store vocabulary to be used in SAS
programs and applications. Let us go over the steps required to
make use of these SAS SCL lists as “vocabulary dictionaries”.

CREATING SAS SCL LISTS
The first task would be to create a separate list for each language
to be used in your application. The MAKELIST SAS SCL
function is used to create an empty SAS SCL list in computer
memory.

The sample code in Figure 5 illustrates the creation of two SAS
SCL lists. Once the lists have been created in computer memory,
list identifiers are returned to the corresponding SAS SCL local
variables. These list identifiers will be integers, normally 4 digits
in length. These list identifiers will be used with various other SAS
SCL list functions to manipulate the contents.

Figure 5

Init:
 DECLARE list English_List
 French_List;

 English_List = MAKELIST();
 French_List = MAKELIST();
return;

Example to illustrate the creation of SAS SCL Lists.

INSERTING DATA INTO SAS SCL LISTS
Once a SAS SCL list has been created for each language, we
want to fill these with all of the vocabulary that we would use in
our application(s). To insert items into a SAS SCL list we use the
INSERTC SAS SCL function. This is usually a one-time task
performed at the beginning of the development cycle. In an
iterative fashion we need to add items to each list, insert desired
phrases and name each item (or cell) with the desired keywords.

Each list should contain the same number of items with the same
item names. The only difference should be the contents of the
cells. This is illustrated in Figure 6.

Figure 6

Add_Items:
 English_List = INSERTC(English_List,”Exit”,-1,”AAA”);
 English_List = INSERTC(English_List,”Cancel”,-1,”BBB”);

 French_List = INSERTC(French_List,”Quitter”,-1,”AAA”);
 French_List = INSERTC(French_List,”Annuler”,-1,”BBB”);
return;

Example to illustrate the insertion of keywords / phrases into
SAS SCL Lists.

SUGI 28 Applications Development

-5-

STORING SAS SCL LISTS
Due to the fact that SAS SCL lists reside in memory, it is
necessary to save these “vocabulary dictionary” lists so that they
may be referenced and used again in the future. If they are not
saved, they will be lost when you terminate your SAS session.
Use the SAVELIST SAS SCL function to create a copy of the
SAS SCL list in memory to disk (SAS catalog entry or external
file). Although SAS SCL lists may be stored in flat files (text-
based files) it is recommended to store them in SAS catalogs.
When stored as entries in SAS catalogs, these saved lists will
have the extension “SLIST”. Figure 7 illustrates the way in which
we would store our “vocabulary dictionaries” to disk (SAS
catalog).

Figure 7

Store_Lists:
 RC = LIBNAME(“MYLIB”,”C:\Application XYZ”);

 RC = SAVELIST (“CATALOG”,
 ”MYLIB.CATNAME.ENGLISH.SLIST”,
 English_List);

 RC = SAVELIST (“CATALOG”,
 ”MYLIB.CATNAME.FRENCH.SLIST”,
 French_List);
return;

Example to illustrated the storing of SAS SCL Lists.

Due to the fact that SAS SCL lists reside in memory, it is good
programming practice to delete them once the SAS application
terminates. To remove SAS SCL lists from memory use the
DELLIST SAS SCL function. Now that we have saved our
“vocabulary dictionary” lists to SAS catalogs as illustrated in
Figure 7, we can now delete them from memory as seen in
Figure 8.

Figure 8

Delete_Lists:
 RC = DELLIST (English_List);

 RC = DELLIST (French_List);
return;

Example to illustrated the deletion of SAS SCL Lists.

LOADING SAS SCL LISTS
Once a SAS SCL list is saved to disk (SAS catalog or flat file)
one can load it back into memory at any time using the FILLIST
SAS SCL function. An empty SAS SCL list must be first created
(using the MAKELIST SAS SCL function) before using the
FILLIST SAS SCL function.

Following our example, it would be necessary to provide the user
with a choice of language on an application start-up or “splash”
screen. Once the user selects the language of choice, we would
simply load the corresponding saved SAS SCL “vocabulary
dictionary” list into memory. If “English” is selected we would load
the English “vocabulary dictionary” list, or if “Français” was
selected we would load the French “vocabulary dictionary” list.
Figure 9 illustrates how one would load a SAS SCL “vocabulary
dictionary” list into memory based on a user’s language
preference (pseudo code).

Figure 9

Load_Lists:
 DECLARE LIST Language_List;

 RC = LIBNAME(“MYLIB”,”C:\Application XYZ”);

 Language_List = MAKELIST();

 If (<User Selected English>) then
 RC = FILLIST (“CATALOG”,
 “ MYLIB.CATNAME.ENGLISH.SLIST”,
 Language_List);
 Else if (<User Selected French>) then
 RC = FILLIST (“CATALOG”,
 ”MYLIB.CATNAME.FRENCH.SLIST”,
 Language_List);
return;

Example to illustrated the loading of SAS SCL Lists.

RETRIEVING DATA FROM SAS SCL LISTS
Once the desired SAS SCL “vocabulary dictionary” list is loaded
into memory, we can easily retrieve the desired phrases based
on corresponding keywords. To retrieve data from a SAS SCL list
we use the GETNITEMC SAS SCL function. This particular SAS
SCL function retrieves data based on the name of the item or
cell. There are other SAS SCL list functions that can be used to
retrieve data based on other criteria such as position or data type
(numeric or another list identifier). For this discussion we will use
the GETNITEMC SAS SCL function, as this is what we need for
this application.

Figure 10 illustrates how our SAS SCL program would populate
two pushbuttons from the current “vocabulary dictionary” list that
resides in memory:

Figure 10

Populate_Buttons:

 BUTTON1.Label = GETNITEMC (Language_List, “AAA”);
 BUTTON2.Label = GETNITEMC (Language_List, “BBB”);

return;

Example to illustrated how to retrieve data from SAS SCL
Lists using the item’s name.

SUGI 28 Applications Development

-6-

GENERALIZED UTILITY FOR LANGUAGE
PROCESSING (GULP)
As we have seen, SAS SCL lists are a useful medium or SAS
data structure used for storing and retrieving vocabulary.
However, there is one major drawback to using SAS SCL lists.
They are only accessible through SAS SCL code. If one wishes
to access a SAS SCL list from BASE SAS or some other
modules in SAS, one must indirectly go through SAS SCL code.
Therefore, it would be useful to build a generalized tool that would
allow the developer to easily access and manipulate SAS SCL
lists, in particular, these “vocabulary dictionaries”.

At Statistics Canada, we are required to make all of our
applications bilingual (French and English). Therefore, we must
deal with this issue on every new system that we develop. A few
years back we decided to build a generalized utility called GULP
(Generalized Utility for Language Processing) that would allow us
to easily manipulate and maintain these SAS SCL “vocabulary
dictionary” lists.

This application called GULP is intended to be used by the SAS
developer. It is a small SAS/AF application that makes use of a
user-friendly, point and click approach to manage and maintain
these SAS SCL “vocabulary dictionary” lists.

GULP allows the SAS developer to:

 Organize up to 5 “vocabulary dictionaries” (add, delete,
modify)

 Organize unlimited amount of keywords / phrases (add,
delete, modify)

 Export and import vocabulary data out of / into
“vocabulary dictionaries”

 View summary statistics on defined “vocabulary
dictionaries”

A full discussion of GULP would be another paper in itself. Like
the name, GULP is a unique application that has a very specific
function; to improve our use of vocabulary within SAS
applications at Statistics Canada.

SUMMARY
If there is only one thing to be learned from this discussion, it
should be:

But hopefully we have shown that the SAS SCL lists are an
excellent medium for storing vocabulary to be used in SAS
applications. Although we did not discuss all of the available
SAS SCL list functions, we covered the majority of the ones
needed to implement a strategy to handle vocabulary.

As developers, we must address this issue in just about every
system that we work on. Separating vocabulary from our SAS
programs and applications and storing them in SAS SCL lists (or
any other SAS medium) will prove to be a time saver in terms of
development, testing and maintenance.

ACKNOWLEDGEMENTS
The author would like to acknowledge the entire SAS Technology
Centre Team at Statistics Canada for their hard work, dedication
and support. It is this kind of team work that motivates SAS
knowledge and passion.

CONTACT INFORMATION
For information on topics cover in this paper including the GULP
(Generalized Utility for Language Processing) application
mentioned please contact:

Statistics Statistique
Canada Canada

Greg McLean
Project Leader – SAS Technology Centre
System Development Division
R.H. Coats Building, 14th Floor, Section Q

Ottawa, Ontario, Canada K1A 0T6
(613) 951-2396 Fax (613) 951-0607
greg.mclean@statcan.ca

Statistique Statistics
Canada Canada

Greg McLean
Chef de projet – Centre de Technologie SAS
Division de développment des systèmes
Édifice R.H. Coats Building, 14ième étage, section Q

Ottawa, Ontario, Canada K1A 0T6
(613) 951-2396 Fax (613) 951-0607
greg.mclean@statcan.ca

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.

SUGI 28 Applications Development

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

